
Goal-directed Weakening of Abstract Interpretation

Results

SUNAE SEO

Korea Advanced Institute of Science and Technology

HONGSEOK YANG and KWANGKEUN YI

Seoul National University

and

TAISOOK HAN

Korea Advanced Institute of Science and Technology

One proposal for automatic construction of proofs about programs is to combine Hoare logic and

abstract interpretation. Constructing proofs is in Hoare logic. Discovering programs’ invariants

is done by abstract interpreters.

One problem of this approach is that abstract interpreters often compute invariants that are not

needed for the proof goal. The reason is that the abstract interpreter does not know what the proof
goal is, so it simply tries to find as strong invariants as possible. These unnecessary invariants
increase the size of the constructed proofs. Unless the proof-construction phase is notified which
invariants are not needed, it blindly proves all the computed invariants.

In this paper, we present a framework for designing algorithms, called abstract-value slicers,
that slice out unnecessary invariants from the results of forward abstract interpretation. The
framework provides a generic abstract-value slicer that can be instantiated into a slicer for a

particular abstract interpretation. Such an instantiated abstract-value slicer works as a post-
processor to an abstract interpretation in the whole proof-construction process, and notifies to
the next proof-construction phase which invariants it does not have to prove. Using the framework,
we designed an abstract-value slicer for an existing relational analysis and applied it on programs.
In this experiment, the slicer identified 62%−81% of the computed invariants as unnecessary, and

resulted in 52% − 84% reduction in the size of constructed proofs.

Categories and Subject Descriptors: F.3.1 [Specifying and Verifying and Reasoning about

Programs]: Mechanical verification; D.2.4 [Software/Program Verification]: Correctness
proofs

General Terms: Algorithms, Design, Languages, Verification

Additional Key Words and Phrases: Program verification, Static analysis, Abstract interpretation,
Backward analysis

Authors’ addresses: S. Seo and T. Han, Department of Computer Science, Korea Advanced Insti-

tute of Science and Technology, 373-1 Guseong-dong Yuseong-gu Daejeon 305-701, Korea; email:

{saseo,han}@pllab.kaist.ac.kr; H. Yang, Department of Computer Science, Queen Mary, Univer-
sity of London, Mile End Road, London, E1 4NS, UK; email: hyang@dcs.qmul.ac.uk; K. Yi,

School of Computer Science and Engineering, Seoul National University, San 56-1 Shilim-dong
Gwanak-gu Seoul 151-744, Korea; email: kwang@ropas.snu.ac.kr.

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 0164-0925/2007/0500-0001 $5.00

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007, Pages 1–0??.

2 ·

1. INTRODUCTION

Though Proof-Carrying Code(PCC) technologies [Necula and Schneck 2002; Necula
and Rahul 2001; Appel 2001; Hamid et al. 2002] have been a convincing approach
for certifying the safety of code, how to achieve the code’s safety proof is still
a matter for investigation. The existing proof construction process is either not
fully automatic, assuming that the program invariants should be provided by the
programmer [Necula 1997; Necula and Lee 1997; Necula and Rahul 2001], or limited
to a class of properties that are automatically inferable by the current type system
technologies [Hamid et al. 2002; Appel and Felty 2000; Morrisett et al. 1998].

One proposal [Seo et al. 2003] for automatic construction of proofs for a wide class
of program properties is to combine abstract interpretation [Cousot and Cousot
1977; Cousot 1999] and Hoare logic [Hoare 1969]. Constructing proofs is in Hoare
logic. Discovering program’s invariants, which is the main challenge in automati-
cally constructing Hoare proofs, is done by abstract interpreters [Cousot and Cousot
1977; Cousot 1999]. An abstract interpreter estimates program properties (i.e., ap-
proximate invariants) of interest, and the proof-construction method constructs a
Hoare proof for those approximate invariants. The gap between the estimated in-
variants of an abstract interpreter and the preconditions “computed by Hoare-logic
proof rules” is filled by the soundness of the abstract interpreter only, without
involving any theorem provers. For instance, when the abstract interpreter’s re-
sults (i.e., approximate invariants at program points – boxed properties here) are
p x:=E q , the soundness proofs of the abstract interpreter are used to produce

a proof that p implies the weakest precondition of x:=E for q.
This proof-construction method for PCC has several appealing features. An once

designed abstract interpreter can be used repeatedly for all programs of the target
language, as long as their properties to verify and check remain the same. Fur-
thermore, the proof-checking side (code consumer’s side) is insensitive to a specific
abstract interpreter. The code consumer does not have to know which analysis
technique has been used to generate the proof. The assertion language in Hoare
logic is fixed to first-order logic for integers, into which we have to translate abstract
interpretation results. This translation procedure is defined by referencing the con-
cretization formulas of the used abstract interpreter. Lastly, the proof-checking side
is simple. Checking the Hoare proofs is simply by pattern-matching the proof tree
nodes against the corresponding Hoare logic rules. Checking if the proofs are about
the accompanied code is straightforward, because the program texts are embedded
in the Hoare proofs.

1.1 Problem

This work is motivated by one problem in the proof-construction method: abstract
interpretation results are often unnecessarily informative for intended Hoare proofs.
A (forward) abstract interpreter is usually designed to compute (approximate) pro-
gram invariants that are as strong as possible, so that the computed invariants
can verify a wide class of safety properties. Thus, when the abstract interpreter
is used to verify one specific safety property, its results usually contain some (ap-
proximate) program invariants that are not necessary to prove the safety property
of interest, although those invariants might be needed for some other safety prop-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 3

erties. For instance, in our experiment with an existing relational analysis [Miné
2001], 62% − 81% of the analysis results were not needed for the intended verifica-
tion.1

The existence of such unnecessary invariants among the results of an abstract in-
terpretation becomes a bottleneck for all the efforts to reduce the proof size. When
a Hoare proof of a safety property is constructed from the abstract interpretation re-
sults, it consists of two kinds of subproofs: the ones that the abstract interpretation
results are indeed (approximate) invariants, and the others that those approximate
invariants imply the safety property. The unnecessarily informative analysis results
mainly cause the first kind of subproofs to “explode”; they increase the number of
such subproofs, by adding useless proof subgoals.

Without addressing this problem, the proof-construction method often produces
unnecessarily big Hoare proofs, hence is likely to be impractical for PCC. Big proofs
accompanying mobile code degrades the code mobility in a network that usually has
a limited bandwidth, or are impractical for code consumers that usually are small
embedded systems with a limited memory. Note that no techniques for representing
subproofs compactly by some clever encoding can solve the problem, because they
assume that all subproofs are necessary; it is not the purpose of such techniques to
identify the useless subproofs.

Example 1 As an example where abstract interpretation results are stronger than
necessary, consider the following assignment sequence with the parity abstract inter-
pretation, which estimates whether each program variable contains an even integer
or an odd integer:

x:=4x; x:=2x

The estimated invariants from the abstract interpretation for variable x are:

> x:=4x; even x:=2x even

Suppose we are interested in constructing a proof that variable x at the end is an
even integer. Then the invariant “even” after the first assignment, which means x

is an even integer, is stronger than needed; just > is enough. This is because for
the second assignment, Hoare triple {true}x:=2x{∃n.x = 2n} can be derived

true ⇒ ∃n. 2x = 2n {∃n. 2x = 2n}x:=2x{∃n. x = 2n}

{true}x:=2x{∃n.x = 2n}

and this triple is enough to construct the intended proof:

{true}x:=4x{true} {true}x:=2x{∃n. x = 2n}

{true}x:=4x; x:=2x{∃n. x = 2n}

That is, the following invariants, weaker than the original results, are just enough
for our proof goal:

> x:=4x; > x:=2x even

2

1We explain this further in Section 5.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

4 ·

Example 2 Similarly, as another example where useless invariants occur in the
results of an abstract interpretation, consider the following program, again with
the parity abstract interpretation.

x:=1; y:=2x

The estimated invariants from the abstract interpretation for each variable at each
program point are as follows:

x7→>, y 7→> x:=1; x7→odd, y 7→> y:=2x x7→odd, y 7→even

Suppose we are interested in constructing a proof that variable y at the end is an
even integer. Then, all invariants about x are useless. Just > for x is enough to
reach the proof goal:

{true}x:=1{true}

true ⇒ (∃n. 2x = 2n) {∃n. 2x = 2n}y:=2x{∃n. y = 2n}

{true}y:=2x{∃n. y = 2n}

{true}x:=1; y:=2x{∃n. y = 2n}

Thus, the original analysis results can be weakened to the following, while still
proving that y is even at the end:

x7→>, y 7→> x:=1; x7→>, y 7→> y:=2x; x7→>, y 7→even

This example illustrates that the conventional program slicing technique does
not immediately provide a satisfactory solution for our problem. One naive idea
to eliminate the unnecessary information from the abstract interpretation result is
to apply first the program slicing and then an abstract interpretation. However,
for this example, this approach cannot identify any useless information from the
abstract interpretation result. When the program slicing is applied to the example
program with the slicing criterion “the value of variable y after y:=2x”, it cannot
slice out any parts of the program, because both x:=1 and y:=2x affect the slicing
criterion. As a result, the following parity abstract interpretation is given the un-
modified original program, thus getting no help from the program slicing. Another
idea might be to use dependency analysis in program slicing; to compute the de-
pendency relationship between variables at different program points, and then to
use this relationship to slice the abstract interpretation result. When this idea is
applied to our example, it finds out that x7→odd after y:=2x is not necessary, but
it fails to discover that x7→odd after x:=1 is not needed for verification. Given the
slicing criterion “the value of variable y after y:=2x”, dependency analysis finds
out that the value of variable y after y:=2x is dependent upon that of variable x

after x:=1. Thus, the following slicing step does not delete x7→odd after x:=1. 2

Example 3 To see the problem in a “real world”, we consider a slightly more
realistic program — the insertion sort. Figure 1(a) shows the insertion sort, which
is annotated with results of an abstract interpreter named “zone analysis” [Miné
2001]. Zone analysis estimates the upper and lower bounds of expressions x and
x− y, for all program variables x and y. The insertion sort program takes an array
A and the size n of the array as an input, and sorts the array.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 5

insert sort(n, A[1..n])

int i,j,pivot;

true

i:=2; j:=0;

(2≤i) ∧ (0≤j≤i+2)

while (i<=n) do

(2≤i≤n) ∧ (0≤j≤i+2)

pivot:=A[i]; j:=i-1;

(2≤i≤n) ∧ (0≤j≤n−1)
∧ (2≤n) ∧ (j≤i−1)

while (j>=1 and A[j]>pivot) do

(2≤i≤n) ∧ (1≤j≤n−1)
∧ (2≤n) ∧ (j≤i−1)

A[j+1]:=A[j]; j:=j-1;

od;

(2≤i≤n) ∧ (0≤j≤n−1)
∧ (2≤n) ∧ (j≤i−1)

--- *

A[j+1]:=pivot; i:=i+1;

od

(a) Before Slicing

insert sort(n, A[1..n])

int i,j,pivot;

true

i:=2; j:=0;

(2≤i)

while (i<=n) do

(2≤i≤n)

pivot:=A[i]; j:=i-1;

(2≤i) ∧ (0≤j≤n−1)

while (j>=1 and A[j]>pivot) do

(2≤i) ∧ (1≤j≤n−1)

A[j+1]:=A[j]; j:=j-1;

od;

(2≤i) ∧ (0≤j≤n−1)

A[j+1]:=pivot; i:=i+1;

od

(b) After Slicing

Fig. 1. Annotated Insertion Sort Before and After Slicing

Suppose that we ran the abstract interpreter in order to verify the absence of
array index errors in the program. The annotations in the program prove this safety
property.2

However, note that the annotations also contain unnecessary information. For
instance, i≤n in the annotation marked by * neither is helpful for showing that
the subsequent array access A[j+1] is within bounds, nor is used to imply the loop
invariant (2≤i) ∧ (0≤j≤i+2). Thus, it can be eliminated without breaking the
proof. In fact, half of the annotations in the program are not needed. Figure 1(b)
shows the program where all such useless invariants are eliminated. 2

1.2 Our Solution

In this paper, we present an algorithm, called abstract-value slicer, that filters
out unnecessary invariants from the results of a forward abstract interpreter. The
abstract-value slicer works as a post-processor to the abstract interpreter. Given
an annotated program and a property of interest, the slicer approximates all the
annotations further, until all the information in each annotation contributes to the
verification of the property.

2Here we assume that in “B1 and B2”, B2 is evaluated only when B1 is true.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

6 ·

The main idea of the abstract-value slicer is to view an abstract interpretation
result at each program point as conjunction of formulas, and to find out which
formulas in the conjunction are not necessary for verification. For instance, suppose
that an abstract interpreter analyzed the assignment x:=E for an input abstract
value that means p1 ∧ p2 ∧ p3, and that it produced an output abstract value that
means p′1 ∧ p′2. That is, the abstract interpreter verified that if a pre state satisfies
p1 ∧ p2 ∧ p3, then the post state after the assignment satisfies p′

1 ∧ p′2. When the
abstract-value slicer is given this analysis result and it is notified that only p′

1 is
used for verification, the slicer computes a subset P ⊆ {p1, p2, p3} such that (1)
∧

P can be represented by some abstract value and (2) although
∧

P is weaker
than the original p1∧p2∧p3, it is still strong enough to ensure that the assignment
can achieve the goal p′1: if the pre state satisfies

∧

P , then the post state of the
assignment satisfies p′1. Then, the slicer filters out the formulas in {p1, p2, p3} − P

that are not necessary for verification: the slicer replaces the original input abstract
value “{p1, p2, p3}” by the abstract state that means

∧

P .
A reader might feel that a better alternative approach for solving the problem

of unnecessary invariants is to use “on-line”, goal-oriented backward abstract in-
terpreters that compute the under-approximation of the weakest precondition, i.e.,
a set of pre states from which a program always achieves the given goal. Note
that our approach is, on the other hand, in the reverse direction and “off-line”
yet achieving the same effect. Given the results of forward abstract interpreters,
which are already under-approximations of the weakest preconditions, we weaken
the under-approximate results and make them closer from below to the weakest
preconditions. Please be reminded that our problem is to under-approximate the
weakest preconditions under which a program must always satisfy the given goal
property.

Although designing such an abstract interpreter (an under-approximate backward
precondition analyzer) is plausible, we pursue the idea of designing an abstract-
value slicer over an existing forward abstract interpreter. That is, such abstract-
value slicer is not a new analysis for estimating goal-directed invariants but an
“off-line” method that reuses the results of existing abstract interpreters to achieve
goal-directed invariants.

This separation (or, modularization) of the slicing from the analysis is meaningful
for the reuse of the analysis. First, the analysis results can be reused. Computed
analysis results for a program can be reused to achieve different slices for different
slicing criteria (proof goals). The analysis itself can be reused too. For example,
once an abstract interpreter is designed originally for detecting buffer-overrun errors
by estimating the ranges of buffer-accessing indexes, it can be reused now to provide
our slicer with invariant candidates for being used in buffer-overrun non-existence
proofs. We consider forward abstract interpreters because they are most common
in design and practice, having a number of realistic instances. Our method can be
seen as a method for achieving goal-directed analysis results from the results of a
usual, goal-independent, forward abstract interpretation.

The contributions of the paper are:

—We present a general framework for designing correct abstract-value slicers. The
framework defines the generic abstract-value slicer, which we can instantiate into

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 7

a specific slicer for a particular abstract interpreter, by providing parameters.
The framework also specifies the soundness conditions for those parameters of
the generic slicer; if the parameters satisfy these conditions, the resulting slicer
filters out only the unnecessary parts from abstract interpretation results.

—We present methods for constructing parameters of the generic abstract-value
slicer, and show when all the constructed parameters by these methods satisfy
the soundness conditions.

—Using our framework, we build a specific abstract-value slicer for zone analysis
[Miné 2001], and demonstrate its effectiveness in the context of proof construc-
tion. In our experiment, the slicer identified that 62%−81% of the abstract inter-
pretation results are not necessary for the verification, and resulted in 52%−84%
reduction in the size of constructed program proofs.

1.3 Related Work

Our abstract-value slicer is closely related to program slicing [Tip 1995; Rival 2005a]
and cone of influences [Clarke et al. 1999] in model checking. All these techniques,
including ours, identify the irrelevant parts for achieving a given goal, and slice
them out. The objects that get sliced are, however, different: the abstract-value
slicer works only on the abstract interpretation results, while program slicing and
cone of influence modify a program or a Kripke structure that models the behavior
of a program.

Another important difference lies in the computation of the irrelevant parts for
the goal. In order to detect the irrelevant parts, both program slicing techniques
and cone of influences compute (an over-approximation of) the dependency be-
tween program variables at different program points. Intuitively, the computed
dependency of y at l1 on x at l0 means that some concrete computation uses the
value of x at l0 to compute the value of y at l1, so that the different values of x at
l0 will make y have different values at l1. Recently, Rival [Rival 2005a] generalized
this dependency in his abstract program slicing, so that the dependency is now
between facts about one variable, such as x > 3 and y < 9, but it is still about
the concrete computations. The abstract-value slicer, on the other hand, computes
the dependency in the abstract computation between general facts which might
involve multiple variables such as x ≤ z+3 at l0 and z ≤ y ≤ z+9 at l1. For in-
stance, suppose that an abstract interpretation result of the assignment x := y− z

is (y≤z+1 ∧ v≤y) ∧ (y≤v ∧ v≤z+1) x := y− z x≤1 ∧ v≤z+1 , and the abstract-

value slicer is asked to check whether x≤1 in the post abstract value depends on
the first conjunct y≤z+1 ∧ v≤y of the pre abstract value. If by the same ab-
stract interpretation the other conjunct can result in the same conclusion x≤1, i.e.,
y≤v ∧ v≤z+1 x := y− z x≤1 , then the abstract-value slicer reports that x≤1

does not depend on the first conjunct y≤z+1∧v≤y. Otherwise, i.e., if the abstract
interpreter approximates too much that its result from y≤v ∧ v≤z+1 does not im-
ply x≤1, then the slicer decides that x≤1 depends on y≤z+1 ∧ v≤y. This is so,
although the Hoare triple {y≤v ∧ v≤z+1} x := y− z {x≤1} holds in the concrete
semantics and thus there is no such dependency in the concrete semantics.

The dependency between general facts is also considered in the work on the
abstract non-interference [Giacobazzi and Mastroeni 2004]. However, unlike our

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

8 ·

abstract-value slicers, the dependency in the abstract non-interference is about
the concrete computations, not about the abstract computations. Moreover, the
existing work on the abstract non-interference does not consider the algorithm for
computing the dependency relation, while the main focus of our work is to find
such an algorithm.

Another related line of research is the work on abstraction refinement and predi-
cate abstraction [Graf and Säıdi 1997; Clarke et al. 2000; Ball and Rajamani 2001;
Ball et al. 2001; Henzinger et al. 2003; 2002]. The analyzers [Ball and Rajamani
2001; Henzinger et al. 2003] based on these two techniques usually find an ab-
stract domain that is as abstract as possible but still precise enough for verifying
a particular property. However, for the problem of identifying unnecessary invari-
ants, abstraction refinement and predicate abstraction are not widely applicable,
because many existing abstract interpretations are not based on those techniques.
Our abstract-value slicers, on the other hand, can be applied for such abstract in-
terpretations. We note that the analyzers based on abstraction refinement and the
abstract-value slicers work in opposite “directions.” Such analyzers start with naive
analysis results and keep strengthening the results until they are sufficient to prove
a property of interest. On the other hand, the slicers start with precise analysis
results, which already prove the property of interest, and weaken the results, while
maintaining the proof.

From the view point that our off-line backward abstract-value slicing after an
over-approximate forward post-condition analyzer can be simulated by a single
under-approximate backward precondition analyzer, related works are backward
abstract interpreters that under-approximate the weakest preconditions. Please
note that, however, backward abstract interpreters in [Rival 2005b; Cousot 2005;
Cousot and Cousot 1999; Massé 2001; Hughes and Launchbury 1992; Duesterwald
et al. 1995; Bourdoncle 1993], over-approximate the weakest preconditions.3 Their
backward abstract interpreters discover a superset of the pre-states where a program
might generate an error. Thus such backward abstract interpreters are used in
program debugging [Bourdoncle 1993] and alarm inspection [Rival 2005b]. On the
other hand, abstract model checkers [Dams et al. 1997] can be seen as backward
abstract interpreters that under-approximate the weakest preconditions [Cousot
1981].

Projection analysis [Wadler and Hughes 1987; Hughes 1988; Davis and Wadler
1990] in functional programs and mode analyses [King and Lu 2002; Howe et al.
2004] in logic programs both under-approximate the weakest preconditions sharing
the same goal as our abstract-value slicer, but their techniques are not directly
applicable to the problem of this paper. The projection analysis estimates a function
that transforms the demand for the output to the one for the input. The demand
for the output specifies which part of the output will be needed by the environment
of the program (i.e., continuation), and the demand for the input expresses which

3This statement is true only for terminating deterministic programs, because those backward

abstract interpreters over-approximate so called “pre state-sets.” The pre state-set of a command

C for a postcondition p is the set of pre states from which C can output some state satisfying p.

For terminating deterministic programs, the pre state-set of C and p is the same as the weakest

precondition of C and p.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 9

property of the input is sufficient for the program to produce the necessary part
of the output. Mode analysis in logic programs is similar. It estimates context
properties that, if satisfied by the initial query, guarantee that the program with
the query never generate any moding error. However, the domains used in these
backward analyses are not as general as the ones used in our framework. Our
abstract-value slicer works with complex domains that are infinite or relational,
such as interval domain and zone domain [Cousot and Cousot 1977; Miné 2001],
can have nontrivial domain operations (e.g., closure operation in zone domain), or
can require an acceleration method (e.g., widening) for quick convergence.

1.4 Organization

We start the paper by reviewing the basics of the abstract interpretations in Sec-
tion 2. In Section 3, we define a generic abstract-value slicer parameterized by
extractor domain and back-tracers for assignments and boolean expressions. In-
tuitively, the extractor domain specifies the working space of the slicer, and the
back-tracers describe how the slicer treats each assignments and boolean expres-
sions. In that section, we specify the soundness conditions for these two parameters,
and prove that the conditions ensure the correctness of the instantiated slicer. In
the next section, we present methods for constructing parameters to the slicer,
which satisfy the soundness requirements. There we describe two techniques for
constructing correct back-tracers. In Section 5, we explain the experimental results
about one specific abstract-value slicer in the context of proof construction. Finally,
we conclude the paper in Section 6.

2. ABSTRACT INTERPRETATION

We consider programs represented by control flow graphs [Cousot and Cousot 1977].
Let ATerm be the set of atomic terms, that is, all the inequalities E ≤ E ′, assign-
ments x := E, and command skip. A program (V,E, n

i
, n

f
, L) is a finite graph

with nodes in V and edges in E, together with two special nodes n
i

and n
f
, and a

labeling function L : E → ATerm. A node in V represents a program point, and an
edge in E a flow of control between program points; with this flow, an inequality
or assignment is associated, and the labeling function L expresses this association.
The special nodes n

i
and n

f
, respectively, denote the entry and exit of the program.

We assume that in the program, no edges go into the entry node n
i
, and no edges

come out of the exit node n
f
. Figure 2(a) shows a program that represents code

with a single while loop. In this program, we label each edge with an atomic term,
except when the atomic term is skip. Another thing to note is that the condi-
tion for exiting the loop, ¬(x

1
− x

2
≤ 0), is expressed by an equivalent condition

x
1
−x

2
≥ 1; these two conditions are equivalent since variables range over integers.

In the paper, we consider abstract interpretations that consist of three compo-
nents: a join semilattice A = (A,v,⊥,t), the abstract semantics4 [[−]] : ATerm →
(A →m A) of atomic terms, and a strategy for computing post fixpoints. Given a
program (V,E, n

i
, n

f
, L) and an initial abstract state a

0
∈ A, the abstract inter-

4We use the subscript m to express the monotonicity of functions. Thus, for all posets (C,v) and

(C′,v′), C →m C′ is the poset of monotone functions from C to C ′.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

10 ·

��
��

n0

��
��

n1

?

��
��

n2

�
�

�	x1−x2≤0

��
��

n3

?
x1 :=x2+1

-

��
��

n4

@
@
@R
x1−x2≥1

n0

n1

while (x1 - x2 <= 0) do

n2

x1 := x2 + 1

n3

od

n4

(a) Program

n0 = ni , n4 = n
f
, a0 =

2

6

6

4

x0 x1 x2

x0 ∞ 4 3
x1 −1 ∞ ∞

x2 −1 0 ∞

3

7

7

5

(b) Entry, Exit Node and Initial Abstract State

n0 n1 n2 n3 n4

Analysis
result as

DBMs

x0 x1 x2

x0 ∞ 4 3

x1 −1 ∞ ∞
x2 −1 0 ∞

x0 x1 x2

x0 ∞ ∞ 3

x1 ∞ ∞ ∞
x2 −1 1 ∞

x0 x1 x2

x0 ∞ ∞ 3

x1 ∞ ∞ ∞
x2 −1 0 ∞

x0 x1 x2

x0 ∞ ∞ 3

x1 ∞ ∞−1
x2 −1 1 ∞

x0 x1 x2

x0 ∞ ∞ 3

x1 ∞ ∞−1
x2 −1 1 ∞

Analysis
result as

constraints

1≤x1≤4
∧ 1≤x2≤3
∧ x1≤x2

1≤x2≤3
∧ x1≤x2+1

1≤x2≤3
∧ x1≤x2

1≤x2≤3
∧ x1=x2+1

1≤x2≤3
∧ x1=x2+1

(c) Analysis Result

Fig. 2. An Example Program and Its Abstract Interpretation Result from Zone Analysis

pretation first uses A and [[−]] to define “abstract step function” F :

F :
∏

n∈V
A →m

∏

n∈V
A

F (f)(n)
def
=

{

a0 if n = n
i

⊔

{[[L(mn)]](f(m)) | mn ∈ E} otherwise

Here
∏

n∈V
A is the product join semilattice, which consists of tuples f of elements

in A and inherits the order structure from A pointwise.5 The first two components
A and [[−]] of the abstract interpretation are designed so as to ensure that all the
post fixpoints of this function F correctly approximate concrete program invariants.
The next step of the abstract interpretation is to compute a post fixpoint of F (i.e.,
some f with F (f) v f) using the post-fixpoint-computation strategy. This post
fixpoint becomes the result of the abstract interpretation.

5For all f, g in
Q

n∈V
A, f v g iff ∀n ∈ V.f(n) v g(n). The least element ⊥ and join f t g in this

join semilattice are, respectively, defined by λn.⊥ and λn.f(n) t g(n).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 11

Throughout the paper, we will use two abstract interpretations to explain the
main ideas. The first one, an evenness analysis, will be mainly used to help the
reader to understand the ideas themselves. The second, zone analysis, will be used
to illustrate the significance and subtlety of the ideas.

Example 4 (Evenness Analysis) The goal of the evenness analysis is to discover
(at each program point) the variables that always store even numbers. Let EV be
a poset {⊥

e
, even,>

e
} ordered by

⊥
e

v
e

even v
e

>
e
.

Each element in EV means a set of integers: ⊥
e

denotes the empty set, even the
set of all even integers, and >

e
the set of all integers. Note that the poset EV is a

join semilattice; the least element is ⊥
e

and the join operation t
e

picks the bigger
element among its arguments. The abstract domain P = (P,⊥,v) of the evenness
analysis is given below:

P
def
= [Vars → EV] a v a′ def

⇔ ∀x ∈ Vars. a(x) v
e

a′(x)

⊥
def
= λx. ⊥

e
a t a′ def

= λx. a(x) t
e
a′(x)

Intuitively, each abstract value a in P specifies which variables should have even
numbers. Formally, the meaning of a is given by the following concretization map
γ from P to States = [Vars → Ints]:

γ(a)
def
=

{

{σ | ∀x. (a(x)=even ⇒ σ(x) is even)} if (∀x. a(x)=even ∨ a(x)=>
e
)

{} otherwise

For the abstract semantics of each atomic term, the analysis uses the following
definition:

[[x := 2E]]a
def
= a[x7→even]

[[x := y]]a
def
= a[x7→a(y)]

[[x := E]]a
def
= a[x7→>

e
] (for all the other assignments)

[[skip]]a
def
= a

[[E ≤ E′]]a
def
= a

In addition, we consider a special atomic term even?(x) only for evenness analysis,
which tests whether variable x is even. Its abstract semantics is defined as follows:

[[even?(x)]]a
def
= if (even v

e
a(x)) then a[x7→even] else a

Note that in the semantics, the information “evenness” is created by x := 2E,
propagated by x := y, and removed by all the other assignments. Thus, when
the analysis is given (the control flow graph of) the code “x:=2x; y:=x; x:=1”, it
returns the following annotation for the code:

x 7→ >e

y 7→ >e

x:=2x;
x 7→ even

y 7→ >e

y:=x;
x 7→ even

y 7→ even
x:=1

x 7→ >e

y 7→ even

2

Example 5 (Zone Analysis) Zone analysis [Miné 2001] estimates the upper and
lower bounds on the difference x − y between two program variables, using so-
called difference-bound matrices (in short, DBMs). In this paper, we will use a

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

12 ·

simplified version of zone analysis to illustrate our technique for the relational
abstract interpretations. Although we use a simplified version, all the definitions
and algorithms in this example are essentially the ones by Miné [Miné 2001]. Let N

be the number of the program variables in a given program, and let x1 , . . . , xN
be an

enumeration of all those variables. A DBM a for this program is an (N+1)×(N+1)
matrix with integer values, −∞ or ∞. Intuitively, each a

ij
entry denotes the upper

bound of x
j
−x

i
(that is, x

j
−x

i
≤ a

ij
). The row and column of a DBM include

an entry for an “auxiliary variable” x
0

that never appears in the program, and is
assumed to have a fixed value 0. The main role of x

0
is to allow each DBM to express

the range of all the other program variables. For instance, a DBM a can store l

in the i0-th entry (i.e., a
i0

= l) for each i 6= 0, to record that −l ≤ x
i
. A DBM a

means the conjunction of x
0

= 0 and all the constraints x
j
− x

i
≤ a

ij
. Formally,

the abstract domain is defined by the following join semilattice M = (M,v,⊥,t)
of the DBMs:

M
def
= {a | a is a DBM} a v a′ def

⇔ ∀ij. a
ij
≤ a′

ij

⊥
ij

def
= −∞ [a t a′]

ij

def
= max(a

ij
, a′

ij
)

The formal meaning of each DBM is given by a concretization map (i.e., meaning
function) γ from M to the powerset of states:

States
def
= [{x

1
, . . . , x

N
} → Ints]

γ(a)
def
= {σ ∈ States | ∀ij. σ[x0 7→0](x

j
) − σ[x0 7→0](x

i
) ≤ a

ij
}

where σ[x
0
7→0] means the extension of state σ with an additional component for

x
0
: σ[x

0
7→0](x

i
)

def
= if (i = 0) then 0 else σ(x

i
). For instance, a

0
in Figure 2(b)

means the conjunction of five constraints for variables x1 and x2 ; these constraints
say that x

1
and x

2
are, respectively, in the intervals [1, 4] and [1, 3], and that x

1
is

at most as big as x
2
. Note that all the diagonal entries of a

0
are ∞, while those

entries, meaning the upper bounds for xi − xi, could be tighter bound 0. In this
paper, we decide to use ∞, rather than 0, for diagonal entries of DBMs, because
both ∞ and 0 at the diagonal positions provide no information about concrete
states and this is clarified by ∞.

The analysis classifies atomic terms into two groups, and defines the abstract
semantics of the terms in each group in a different style. The first group includes
atomic terms whose execution can be precisely modelled by DBM transformations.
It consists of inequalities of the form x

i
≤ c, x

i
≥ c, x

i
−x

j
≤ c, assignments of the

form x
i

:= x
i
+ c, x

i
:= x

j
+ c, x

i
:= c, and command skip. For each inequality

E ≤ E′ in the group, [[E ≤ E′]] calculates the conjunction of E ≤ E ′ and the
constraints denoted by the input DBM; for each assignment x := E in this group,
[[x := E]] computes its strongest postcondition for the input DBM; and [[skip]] is
defined to be the identity function. The semantics of these atomic terms is shown in
Figure 3. The abstract semantics of x

i
−x

j
≤ c in Figure 3 implements the pruning

of states, by updating the ji-th entry of the input DBM a by min(a
ji

, c). Note that
the updated DBM means precisely the conjunction of x

i
− x

j
≤ c and γ(a). Thus,

among the states in (the concretization of) the input DBM, [[x
i
− x

j
≤ c]] filters

out the states that violate the condition x
i
− x

j
≤ c, and returns a DBM for the

remaining states. The abstract semantics [[x
i

:= x
i
+ c]] models the increment of

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 13

[[xi ≤ c]]a
def
= a[0i7→min(a0i , c)]

[[xi ≥ c]]a
def
= a[i07→min(ai0 ,−c)]

[[xi − xj≤c]]a
def
= a[ji7→min(aji , c)]

[[E ≤ E′]]a
def
= a (for all other inequalities)

[[xi :=xi+c]]a
def
= a

ˆ

ki7→(a
ki

+c), ik 7→(a
ik

+(−c))
˜

0≤k(6=i)≤N

[[xi :=xj +c]]a
def
= a∗

`

[ki7→∞, ik 7→∞]
0≤k(6=i)≤N

´

[ji7→c, ij 7→(−c)]

[[xi :=c]]a
def
= a∗

`

[ki7→∞, ik 7→∞]
0≤k(6=i)≤N

´

[0i7→c, i07→(−c)]

[[xi := E]]a
def
= a∗

`

[ki7→∞, ik 7→∞]
0≤k(6=i)≤N

´

(for all other assignments)

[[skip]]a
def
= a

Fig. 3. Abstract Semantics of Atomic Terms in the Zone Analysis

x
i

by c. For every kl-th entry of a, if the column index l is i, so the entry means
the constraint involving x

i
, [[x

i
:= x

i
+ c]] increments the entry by c; and if the

row index k is i, so the entry now means the constraint involving −x
i
, not x

i
,

[[x
i
:= x

i
+ c]] decrements the entry by c. The case [[x

i
:= x

j
+ c]] in the figure is the

most complex and interesting. Given a DBM a, the semantic function [[x
i
:= x

j
+c]]

first transforms a, so that the DBM has the smallest element a∗ among the ones
that mean the same state set as a: a∗ satisfies γ(a) = γ(a∗), and for all other such
DBMs a′ (i.e., γ(a′) = γ(a)), a∗ v a′. We call a∗ the closure of a. Zone analysis
computes this closure using the Floyd-Warshall shortest path algorithm.6 Next,
[[x

i
:= x

j
+ c]] eliminates all the information in a∗ involving the old value of x

i
.

Finally, it adds two facts, x
i
− x

j
≤ c and x

j
− x

i
≤ −c.

The atomic terms in the other group are interpreted “syntactically”: the seman-
tics of an assignment x

i
:= E in this group does not consider the expression E, and

transforms an input DBM a to the following x
i
-deleted DBM:

a∗
(

[ki7→∞, ik 7→∞]
0≤k(6=i)≤N

)

and the semantics of E ≤ E′ in the group prunes nothing, and means the identity
function on the DBMs. A better alternative is to use interval analysis to give the
semantics of atomic terms in the second group as shown by Miné [Miné 2001]. In
Section 5, we will discuss this better semantics and other improvements used in the
original zone analysis [Miné 2001].

Figure 2(c) shows a result of the (simplified) zone analysis in the form of DBMs
and constraints. The input to zone analysis is the program in Figure 2(a) and the
DBM a

0
in Figure 2(b). The result implies that when the program terminates, x

2

is in the interval [1, 3] and it is equal to x
1
− 1. 2

3. ABSTRACT-VALUE SLICER

An abstract-value slicer is an algorithm that filters out unnecessary information
from the result of an abstract interpretation. When an abstract interpretation is

6When the shortest path algorithm is applied, program variables are considered nodes in the graph

and each DBM entry aji is regarded as the weight of the edge from node xj to node xi .

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

14 ·

used for verification, it usually computes stronger invariants than needed. This sit-
uation commonly happens, because an abstract interpretation is usually designed
and implemented to blindly estimate best possible invariants at each program point
without considering global goal of the intended verification, normally assuming
that every aspect of a program potentially contributes to the properties of interest.
However, in the verification of a specific safety property, only some aspects of the
program are usually needed. As a result, the abstract interpretation results are
likely to contain unnecessary information for such verification. Actually, this situ-
ation results from a design choice too, because we want one abstract interpretation
to estimate invariants once for multiple verifications of different safety properties.

The goal of an abstract-value slicer is to weaken the computed invariants until
no information in the invariants is unnecessary for a specific verification. Mathe-
matically, the abstract-value slicer lifts the result f of an abstract interpretation:
it computes a new post fixpoint f ′ of the abstract step function F in Section 2,
such that f v f ′, but f ′ is still strong enough to prove the properties of interest.
Intuitively, the “difference” between f and f ′ represents the information filtered
out from f by the abstract-value slicer.

In this section, we define the abstract-value slicers, and prove their correctness.
First, we introduce extractor domain and back-tracers for atomic terms, which are
two main components of an abstract-value slicer. An extractor domain determines
the working space of an abstract-value slicer, i.e., a poset where the abstract-value
slicer does the fixpoint computation, and back-tracers specify how the abstract-
value slicer treats atomic terms: they describe how the slicer filters out unnecessary
information from the abstract interpretation results for atomic terms. Then, we
define an abstract-value slicer, and prove its correctness. Throughout the section,
we assume a fixed abstract interpretation, and denote its abstract domain and
abstract semantics of atomic terms by A = (A,v,⊥,t) and [[−]], respectively.

3.1 Extractor Domain

An extractor domain for the abstract interpretation (A, [[−]]) is a pair (E , ex) where E
is a complete lattice (v

E
,⊥

E
,>

E
,t

E
,u

E
) with finite height7 and ex is a monotone

map from E to upper closure operators on A.8 Intuitively, each element e in E
denotes an “information extractor” that selects some information from abstract
values a in A, which is to be saved/preserved, and ex(e)(a) extracts information (to
be saved/preserved) from a based on the extractor e. Note that we require ex(e) to
be an upper closure operator, i.e., a monotone function that satisfies extensiveness
and idempotency requirements. The extensiveness requirement means that the
extracting operation ex(e)(a) lifts the value a. When an extractor e is applied
to the abstract value a, it does not insert any new information, but only selects
some information from a; thus, ex(e)(a) should have less information than a (i.e.,
a v ex(e)(a)). The idempotency requirement formalizes that the extraction by ex(e)
is done all at once. We also point out that ex should be monotone with respect

7We don’t need to require the completeness of E, since all lattices with finite height are complete.

However, we put the completeness requirement explicitly here to simplify presentation.
8An upper closure operator ρ on A is a monotone function on A such that ρ is extensive (i.e.,

id v ρ) and idempotent (i.e., ρ ◦ ρ = ρ).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 15

to the order v
E

on extractors. This monotonicity condition ensures that the order
v

E
means the “strength” of the information extractors in the reverse direction: if

e v
E

e′, then e′ extracts less information than e.
We call E extractor lattice and ex extractor application. We often omit the sub-

script −
E

in the lattice operators, v
E
,⊥

E
,>

E
,t

E
,u

E
, when the missing subscript

can be recovered from context.

Example 6 We use the following extractor domain for the evenness analysis:

E
def
= ℘(Vars) (ordered by ⊇) and ex(e)(a)

def
= λx. if x ∈ e then a(x) else >

e
.

In this extractor domain, each abstract value a is regarded as the conjunction of
information “x7→a(x)” for all x ∈ Vars, and the extractors in E indicate which
information should be selected from such conjunction. For instance, an abstract
value [x7→even, y 7→even, z 7→even] is regarded as even(x) ∧ even(y) ∧ even(z), where
the predicate even(x) asserts that x is even, and the extractor {x, y} expresses that
only the first and second conjuncts, even(x) ∧ even(y), should be selected. Note
that the definition formalizes such selection using the top element >

e
of EV: all

the unselected information is replaced by >
e
, while the other selected information

remains as it is. The extractor ex(e) for evenness analysis is an upper closure oper-
ator: it is extensive because ∀a ∈ A.∀x ∈ Vars. a(x) v ex(e)(a)(x), and idempotent

because ∀a ∈ A. ex(e)
(

ex(e)(a)
)

= ex(e)(a). 2

Example 7 We construct an extractor domain (E , ex) for zone analysis, using a
set of matrix indices as an information extractor. The idea is to use each index
set e to specify which entries of the DBM matrices should be extracted. For each
DBM matrix a, ex(e)(a) selects only the entries of a whose indices are in e, and it
fills in the other missing entries by ∞. For example, when the extractor {(2, 1)} is
applied to the DBM a

0
in Figure 2(b), it filters out all entries except the (2, 1)-th

entry, and results in the below DBM, which means x
1
− x

2
≤ 0.

x0 x1 x2

x
0
∞∞∞

x1 ∞∞∞
x

2
∞ 0 ∞

Let N be the number of program variables, so that the domain M of DBMs consists
of (N + 1) × (N + 1) matrices, and let I be the index set (N + 1) × (N + 1). The
precise definition of E and ex is given below:

E
def
= 〈℘(I),⊇, I, ∅,∩,∪〉 and

(

ex(e)(a)
)

ij

def
=

{

a
ij

if ij ∈ e

∞ otherwise.

Note that the extractor lattice uses the superset order; thus, a smaller extractor
selects more matrix entries from the input DBM than a bigger one. 2

3.2 Back-tracers

Let (E , ex) be an extractor domain for the abstract interpretation (A, [[−]]). For
each atomic term t, define prepost(t) by

prepost(t)
def
= {(a, b) | a, b ∈ A ∧ [[t]]a v b},

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

16 ·

which means the pre and post conditions of the triples {a}t{b} for t that can be
proved by the abstract interpretation.

Definition 3.1 (Back-tracer) A back-tracer k for an atomic term t is a function
of type prepost(t) → E → E that satisfies the following soundness condition:

∀(a, b) ∈ prepost(t). ∀e, e′ ∈ E .
(

k
ab

(e) = e′
)

=⇒ [[t]]
(

ex(e′)(a)
)

v ex(e)(b).

The back-tracer k
ab

at (a, b) transforms a post extractor e (for b) to a pre extractor
e′ (for a). The soundness condition ensures that the e′-part of a is sufficient to get
the e-part of b in the abstract interpretation.

A back-tracer induces a map from {ex(e)(b) | e ∈ E} to {ex(e)(a) | e ∈ E}, when
it satisfies

ex(e)(b) = ex(e′)(b) =⇒ ex
(

k
ab

(e)
)

(a) = ex
(

k
ab

(e′)
)

(a).

The domain and codomain of this map represent pieces of information from b and
a, respectively, so the map indicates that the back-tracer transforms a piece of
information of b to another piece of information of a.

Note that the back-tracer k
ab

for an atomic term t is not required to be monotone.
Thus, it is relatively easy to design one correct back-tracer. For example, suppose
that ex(⊥) is the identity function.9 Then, for every e ∈ E , there exists e′ ∈ E such
that

[[t]]
(

ex(e′)(a)
)

v ex(e)(b),

because ⊥ could be e′. We can now define k
ab

(e) to be one such e′. However,
designing a good back-tracer, not just correct one, is a nontrivial problem, and
requires insights about the abstract interpreter and the extractor domain.

Our next result, Proposition 3.4, is concerned with this issue of designing good
back-tracers. It gives a sufficient and necessary condition for the existence of the
best back-tracers. In Section 4, we will discuss this issue further, and provide
general techniques for implementing good back-tracers, including the best ones.

Definition 3.2 (Best Back-tracer) A back-tracer k for an atomic term t is best

if and only if it is the greatest back-tracer for t10: for all back-tracers k′ for t,

∀(a, b) ∈ prepost(t). ∀e ∈ E . k′

ab
(e) v k

ab
(e).

Lemma 3.3 A function k : prepost(t) → E → E is the best back-tracer for t if and
only if for all (a, b) ∈ prepost(t) and all e, e′ ∈ E ,11

e′ v k
ab

(e) ⇐⇒ [[t]]
(

ex(e′)(a)
)

v ex(e)(b).

9This supposition holds for all the examples in this paper.
10This definition can be rephrased as follows. A function k is the best back-tracer for t if and

only if k is the least upper bound of all back-tracers for t and k itself is a back-tracer for t.
11The equivalence between the order relationships is reminiscent of Galois connection. We cannot
use Galois connection directly here, because k

ab
: E → E and [[t]] : A → A are not type-correct for

Galois connection. We resolve this type error using functions ex(−)(a) ex(−)(b) of type E → A.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 17

Proof: First, we prove the only-if direction. Suppose that k is the best back-tracer
for t, and choose arbitrary (a, b) ∈ prepost(t) and e, e′ ∈ E . We need to show the
equivalence:

e′ v k
ab

(e) ⇐⇒ [[t]]
(

ex(e′)(a)
)

v ex(e)(b).

Suppose that the left hand side of the equivalence holds. Then,

[[t]]
(

ex(e′)(a)
)

v [[t]]
(

ex
(

k
ab

(e)
)

(a)
)

(by the monotonicity of [[t]] and ex(−)(a))

v ex(e)(b) (by the soundness of the back-tracer k).

Thus, the right hand side of the equivalence holds as well. Now suppose that the
right hand side of the equivalence holds. Define a function k′ as follows:

k′ : prepost(t) → E → E

k′

cd
(e

0
)

def
= if ((c, d, e

0
) = (a, b, e)) then e′ else k

cd
(e

0
).

k′ is a back-tracer because it satisfies the condition for back-tracers: when the
arguments are (a, b, e), k′

ab
(e) = e′ holds and the right hand side of the equivalence

directly means the condition for back-tracers, and when the arguments are not
(a, b, e), k′ is the same as k, which is already a back-tracer. Since k is a best
back-tracer, k′ v k holds, which implies the left hand side of the equivalence as
follows:

e′ = k′

ab
(e) v k

ab
(e).

Next, we prove the if direction. Suppose that k satisfies the equivalence in the
lemma. Then, for all back-tracers k′ for t, and all (a, b) ∈ prepost(t) and e ∈ E ,

[[t]]
(

ex
(

k′

ab
(e)

)

(a)
)

v ex(e)(b) by the soundness of back-tracer k′,

and so, by the equivalence in the lemma, k′

ab
(e) v k

ab
(e). We just have shown

that k′ is smaller than or equal to k. It remains to show that k is a back-tracer
for t, i.e., it satisfies the soundness requirement for back-tracers for t. To show
the requirement, consider arbitrary (a, b) ∈ prepost(t) and e ∈ E . Let e′ be k

ab
(e).

Since e′ v k
ab

(e), the equivalence in the lemma gives

[[t]]
(

ex(e′)(a)
)

v ex(e)(b).

Note that this order relationship is precisely the soundness requirement for back-
tracers for t. 2

Proposition 3.4 An atomic term t has the best back-tracer if for all a ∈ A, the
function λe.[[t]](ex(e)(a)) : E →m A preserves all finite joins. Moreover, when ex(⊥)
is the identity function on A, the converse holds as well.

Proof: First, we prove the if direction. Suppose that for all a ∈ A, function
λe.[[t]](ex(e)(a)) of type E →m A preserves all finite joins. Define a function k as
follows:

k : prepost(t) → E → E

k
ab

(e)
def
=

⊔

{e
0
| [[t]](ex(e

0
)(a)) v ex(e)(b)}.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

18 ·

We will show that k satisfies the following equivalence in Lemma 3.3: for all e, e′ ∈ E ,

e′ v k
ab

(e) ⇐⇒ [[t]]
(

ex(e′)(a)
)

v ex(e)(b).

The right-to-left implication follows from the definition of k. For the left-to-right
implication, it is sufficient (because λe.[[t]](ex(e)(a)) is monotone) to prove the fol-
lowing condition:

e′ = k
ab

(e) =⇒ [[t]]
(

ex(e′)(a)
)

v ex(e)(b).

Suppose that e′ = k
ab

(e). Since the extractor domain has finite height, there exists
a finite nonempty subset E

0
of {e

0
| [[t]](ex(e

0
)(a)) v ex(e)(b)} such that e′ =

⊔

E
0
.

Note that by the assumption of the if direction, function λe. [[t]](ex(e)(a)) preserves
finite joins. From this join preservation and the choice of E0 , we derived the required
implication:

[[t]](ex(e′)(a)) = [[t]](ex(
⊔

E
0
)(a)) (since e′ =

⊔

E
0
)

=
⊔

e
0
∈E

0
[[t]](ex(e

0
)(a)) (by the join preservation of [[t]](ex(−)(a)))

v ex(e)(b) (since ∀e
0
∈ E

0
. [[t]]

(

ex(e
0
)(a)

)

v ex(e)(b)).

Next, we show the only if direction, assuming that ex(⊥) is the identity on A.
Suppose that t has the best back-tracer k. Then, it satisfies the equivalence in
Lemma 3.3. Consider a finite family {e

i
}

i∈I
of extractors. Then, by the mono-

tonicity of ex and [[t]], we have that

[[t]]
(

ex
(

⊔

i∈I

e
i

)

(a)
)

w
⊔

i∈I

[[t]]
(

ex(e
i
)(a)

)

.

Thus, to show that the join in
⊔

i∈I
e

i
is preserved, we only need to prove the other

order relationship. Let b be
⊔

i∈I
[[t]]

(

ex(e
i
)(a)

)

. Then,

∀i ∈ I. [[t]]
(

ex(e
i
)(a)

)

v b (by the definition of b)

⇐⇒ ∀i ∈ I. [[t]]
(

ex(e
i
)(a)

)

v ex(⊥)(b) (since ex(⊥) is the identity)

⇐⇒ ∀i ∈ I. e
i
v k

ab
(⊥) (by the equivalence in Lemma 3.3)

⇐⇒
(

⊔

i∈I
e

i

)

v k
ab

(⊥)

⇐⇒ [[t]]
(

ex
(

⊔

i∈I
e

i

)

(a)
)

v ex(⊥)(b) (by the equivalence in Lemma 3.3)

⇐⇒ [[t]]
(

ex
(

⊔

i∈I
e

i

)

(a)
)

v b (since ex(⊥) is the identity).

We have just shown the required order relationship. 2

Example 8 We define a back-tracer for each atomic term for the evenness analy-
sis. Recall the abstract domain P of the evenness analysis in Example 4, and the
extractor domain (E , ex) for the analysis in Example 6. For a back-tracer for an
atomic term t, we use LtM for notational convenience. The back-tracer LtM for each

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 19

atomic term t in this domain is defined as follows:

Lx := 2EM
ab

(e)
def
= e−{x},

Lx := yM
ab

(e)
def
= if x ∈ e then (e−{x}) ∪ {y} else e,

Lx := EM
ab

(e)
def
= e−{x} (for all the other assignments),

LskipM
ab

(e)
def
= e,

LE ≤ E′M
ab

(e)
def
= e,

Leven?(x)M
ab

(e)
def
= if (even v

e
b(x)) then (e − {x}) else e.

The back-tracer for every assignment x := E has the same pattern. Given an
extractor e, it first deletes x from e, and then adds (to the resulting extractor)
the variables used in the abstract semantics. Note that this is similar to the DEF-
USE calculation in the conventional data-flow analysis. The main difference is that
the back-tracer computes the DEF-USE for the abstract semantics, not for the
concrete semantics. For instance, when the back-tracer Lx := y + zM

ab
is applied to

the extractor {x, v}, it deletes x from the extractor and returns {v}. The variables
y, z are not added to the extractor even though they are read by assignments in
the concrete semantics. This is because y, z are not used by the abstract semantics
of the assignments. The back-tracer for evenness test even?(x) uses the analysis
results critically. The function [[even?(x)]] refines the input a by replacing a(x)
by the minimum of a(x) and even. Thus, for pre and post conditions (a, b) ∈
prepost(even?(x)) (i.e., [[even?(x)]]a v b), if even v

e
b(x), then the x component of

a is not necessary to obtain the x component of b. The back-tracer Leven?(x)M
ab

correctly captures this using the analysis result b; it first tests whether even v
e

b(x),
and if so, it deletes x from the given extractor e. 2

Example 9 Recall the abstract domain M for zone analysis in Example 5 and
the extractor domain (E , ex) for the analysis in Example 7. The back-tracer LtM
for an atomic term t in this extractor domain should be a parameterized index-set
transformer that satisfies the following condition: for all pre and post conditions
(a, b) ∈ prepost(t) (i.e., [[t]]a v b) and all extractors e for b, the computed index set
LtM

ab
(e) contains (the indices of) all the entries of a that are necessary for obtaining

the e entries of b. We define such a back-tracer LtM as a two-step computation. First,
LtM

ab
(e) deletes all the indices ij from e that satisfy b

ij
= ∞ (i.e., e−{ij | b

ij
= ∞}).

Then, for each remaining ij-th entry of e, LtM
ab

(e) computes the entries of a that
are needed for obtaining ([[t]]a)

ij
, collects all the computed entries, and returns

the set of the collected indices. Note that all the deleted indices ij in the first
step select only the empty information from b: for all index sets e, we have that
ex

b
(e) = ex

b
(e−{ij}). Thus, the first step only makes e have a better representation

e′ (i.e., e′ ⊆ e), without changing its effect on b. Another thing to note is that the
second step is concerned with only a and [[t]]a, but not b. Here the second step
exploits the fact that to get the e′ entries of b, we need only the e′ entries of [[t]]a.

The actual implementation LtM for each atomic term t optimizes the generic two-
step computation, and it is shown in Figure 4. The most interesting part is the last
case x

i
:= E. The back-tracer Lx

i
:= EM

ab
(e) first checks whether the input matrix

a has a negative cycle, that is, a sequence k
0
k

1
. . . k

n
of integers in [0, N] such that

k
0

= k
n
, n ≥ 1, and

∑n−1
m=0 a

km k
m+1

< 0. If a has a negative cycle, Lx
i
:= EM

ab
(e)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

20 ·

picks a shortest such cycle (i.e., one with smallest n), and returns the set of all the
“edges” k

m
k

m+1
in the cycle. If a does not have a negative cycle, Lx

i
:= EM

ab
(e)

eliminates all the indices kl from e such that b
kl

= ∞ or i = k ∨ i = l. Then, for
each remaining index kl in e, Lx

i
:= EM

ab
(e) selects a sequence k0 . . . k

n
of integers

in [0, N] such that k
0

= k, k
n

= l, and

(

n−1
∑

m=0

a
kmkm+1

)

≤ (b)
kl

.

The formula on the left hand side of the above inequality computes an upper bound
of (a∗)

kl
, and the inequality means that this upper bound is still tight enough to

prove that (a∗)
kl

≤ (b)
kl

. The set of all the “edges” k
m

k
m+1

in these selected paths
is the result of the back-tracer Lx

i
:= EM

ab
(e).

When Lx
i
:= EM

ab
(e) chooses a path from k to l in the second step, it usually picks

one with the minimum weight, denoted mPath(a, k, l).12 However, when a
kl

≤ b
kl

,
Lx

i
:= EM

ab
(e) selects a possibly different and shorter path kl. Note that the selected

path for kl here might be different from the path that the abstract interpretation
has used to compute the kl-th entry of b. This shows that Lx

i
:= EM

ab
(e) does not

necessarily denote the part of a that the abstract interpretation has used to obtain
the e-part of b; instead it means the part of a that the abstract interpretation can

use to get the e-part of b.
To see how the back-tracer works more clearly, consider the following pre and

post conditions of x3 := 0:13

[[x3 := 0]]













x
0

x
1
x

2
x

3

x
0
∞ 4 3 ∞

x
1
−1∞ 4 ∞

x
2
−1 0 ∞∞

x
3
∞ ∞∞∞













v













x
0
x

1
x

2
x

3

x
0
∞ 5 ∞ 0

x
1
∞∞ 2 ∞

x
2
∞∞∞∞

x
3

0 ∞∞∞













Let a and b be, respectively, the left and right DBMs of this relationship. When
the back-tracer Lx3 := 0M

ab
is given a post extractor e = {(0, 1), (1, 2), (2, 1), (3, 0)}

it first gets rid of (2, 1) and (3, 0) from e, because the (2, 1)-th entry of b has ∞
and the (3, 0)-th entry of b is generated by the assignment x

3
:= 0. Then, the

back-tracer Lx3 := 0M
ab

computes paths for (0, 1) and (1, 2) separately; for (0, 1),
it picks the path 0, 1, because a

01
≤ b

01
; and for the other index (1, 2), condition

a
12

≤ b
12

does not hold, and so the back-tracer computes a path from 1 to 2 with
the minimum weight, which is the sequence 1, 0, 2. Finally, it returns the index set
{(0, 1), (1, 0), (0, 2)} that consists of all the edges in the computed two paths. 2

12mPath(a, k, l) is a path k0 . . . kn such that k0 = k, kn = l and

(

n−1
X

m=0

a
kmkm+1

) = (a∗)
kl

.

13The second DBM can arise, for instance, when the assignment x3 := 0 is executed at the end

of the false branch of a conditional statement and the analysis result of the true branch is a DBM

whose (0, 2), (1, 0), (2, 0), (2, 1) entries are ∞ and (0, 1) entry is 5.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 21

Lxi ≤ cM
ab

(e)
def
= if (b0i ≥ c) then (e − {kl | b

kl
= ∞}− {0i})

else (e − {kl | b
kl

= ∞})

Lxi ≥ cM
ab

(e)
def
= if (bi0 ≥ −c) then (e − {kl | b

kl
= ∞}− {i0})

else (e − {kl | b
kl

= ∞})

Lxi − xj ≤ cM
ab

(e)
def
= if (bji ≥ c) then (e − {kl | b

kl
= ∞}− {ji})

else (e − {kl | b
kl

= ∞})

LE ≤ E′M
ab

(e)
def
= e − {kl | b

kl
= ∞}

Lxi := xi + cM
ab

(e)
def
= e − {kl | b

kl
= ∞}

Lxi := EM
ab

(e)
def
= if (hasNegCycle(a) = true)

then edges(pickNegCycle(a))

else let e′ =
`

e − {kl | b
kl

= ∞}− {ik, ki | 0 ≤ k ≤ N}
´

in
S

kl∈e′

“

if a
kl

≤ b
kl

then {kl} else edges(mPath(a, k, l))
”

(where E is either xj +c, c, or a general expression E)

LskipM
ab

(e)
def
= e − {kl | b

kl
= ∞}

where edges is defined by edges(k0k1 ...kn) = {k0k1 , k1k2 , ... , kn−1kn}.

Fig. 4. Back-tracers for Atomic Terms in the Zone Analysis

Back-tracers for all atomic terms induce a back-tracer for an entire program
P = (V,E, n

i
, n

f
, L). Assume that we are given back-tracers LtM for all atomic

terms t. Suppose that f and g are maps from program points of P to abstract
values in A (i.e., f, g ∈

∏

n∈V
A) such that g approximates the abstract one-step

execution from f : F (f) v g for the abstract step function F for P . For such f and
g, we define the back-tracer LP M

fg
for P to be the following function:

LP M
fg

: (
∏

n∈V
E) → (

∏

n∈V
E)

LP M
fg

(ε)(n)
def
=

d {

LL(nm)M
f(n)g(m)

(ε(m)) | nm ∈ E
}

where
∏

n∈V
E is the cartesian product of lattices E , ordered pointwise. We call ε ∈

∏

n∈V
E extractor annotation. The back-tracer LP M

fg
for P takes a post extractor

annotation ε for g, and computes a pre extractor annotation ε′ for f , by first
running given LL(nm)M

f(n)g(m)
, and then combining all the resulting extractors at

each program node.
Recall that back-tracers LL(nm)M for atomic terms L(nm) take only those sub-

scripts ab that satisfy [[L(nm)]]a v b. We note that when LP M calls LL(nm)M
f(n)g(m)

,

it always uses correct subscripts; for each nm ∈ E,

[[L(nm)]]f(n) v
⊔

{[[L(n′m)]]f(n′) | n′m ∈ E} (since nm ∈ E)
= F (f)(m) (by the definition of F)
v g(m) (since F (f) v g).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

22 ·

We define exall to be the application of extractor annotations:

exall : (
∏

n∈V
E) →m

(

(
∏

n∈V
A) →m (

∏

n∈V
A)

)

exall(ε)(f)
def
= λn∈V. ex(ε(n))(f(n))

The following lemma shows that the back-tracer LP M
fg

computes a correct pre
extractor annotation.

Lemma 3.5 For all ε in
∏

n∈V
E , if LP M

fg
(ε) = ε′,

F
(

exall(ε′)(f)
)

v exall(ε)(g).

Proof: To show the lemma, pick an arbitrary program point n from V . Then, for
all m such that mn ∈ E,

(

[[L(mn)]]f(m)
)

v
(

⊔

m′n∈E
([[L(m′n)]]f(m′))

)

(since mn ∈ E)

=
(

F (f)(n)
)

(by the definition of F)

v g(n) (by the assumption that F (f) v g).

Let e′ be LL(mn)M
f(m)g(n)

(ε(n)). By what we have derived above and the definition

of back-tracers for L(mn), we have that

[[L(mn)]]
(

ex(e′)(f(m))
)

v ex(ε(n))(g(n)).

We now prove the required inequality as follows.

F
(

exall
(

LP M
fg

(ε)
)(

f
)

)

(n)

=
⊔

mn∈E

(

[[L(mn)]]
(

(

exall (LP M
fg

(ε))(f)
)

(m)
))

(by the definition of F)

=
⊔

mn∈E

(

[[L(mn)]]
(

ex
(

LP M
fg

(ε)(m)
)(

f(m)
)

))

(since exall(ε′)(f)(m) = ex
(

ε′(m)
)(

f(m)
)

for all ε′)

=
⊔

mn∈E

(

[[L(mn)]]
(

ex
(d{

LL(mn′)M
f(m)g(n′)

(ε(n′)) | mn′ ∈ E
}

)

(f(m))
))

(by the definition of LP M
fg

)

v
⊔

mn∈E

(

[[L(mn)]]
(

ex
(

LL(mn)M
f(m)g(n)

(ε(n))
)

(f(m))
))

(since mn ∈ E, and [[L(mn)]] and ex(−)(f(m)) are monotone)

v
⊔

mn∈E
ex(ε(n))(g(n))

(since ∀e ∈ E . ex(e)(g(n)) w [[L(mn)]]
(

ex
(

LL(mn)M
f(m)g(n)

(e)
)

(f(m)))

= ex
(

ε(n)
)(

g(n)
)

.

2

3.3 Abstract-value Slicer SL

We now define an abstract-value slicer, assuming that we are given two components
of the slicer, namely, an extractor domain (E , ex) and back-tracers L−M for all atomic
terms in this domain. Suppose that we are given a program P = (V,E, n

i
, n

f
, L).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 23

Let F be the abstract one-step execution of P in the abstract interpretation, and
let postfix(F) be {f | F (f) v f}, the set of post fixpoints of F .

Definition 3.6 The abstract-value slicer SL for the program P is the function de-
fined as follows:

SL : (postfix(F) ×
∏

n∈V
E) → (

∏

n∈V
E)

SL(f, ε)
def
= let B

f
= λε′.(ε′ u LP M

ff
ε′) and

k = min{n | n ≥ 0 ∧ Bn
f
(ε) = Bn+1

f
(ε)}

in Bk
f
(ε)

Intuitively, the first input f to the slicer denotes the result of the abstract inter-
pretation, and the second ε specifies the part of f that is used for verification;
although exall(ε)(f) is weaker than f , it is still strong enough to verify the property
of interest. Given such f and ε, the slicer SL defines a reductive function14 B

f
on

∏

n∈V
E , and then computes its fixpoint ε′ such that ε′ v ε, by repeatedly applying

B
f

from ε. Note that SL always succeeds in computing such ε′, because the domain
∏

n∈V
E of B

f
has finite height. The result of the slicer SL(f, ε) is this computed

fixpoint ε′.15

The result SL(f, ε) of the abstract-value slicer satisfies the following two impor-
tant properties, which together ensure the correctness of the slicer:

(1) SL(f, ε) v ε, and

(2) exall(SL(f, ε))(f) is a post fixpoint of F .

The first property means that SL(f, ε) extracts at least as much information as
ε, so that if a property of P can be verified by exall(ε)(f), it can also be verified
by exall(SL(f, ε))(f). The second property means that exall(SL(f, ε))(f) is another
possible solution of the abstract interpretation, which could have been obtained if
the abstract interpretation used a different strategy for computing post fixpoints.
Note that the first property holds because B

f
is reductive and the fixpoint compu-

tation of the slicer starts from ε. For the second property, we prove a slightly more
general lemma, by using the soundness of the back-tracer LP M (Lemma 3.5).

Lemma 3.7 For all f ∈ postfix(F) and all ε′ ∈
∏

n∈V
E ,

B
f
(ε′) = ε′ =⇒ F (exall(ε′)(f)) v exall(ε′)(f).

Proof: To show the lemma, choose an arbitrary post fixpoint f of F and an ex-
tractor annotation ε′ for f such that B

f
(ε′) = ε′. Then,

LP M
ff

ε′ w B
f
(ε′) (by the definition of Bf)

= ε′ (by assumption).

14A function f on a poset C is reductive iff f(x) v x for all x ∈ C.
15In general, the result of SL(f, ε) is not the greatest fixpoint ε′ of B

f
satisfying the condition

ε′ v ε. In fact, such greatest fixpoints ε′ might not even exist. However, if LtM
ab

is monotone for

all atomic terms t, so that LP M
fg

is monotone, then the result of SL(f, ε) is the greatest fixpoint

ε′ of B
f

that satisfies the condition. In this case, the result of SL(f, ε) is the greatest fixpoint of

λε′. ε u LP M
ff

(ε′).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

24 ·

Using what we have just shown above, we prove the required inequality as follows:

exall(ε′)(f) w F
(

exall
(

LP M
ff

ε′
)

(f)
)

(by Lemma 3.5)

w F (exall(ε′)(f)) (since ε′ v LP M
ff

ε′, and F and exall are monotone).

2

We summarize what we have just proved in the following proposition.

Proposition 3.8 (Correctness) For all f ∈ postfix(F) and all ε ∈
∏

n∈V
E , the

slicer SL(f, ε) terminates (i.e., it is a well-defined total function), and it outputs ε′

such that ε′ v ε and F
(

exall(ε′)(f)
)

v exall(ε′)(f).

Example 10 Consider the following result from the evenness analysis:

x 7→ >e

y 7→ >e

y:=2y;
x 7→ >e

y 7→ even
x:=2y;

x 7→ even

y 7→ even
y:=x

x 7→ even

y 7→ even

Suppose that we have used the analysis in order to verify that variable y stores an
even integer at the end. The following extractor annotation expresses this verifica-
tion goal:

{} y:=2y; {} x:=2y; {} y:=x {y}

When the abstract-value slicer for the evenness analysis is given the above analysis
result and extractor annotation, it returns the extractor annotation below:

{} y:=2y; {} x:=2y; {x} y:=x {y}

Thus, the original analysis result is sliced to:

x 7→ >e

y 7→ >e

y:=2y;
x 7→ >e

y 7→ >e

x:=2y;
x 7→ even

y 7→ >e

y:=x
x 7→ >e

y 7→ even

Note that the sliced result correctly expresses that the only necessary information
for the verification is the evenness of x after x:=2y and the verification goal at the
end. 2

Example 11 Figure 5 shows the result of the abstract-value slicing for zone analy-
sis. Figure 5(b) shows the input to the slicer; the DBMs in the second row describe
the result of zone analysis, and the extractors in the first row specify that only the
(2, 1), (1, 2)-th entries of the DBM at n

4
are used for verification. Figure 5(c) shows

the sliced result; the first row describes the result of the abstract-value slicer for
this input, and the second row describes the application of the obtained extractors
to the abstract interpretation result. For this example, this table indicates that
among 19 non-∞ DBM entries in the abstract interpretation result, only 5 entries
are needed to prove the property of interest. Finally, Figure 5(d) expresses the
abstract interpretation result and its slice in the form of constraints. 2

4. METHODS FOR DESIGNING BACK-TRACERS FOR ATOMIC TERMS

In this section, we provide two methods for designing back-tracers for atomic terms.
As explained in Section 3.2, it is relatively easy to define a correct back-tracer for an

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 25

��
��

n0

��
��

n1

?

��
��

n2

�
�

�	x1−x2≤0

��
��

n3

?
x1 :=x2+1

-

��
��

n4

@
@
@R
x1−x2≥1

n0

n1

while (x1 - x2 <= 0) do

n2

x1 := x2 + 1

n3

od

n4

(a) Program

n0 n1 n2 n3 n4

Initial extractor

annotation
{} {} {} {} {(1,2), (2,1)}

Abstract

interpretation
result

x0 x1 x2

x0 ∞ 4 3

x1 −1 ∞ ∞
x2 −1 0 ∞

x0 x1 x2

x0 ∞ ∞ 3

x1 ∞ ∞ ∞
x2 −1 1 ∞

x0 x1 x2

x0 ∞ ∞ 3

x1 ∞ ∞ ∞
x2 −1 0 ∞

x0 x1 x2

x0 ∞ ∞ 3

x1 ∞ ∞−1
x2 −1 1 ∞

x0 x1 x2

x0 ∞ ∞ 3

x1 ∞ ∞−1
x2 −1 1 ∞

(b) Input Arguments for Abstract-value Slicer

n0 n1 n2 n3 n4

Result extractors from

abstract-value slicer
{(2,1)} {(2,1)} {} {(2,1)} {(1,2), (2,1)}

Sliced
abstract interpretation

result

x0 x1 x2

x0 ∞ ∞ ∞
x1 ∞ ∞ ∞

x2 ∞ 0 ∞

x0 x1 x2

x0 ∞ ∞ ∞
x1 ∞ ∞ ∞

x2 ∞ 1 ∞

x0 x1 x2

x0 ∞ ∞ ∞
x1 ∞ ∞ ∞

x2 ∞ ∞ ∞

x0 x1 x2

x0 ∞ ∞ ∞
x1 ∞ ∞ ∞

x2 ∞ 1 ∞

x0 x1 x2

x0 ∞ ∞ ∞
x1 ∞ ∞−1

x2 ∞ 1 ∞

(c) Results from Abstract-value Slicer

n0 n1 n2 n3 n4

Before
slicing

1≤x1≤4

∧ 1≤x2≤3
∧ x1≤x2

1≤x2≤3
∧ x1≤x2+1

1≤x2≤3
∧ x1≤x2

1≤x2≤3
∧ x1=x2+1

1≤x2≤3
∧ x1=x2+1

After

slicing
x1≤x2 x1≤x2+1 x1≤x2+1 x1=x2+1

(d) Results as Constraints

Fig. 5. Result of Abstract-value Slicing for the Program in Figure 2

atomic term t. However, designing a good back-tracer for t is difficult, and requires
special knowledge about the abstract interpretation that is used. The first method
in the section aims at producing accurate back-tracers for atomic terms: a slicer
with the back-tracer that is produced usually filters out more information from the
abstract interpretation result, than the one with naively-designed back-tracers. The
second method, on the other hand, aims at a back-tracer with low cost on time and
space. Throughout the section, we assume a fixed abstract interpretation that uses

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

26 ·

an abstract domain (A,v,⊥,t) and an abstract semantics [[−]] for atomic terms.
We also assume that a fixed extractor domain (E , ex) is given for this abstract
interpretation, and that E is finite.

4.1 Best Back-tracer Construction

The first method constructs the best back-tracer for each atomic term, considered
in Proposition 3.4. It is a slight modification of a rather well-known “reversing
technique” [Hughes and Launchbury 1992; Duesterwald et al. 1995]. Let t be an
atomic term, and let (a, b) be a pair of pre and post conditions in prepost(t). For
these t, a, b, the method defines the back-tracer LtM

ab
as follows:

LtM
ab

(e)
def
=

⊔

{e
0
∈ E | [[t]](ex(e

0
)(a)) v ex(e)(b)}.

Intuitively, LtM
ab

(e) is the “conjunction” of all correct pre extractors: LtM
ab

(e) selects
some information from a, precisely when all the correct pre extractors select the
same information. Note that for every correct pre extractor e

0
, the computed

extractor e′ = LtM
ab

(e) filters out at least as much information from a as e
0

(i.e.,
ex(e0)(a) v ex(e′)(a)), and so, it induces a better slice of a than e0 .

In addition to the bestness of the method, we need to check whether the method
constructs a correct back-tracer. Unfortunately, this method does not always con-
struct a correct back-tracer; in general, the constructed LtM

ab
does not satisfy the

following soundness condition from the definition of back-tracers:

∀e, e′ ∈ E . LtM
ab

(e) = e′ =⇒ [[t]]
(

ex(e′)(a)
)

v ex(e)(b).

To make the above soundness condition hold, we should restrict the use of the
method for join-preserving functions as the solutions in other studies [Hughes and
Launchbury 1992; Duesterwald et al. 1995]: we use the constructed LtM

ab
, only when

[[t]] and ex(−)(a) preserve finite joins.

Lemma 4.1 If [[t]] and λe. ex(e)(a) preserve finite joins for all a, then LtM satisfies
the soundness condition for back-tracers for t. Moreover, in this case, LtM

ab
is the

best back-tracer for t (which exists by Proposition 3.4).

Proof: In this proof, we show that the method constructs a correct back-tracer by
the join-preservation, and then show why it is a best back-tracer. To see why the
join-preservation provides a solution, suppose that [[t]] and ex(−)(a) preserves finite
joins. Then, their composition λe. [[t]]

(

ex(e)(a)
)

also preserves finite joins. So, for
all extractors e, e′ ∈ E such that LtM

ab
e = e′, we have that

[[t]]
(

ex(e′)(a)
)

= [[t]]
(

ex
(

LtM
ab

(e)
)

(a)
)

= [[t]]
(

ex
(

⊔

{e
0
| [[t]]

(

ex(e
0
)(a)

)

v ex(e)(b)}
)

(a)
)

(by the definition of LtM
ab

)

=
(

⊔

{[[t]]
(

ex(e
0
)(a)

)

| [[t]]
(

ex(e
0
)(a)

)

v ex(e)(b)}
)

(by join preservation)

v ex(e)(b).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 27

This order relationship implies the correctness of LtM
ab

. Now, we prove that LtM
ab

is
a best back-tracer. Consider a back-tracer k for t. Then, for all (a, b) ∈ prepost(t)
and e ∈ E ,

[[t]]
(

ex
(

k
ab

(e)
)

(a)
)

v ex(e)(b).

Thus, by the definition of LtM, we have that k
ab

(e) v LtM
ab

(e), as required. 2

The very definition of LtM
ab

gives a default (usually inefficient) implementation,
if all the extractor applications are computable. When a post extractor e for b

is given, the implementation calculates all the correct pre extractors for a, b, t, e;
this is possible, because the extractor domain E is finite (by assumption) and [[t]]
is computable. Then, the implementation returns the greatest one from the calcu-
lated extractors. This default implementation is, however, very slow, and in many
cases, it can be improved dramatically. We illustrate this improvement using zone
analysis.

Example 12 Consider zone analysis (M,v,⊥,t) and the extractor domain (E , ex)
in Example 7. In this case, the method in this section can be applied to obtain the
best back-tracer for an atomic term, if the term is either a boolean expression or an
assignment of the form x

i
:= x

i
+c; zone analysis interprets all such atomic terms as

join-preserving functions, and extractor application ex(−)(a) preserves finite joins
for all a. In this example, we will explain how to efficiently implement this best
back-tracer.

Let t be an atomic term that is either a boolean expression or an assignment of
the form x

i
:= x

i
+ c. Our implementation of the best back-tracer for t is based on

two important observations.

(1) First, no matter whether t is a boolean expression or an assignment, the ab-
stract semantics [[t]] of t is a pointwise transformation of DBM matrices; to
compute the ij-th entry of the output DBM, [[t]] uses at most the ij-th entry
of the input DBM. More precisely, there exists a family {f

ij
}

ij∈(N+1)×(N+1)
of

monotone functions on Ints ∪ {−∞,∞} (ordered by ≤) such that

∀ij. ([[t]]a)
ij

= f
ij

(a
ij

).

(2) Second, when a function family {f
ij
}

ij
determines [[t]], it can be used to sim-

plify the “correctness condition” for pre and post extractors: for every (a, b) ∈
prepost(t), pre extractor e

0
∈ E and post extractor e ∈ E , we have that

(

[[t]](ex(e
0
)(a)) v ex(e)(b)

)

⇐⇒
(

∀ij. ij ∈ e ⇒ (ij ∈ e
0
∨ f

ij
(∞) ≤ b

ij
)
)

.

Intuitively, this simplified condition says that every index ij in the post ex-
tractor e should belong to the pre extractor e0 , except when t can “generate”
the information b

ij
(i.e., x

j
− x

i
≤ b

ij
) without using the input DBM. To see

this, note that since f
ij

is monotone, f
ij

(∞) ≤ b
ij

implies that for every input
DBM a′, the ij-th entry of [[t]](a′) should be less than or equal to b

ij
. Thus,

no information from the input DBM is necessary for t to “produce” the ij-th
entry of b.

We now use these two observations to optimize the best back-tracer for t:

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

28 ·

⊔

{e
0
| [[t]](ex(e

0
)(a)) v ex(e)(b)}

=
⋂

{e
0
| [[t]](ex(e

0
)(a)) v ex(e)(b)} (by the lattice structure of E)

=
⋂

{e
0
| ∀ij. ij ∈ e ⇒ (ij ∈ e

0
∨ f

ij
(∞) ≤ b

ij
)} (by the second observation)

=
⋂

{e
0
| ∀ij. (ij ∈ e ∧ f

ij
(∞) 6≤ b

ij
) ⇒ ij ∈ e

0
}

=
⋂

{

e
0
| {ij | ij ∈ e ∧ f

ij
(∞) 6≤ b

ij
} ⊆ e

0

}

= {ij | ij ∈ e ∧ f
ij

(∞) 6≤ b
ij
}

= e − {ij | f
ij

(∞) ≤ b
ij
}

Note that the obtained formula indicates the efficient implementation of the best
back-tracer LfM

ab
as a single set subtraction. Moreover, the subtracted set in the

formula is a fixed set that does not depend on the post extractor e. This property
can allow a further optimization of the set subtraction. In fact, the back-tracers
for boolean expressions E ≤ E ′, assignments x

i
:= x

i
+ c and command skip in

Figure 4 are such further optimizations. 2

Before finishing the discussion on the construction of best back-tracers, we con-
sider one special case that the extractor domain is an atomic lattice. Recall (from
the standard lattice theory [Davey and Priestley 1990]) that an element x in a
lattice L is an atom if and only if it is the second smallest element in L:

x 6= ⊥ ∧
(

∀x′ ∈ L. (x′ v x ∧ x′ 6= x) ⇒ x′ = ⊥)
)

,

and that a lattice L is atomic if and only if every element x in the lattice L can be
reconstructed by combining (by join) all the atoms x′ such that x′ v x:

∀x ∈ L. x =
⊔

{x′ | x′ v x and x′ is an atom}.

The following proposition suggests that we can optimize the best back-tracer LtM
ab

when E is atomic.

Proposition 4.2 When E is atomic, the best back-tracer LtM
ab

is identical to the
function below:

λe.
⊔

{e0 ∈ E | [[t]]
(

ex(e0)(a)
)

v ex(e)(b) and e0 is an atom}.

Proof: Let k
ab

be the function defined in the proposition. For all e
0
∈ {e

0
∈ E |

[[t]]
(

ex(e0)(a)
)

v ex(e)(b) and e0 is an atom}, it follows e0 v LtM
ab

(e) by Lemma 3.3.
Since k

ab
(e) is the join of all such e

0
, we have that k

ab
(e) v LtM

ab
(e). For the other

direction, consider an arbitrary e
1
∈ E such that

[[t]]
(

ex(e
1
)(a)

)

v ex(e)(b).

Note that such e1 can be LtM
ab

by the definition (Def. 3.1) of back-tracer. For all
atoms e

0
such that e

0
v e

1
,

[[t]]
(

ex(e
0
)(a)

)

v [[t]]
(

ex(e
1
)(a)

)

(by the monotonicity of [[f]] and ex(−)(a))
v ex(e)(b) (by the choice of e1).

Thus, e
0
v k

ab
(e). This implies that e

1
v k

ab
(e) since E is atomic. So, LtM

ab
(e) v

k
ab

(e). 2

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 29

4.2 Extension Method

The second method, called extension method, is a dual approach to the atomic
lattice case considered in the previous section. Extension method assumes two
properties of the extractor domain. Recall (from the standard lattice theory [Davey
and Priestley 1990]) that an element x in a lattice L is a dual atom if and only if
it is the second biggest element in L:

x 6= > ∧
(

∀x′ ∈ L. (x v x′ ∧ x′ 6= x) ⇒ x′ = >)
)

,

and that a lattice L is dual atomic if and only if every element x in the lattice L can
be reconstructed by combining (by meet) all the dual atoms x′ such that x v x′:

∀x ∈ L. x =
l

{x′ | x v x′ and x′ is a dual atom}.

The first assumption of the extension method is that each extractor lattice E is dual
atomic, and the second assumption is that each extractor application preserves all
finite meets:

ex(>) = > and ex(e u e′) = ex(e) u ex(e′).

Here > and u are the lattice operations for upper closure operators, and they are
defined pointwise.16 Intuitively, these two assumptions mean that every extractor
e in E represents a collection {e

1
, . . . , e

n
} of dual atomic extractors; e extracts

information from a by first applying each e
i
to a and then conjoining all the resulting

information:

ex(e)(a) =
l

i=1,...,n

ex(e
i
)(a).

When the extractor domain satisfies the above assumptions, the extension method
provides a recipe for constructing correct back-tracers for all atomic terms. Let t

be an atomic term and (a, b) a pair of pre and post conditions in prepost(t). The
first step of the extension method is to define a partial back-tracer g: g is a par-
tial function of type E ⇀ E such that (1) the domain of g is precisely the set of
dual atoms in E and (2) for all post extractors in dom(g), g calculates correct pre
extractors:

∀e ∈ dom(g). [[t]]
(

ex
(

g(e)
)(

a
)

)

v ex(e)(b).

The next step is to extend g to the following complete back-tracer:

LtM
ab

(e)
def
=

l
{g(e

1
) | e v e

1
and e

1
is a dual atom}.

The total back-tracer LtM
ab

(e) decomposes the post extractor e into dual atoms, and
then applies g to all the obtained dual atoms; finally, it merges all the resulting pre
extractors (by meet). Note that, since E is finite, the meet here is over the finite
sets, and so, it is well-defined. The following lemma shows that the constructed
LtM

ab
is correct.

Lemma 4.3 For all extractors e, e′ ∈ E , we have that

e′ = LtM
ab

(e) =⇒ [[t]]
(

ex(e′)(a)
)

v ex(e)(b).

16Precisely, >(a) = > and (ex(e) u ex(e′))(a) = ex(e)(a) u ex(e′)(a).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

30 ·

Proof: We prove the lemma as follows:

[[t]]
(

ex
(

LtM
ab

e
)

(a)
)

= [[t]]
(

ex
(d

{g(e
1
) | e v e

1
and e

1
is a dual atom}

)

(a)
)

(by the definition of LtM
ab

)

= [[t]]
(d

{ex
(

g(e
1
)
)

(a) | e v e
1

and e
1

is a dual atom}
)

(by the meet preservation of ex)

v
d
{[[t]]

(

ex
(

g(e
1
)
)

(a)
)

| e v e
1

and e
1

is a dual atom} (since [[t]] is monotone)

v
d
{ex(e

1
)(b) | e v e

1
and e

1
is a dual atom}

(since [[t]]
(

ex(g(e
1
))(a)

)

v ex(e
1
)(b) for all dual atoms e

1
)

= ex
(d

{e
1
| e v e

1
and e

1
is a dual atom}

)

(b)

(by the meet preservation of ex)

= ex(e)(b) (since E is dual atomic).

2

The extension method has two advantages over the best back-tracer construction.
First, the extension method usually provides a relatively efficient default imple-
mentation of the defined back-tracers. By “efficient”, we do not mean a linear-time
algorithm, but simply mean a polynomial-time algorithm, instead of exponential-
time algorithm. Suppose that we have defined a back-tracer LtM

ab
, by applying the

extension method to a partial back-tracer g. The default implementation of LtM
ab

uses an internal table T that records the graph of function g, and is defined as
follows:

(* e is an input (a post extractor),

e
0
is an output (a pre extractor) *)

X := {e
1
| e v e

1
and e

1
is a dual atom};

e0 := >;
for each e

1
∈ X

do

lookup e′
1
s.t. (e1 , e

′

1
) ∈ T ;

e
0

:= e
0
u e′

1

od

Here we specify the implementation imperatively, in order to distinguish it from the
definition of LtM

ab
. Note that this implementation simply follows the definition of

LtM
ab

without any special optimizations. However, the implementation is efficient.
In the worst case, the set X contains all the dual atoms, and so, all the basic
operations in the implementation, such as the look-up of table T and the meet
operation of extractors, are executed at most as many times as the number of dual
atoms in E . Even when the extractor lattice E is big, they contain only smaller
number of dual atoms; in many cases, even though the cardinality of an extractor
lattice is exponential in the size of the program, the number of dual atoms in the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 31

lattice is polynomial in the program size. Thus, in such cases, the implementation
runs in polynomial time. Note that in the best back-tracer construction, a naive
implementation, which directly follows the definition, executes basic operations as
many times as the size of the extractor lattice.

Second, the extension method is more widely applicable than the best back-
tracer construction. The assumptions of the extension method are only about the
extractor domain, not about the abstract interpretation. Thus, once the extractor
domain is well-chosen, the method can be used to get back-tracers for all atomic
terms. This contrasts with the best back-tracer construction, which can be appli-
cable to an atomic term t only when [[t]] preserves finite joins.

Example 13 For zone analysis and the extractor domain (E , ex) in Example 7, the
extension method can be applied to all atomic terms; E is a dual atomic lattice,
whose dual atoms are singleton index sets {ij}, and the extractor application ex

preserves finite meets. Here we apply the method to construct back-tracers for
assignments x

i
:= E that were not handled in Example 12, namely those that are

not of the form x
i
:= x

i
+c. In fact, for such assignments x

i
:=E, we cannot apply

the best back-tracer construction, because [[x
i
:=E]] does not preserve some finite

joins.
Let a, b be DBMs such that [[x

i
:=E]]a v b. To apply the extension method, we

need to define a correct partial back-tracer g for x
i
:=E at a and b. We define

such g by doing the case analysis on the input DBM a. When a contains a cycle
with negative weight, we pick one such cycle pickNegCycle(a) = k

0
k

1
. . . k

n
in a,

and define g to be a constant function λe.{k
0
k

1
, k

1
k

2
, ... , k

n−1
k

n
}. Otherwise, i.e.,

when a does not contain a negative cycle, we define g as follows, using paths with
minimum weight:

g({kl})
def
= if (b

kl
= ∞ ∨ k = i ∨ l = i)

then {}

else
(

if a
kl

≤ b
kl

then {kl} else edges(mPath(a, k, l))
)

.

Here we used the subroutine edges in Figure 4, which takes a path k
0
k

1
...k

n
and

returns the set {k
0
k

1
, k

1
k

2
, ... , k

n−1
k

n
} of all the edges in the path. The defined

function g first checks whether [[t]] needs to use the input to generate b
kl

. If so, g

returns the entries of the input a that are necessary for generating b
kl

. Otherwise,
g returns the empty set.

Now the extension method gives the back-tracer Lx
i
:= EMab defined as follows:

Lx
i
:= EM

ab
(e)

def
=

l
{g(e

1
) | e v e

1
and e

1
is a dual atom}

This definition can be optimized to the back-tracer for x
i
:= E in Figure 4. When

a contains a negative cycle,

Lx
i
:= EM

ab
(e)

=
d
{g(e

1
) | e v e

1
and e

1
is a dual atom}

=
d
{edges(pickNegCycle(a)) | e v e

1
and e

1
is a dual atom}

(by the definition of g)

= edges(pickNegCycle(a)).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

32 ·

When a does not contain a negative cycle,

Lx
i
:= EM

ab
(e)

=
d
{g(e

1
) | e v e

1
and e

1
is a dual atom}

=
⋃

{g(e
1
) | e v e

1
and e

1
is a dual atom} (by the lattice structure of E)

=
⋃

kl∈e
g({kl})

(since (e1 = {kl} for some kl ∈ e) ⇐⇒ (e v e1 and e1 is a dual atom))

=
⋃

kl∈e
if (b

kl
=∞∨ i=k ∨ i=l)

then {}

else
(

if a
kl

≤ b
kl

then {kl} else edges(mPath(a, k, l))
)

(by the definition of g)

= let e′ = e − {kl | b
kl

= ∞∨ k = i ∨ l = i}
in

⋃

kl∈e′
if a

kl
≤ b

kl
then {kl} else edges(mPath(a, k, l))

= let e′ = e − {kl | b
kl

= ∞}− {ik, ki | 0 ≤ k ≤ N}
in

⋃

kl∈e′
if a

kl
≤ b

kl
then {kl} else edges(mPath(a, k, l))

.

Note that in both cases, the optimized definition coincides with the back-tracer for
Lx

k
:= EM in Figure 4. 2

5. EXPERIMENTS

We designed an abstract-value slicer for the full zone analysis [Miné 2001], and
tested the efficiency of the resulting slicer in the context of proof generation.

5.1 Abstract-value Slicer for the Full Zone Analysis

The full zone analysis is different from our simplified version in Example 5 in two
aspects. First, the full analysis additionally applies the DBM closure operator −∗

(in Example 5) before all DBM joins in the analysis. Second, it has better abstract
semantics of atomic terms. For all the assignments x

i
:= E, if E does not have

the form c, x
i
+ c or x

j
+ c, our simplified analysis replaces x

i
:= E by a random

assignment x
i

:=?, which chooses an integer nondeterministically and assigns the
chosen number to x

i
; then, the simplified analysis defines [[x

i
:= E]] to be the

strongest postcondition transformer of x
i
:=?. The full version, on the other hand,

does not do such a replacement, but defines more accurate abstract semantics of
x

i
:= E using interval analysis. Given an input DBM a, the full analysis first

applies the closure −∗ to a, just like the simplified analysis. But then, instead of
updating all x

i
-related entries by ∞, the full analysis estimates the range of the

right hand side expression E of x
i
:= E, using interval analysis. It projects a∗ into

the following abstract value prj(a∗) in interval analysis

prj(a∗) = λx
j
. [−(a∗)

j0 , (a
∗)0j

],

and runs [[E]](prj(a∗)) in interval analysis to obtain the (approximate) range [n,m]
of E. Finally, using this obtained range of E, the full analysis updates the i0 and
0i entries of the input a∗, and returns the following DBM:

(

(a∗)[ki7→∞, ik 7→∞]
1≤k 6=i≤N

)

[0i7→m, i07→−n].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 33

number of DBM entries

program (1)totala extractedb (2)removedc (2)/(1) slicing time

Insertionsort 92 22 70 76% 0.07

Partitiond 120 46 74 62% 0.03

Bubblesort 217 42 175 81% 0.11

KMPe 463 133 330 72% 0.28

Heapsort 817 181 636 78% 0.29

anumber of non-∞ DBM entries in the results of zone analysis.
bnumber of the DBM entries in (1) that are extracted (i.e., not changed) by the slicer.
cnumber of the DBM entries in (1) that are changed to ∞ by the slicer.
dPartition function in Quicksort.
eKnuth-Morris-Pratt pattern matching algorithm.

Table I. Number of Sliced DBM Entries

We designed an abstract-value slicer for the full zone analysis, by modifying the
slicer for the simplified version in Example 7 and 9. To deal with the additional
uses of the closure operator −∗, we defined the back-tracer β for −∗ as follows. For
all a, b such that a∗ v b,

β
ab

: E → E

β
ab

(e)
def
= if (hasNegCycle(a) = true)

then edges(pickNegCycle(a))
else let e′ = e − {kl | b

kl
= ∞}

in
⋃

kl∈e′

(

if a
kl
≤b

kl
then {kl} else edges(mPath(a, k, l))

)

The defined β was, then, inserted into the old slicer in Example 9, in order to
back-trace newly added closure applications in the full analysis. To handle the
modified abstract semantics [[x := E]], we designed a slicer for interval analysis,
which contains a back-tracer LEM for expression E. Then, using LEM, we changed
the old back-tracer Lx := EM, in order to account for the new improved abstract
semantics of x := E.

5.2 Experimental Results

We implemented the full zone analysis, the abstract-value slicer, and the proof con-
struction algorithm using our previous work [Seo et al. 2003]. In our experiment,
we first executed the analysis with five array accessing programs, and obtained ap-
proximate invariants which are strong enough to show the absence of array bounds
errors. Then, we ran the slicer for each of the computed abstract interpretation re-
sults, and measured the number of invariants (i.e., DBM entries) in the results that
have been eliminated (i.e., replaced by ∞). Finally, we applied the proof construc-
tion algorithm to both the original abstract interpretation results and their sliced
versions, and measured how much the slicer reduced the size of the constructed
proofs.

Table I shows the number of invariants that have been sliced out by the abstract-
value slicer. The second column, labeled by “total”, contains the number of all the
nontrivial DBM entries (i.e., entries that are not ∞) in the result of the abstract
interpreter, and the fourth column, labeled by “removed”, shows how many of

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

34 ·

before slicing after slicing reduction in

program (1)FOLa (2)formulasb (3)FOLc (4)formulasd (1)-(3)/(1) proof sizee

Insertionsort 248 2530 166 1122 33% 53%

Partition 398 3866 201 1847 49% 52%

Bubblesort 894 12230 389 2677 56% 76%

KMP 1364 26898 653 7683 52% 70%

Heapsort 2542 52370 1028 7936 60% 84%

anumber of nodes for first-order logic rules that appear in the proof tree for an original (unsliced) analysis
result.
bnumber of first-order formulas that appear in the proof tree for the original analysis result.
cnumber of nodes for first-order logic rules that appear in the proof tree for a sliced analysis result.
dnumber of formulas that appear in the proof tree for the sliced analysis result.
eHere the size of a proof counts all of applied Hoare logic rules, applied first-order logic rules, and first-order
logic formulas in the proof.

Table II. Reduction in the Proof Size

those nontrivial entries the slicer found unnecessary for verifying the absence of
array bounds errors. The experimental result shows that about 62% to 81% of
computed invariants are not needed for the verification.

The reduction in the size of constructed proofs is shown in Table II. The con-
structed proofs are trees whose nodes express the application of Hoare logic rule or
first-order logic rule. The nodes for first-order logic rules have different sizes, de-
pending on the first-order logic formulas that are contained in the nodes. Thus, for
each constructed proof, we counted three entities: the nodes for Hoare logic rules,
the nodes for first-order logic rules, and the first-order formulas. The abstract-
value slicer did not reduce the number of Hoare logic rules, because Hoare rules are
applied as many times as the number of program constructs in the program, and
the abstract-value slicer does not change the program. However, the slicer reduced
the number of first-order logic rules and the number of first-order formulas. In
Table II, we show those numbers before and after slicing. The experimental result
shows that in the proof trees for sliced analysis results, about 33% to 60% less rules
are used for showing implications between first-order logic formulas. In the seventh
column of the table, we show the reduction ratio in the size of the whole proofs.
For each of the constructed proof trees, we add the number of the nodes and that
of first-order formulas, and then, we compute the reduction ratio in this number.
The experimental result shows that the proof trees for sliced analysis results are
about 52% to 84% smaller than those for original analysis results.

6. CONCLUSION

In this paper, we have presented a framework for abstract-value slicers that weaken
the abstract interpretation results. We have presented two design guides to define
back-tracers for atomic terms that propagate the slicing information of each atomic
term backwards. In fact, designing a back-tracer is a key task in implementing an
abstract-value slicer.

The motivating application of the slicer is to reduce the proof size in the proof
construction method [Seo et al. 2003] that takes the program invariants computed
by an abstract interpretation and produces a Hoare proof for these invariants.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 35

Since the slicer reduces the number of invariants to prove, it enables us to have
smaller proofs. In our experiment in constructing the proofs for the absence of
array bound violations in five small yet representative array-access programs, our
slicing algorithm reduce the proofs’ sizes. In our experiment with the zone analysis,
the slicer identified 62%−81% of the abstract interpretation results as unnecessary,
and resulted in 52% − 84% reduction in the proof size.

Our abstract-value slicer has been targeted for one specific application, the con-
struction of Hoare proofs from abstract interpretation results. For instance, our
slicer guarantees that the sliced analysis results are post fixpoints of the abstract
transfer function. Because of this guarantee, the following proof-construction phase
does not have to call a (possibly expensive) theorem prover, but it can instead rely
on the soundness of the abstract interpretation only [Seo et al. 2003].

While this paper was being reviewed, Besson et al. [Besson et al. 2007] has inde-
pendently considered the problem of weakening abstraction interpretation results
and developed an approach similar to our abstract value slicer. However, the focus
of their work is slightly different from ours. Their work emphasizes the issue of the
existence of the weakest abstract interpretation results that prove the property of
interest. On the other hand, this paper focuses on algorithms for weakening ab-
stract interpretation results and a general framework for validating the soundness
of such algorithms.

One interesting future direction is to disconnect the tie between the proof con-
struction and our framework for abstract-value slicers, and revisit the framework.
For instance, instead of asking the sliced analysis results to be post fixpoints of
abstract transfer functions, we might require them to be post fixpoints of concrete

transfer functions. This might lead to a new formulation of abstract-value slicers,
which is suitable for studying semantics-driven slicing.

Abstract-value slicers can be seen as algorithms for simplifying an abstract do-
main without losing the abstract-interpretation based proof of a property of interest.
Concretely, consider a join semi lattice D, a monotone function F : D →m D, and
abstract values d

0
, d ∈ D, such that

d
0
v d and F (d

0
) v d

0
.

Here D represents an abstract domain for an entire program (not for a single pro-
gram point) and F an abstract transfer function. Abstract values d0 and d denote
an abstract-interpretation result and a property to verify, respectively,17 and the
condition on d

0
and d means that the abstract interpreter is able to prove d. In

this setting, an abstract-value slicer can be considered to compute an upper closure
operator ρ on D, such that

ρ(d
0
) v d and (ρ ◦ F)(ρ(d

0
)) v ρ(d

0
) (equivalently, F (ρ(d

0
)) v ρ(d

0
)).

That is, it simplifies the abstract domain D to ρ(D), such that the induced best
abstract transfer function ρ◦F in the simplified domain can still verify the property
d, using ρ(d0). Moreover, the slicer attempts to make ρ as abstract as possible.

17Domain D amounts to
Q

n∈V
A in Section 2, and d0 and d correspond to f and exall(ε0, f) in

Definition 3.6.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

36 ·

The question about simplifying or compressing abstract domains has already
been studied in the theory of abstract domain transformations [Filé et al. 1996;
Giacobazzi and Ranzato 1997; Giacobazzi et al. 2000; Cortesi et al. 1998]. It would
be interesting to see how the existing results can be used to give a new insight
for designing better abstract value slicers. We currently expect that the work on
compressing abstract domains can answer when the most abstract (i.e., biggest)
upper closure operator ρ satisfying the condition in the previous paragraph exists.

Finally, another interesting future direction is to develop more recipes for building
abstract-value slicers. In particular, by using the known techniques for construct-
ing abstract interpretations systematically [Cousot and Cousot 1979; Giacobazzi
et al. 2000; Giacobazzi and Ranzato 1999; Giacobazzi and Scozzari 1998], we can
provide corresponding systematic methods for building abstract-value slicers. Some
preliminary results in this direction appear in [Yang et al. 2006].

ACKNOWLEDGMENTS

We would like to thank David Schmidt, Alan Mycroft, Xavier Rival, Daejun Park
and anonymous referees for their helpful comments. Seo and Han were supported
by Korea Ministry of Information and Communication under the Information Tech-
nology Research Center support program, supervised by the Institute of Informa-
tion Technology Assessment (IITA-2005-C1090-0502-0031). Yang was supported
by EPSRC and the Basic Research Program of the Korea Science & Engineering
Foundation (grant No. R08-2003-000-10370-0). Yi was supported by Brain Korea
21 Project of Korea Ministry of Education and Human Resources, by IT Leading
R&D Support Project of Korea Ministry of Information and Communication, by
Korea Research Foundation grant KRF-2003-041-D00528, and by National Security
Research Institute of Korea.

REFERENCES

Appel, A. W. 2001. Foundational proof-carrying code. In Proceedings of the IEEE Symposium

on Logic in Computer Science (Boston, Massachusetts, USA). IEEE Computer Society Press,
Los Alamitos, 247–258.

Appel, A. W. and Felty, A. P. 2000. A semantic model of types and machine instructions for

proof-carrying code. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (Boston, Massachusetts, USA). ACM Press, New York, 243–253.

Ball, T., Majumdar, R., Millstein, T., and Rajamani, S. K. 2001. Automatic predicate

abstraction of C programs. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation (SnowBird, Utah, USA). ACM Press, New York, 203–

213.

Ball, T. and Rajamani, S. K. 2001. Automatically validating temporal safety properties of
interfaces. In Proceedings of the SPIN Workshop on Model Checking of Software (Toronto,
Canada). Lecture Notes in Computer Science, vol. 2057. Springer-Verlag, 103–122.

Besson, F., Jensen, T., and Turphin, T. 2007. Small witnesses for abstract interpretation-

based proofs. In European Symposium on Programming. Lecture Notes in Computer Science,

vol. 4421. Springer-Verlag, 268–283.

Bourdoncle, F. 1993. Abstract debugging of higher-order imperative languages. In Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and Implementation

(Albuquerque, New Mexico, United States). ACM Press, New York, 46–55.

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., and Veith, H. 2000. Counterexample-guided
abstraction refinement. In Computer Aided Verification (Chicago, Illinois, USA). Lecture Notes

in Computer Science, vol. 1855. Springer-Verlag, 154–169.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

Goal-directed Weakening of Abstract Interpretation Results · 37

Clarke, E. M., Grumberg, O., and Peled, D. A. 1999. Model checking. The MIT Press.

Cortesi, A., Filé, G., and Winsborough, W. H. 1998. The quotient of an abstract interpreta-

tion. Theoretical Computer Science 202, 1-2, 163–192.

Cousot, P. 1981. Semantic foundations of program analysis. In Program Flow Analysis: Theory

and Applications, S. Muchnick and N. Jones, Eds. Prentice-Hall, Inc., Englewood Cliffs, New

Jersey, Chapter 10, 303–342.

Cousot, P. 1999. The calculational design of a generic abstract interpreter. In Calculational

System Design, M. Broy and R. Steinbrüggen, Eds. NATO ASI Series F. IOS Press, Amsterdam.

Cousot, P. 2005. Abstract interpretation. MIT course 16.399, http://web.mit.edu/16.399/www/.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proceedings of the

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Los Angeles,

California, USA). ACM Press, New York, 238–252.

Cousot, P. and Cousot, R. 1979. Systematic design of program analysis frameworks. In Pro-

ceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(San Antonio, Texas, USA). ACM Press, New York, 269–282.

Cousot, P. and Cousot, R. 1999. Refining model checking by abstract interpretation. Automated

Software Engineering 6, 1, 69–95.

Dams, D., Gerth, R., and Grumberg, O. 1997. Abstract interpretation of reactive systems.

ACM Transactions on Programming Languages and Systems 19, 2, 253–291.

Davey, D. A. and Priestley, H. A. 1990. Introduction to lattices and order. Cambridge

University Press.

Davis, K. and Wadler, P. L. 1990. Backwards strictness analysis: Proved and improved. In Func-

tional Programming: Proceedings of the 1989 Glasgow Workshop, 21-23 August 1989 (London,
UK). Springer-Verlag, 12–30.

Duesterwald, E., Gupta, R., and Soffa, M. L. 1995. Demand-driven computation of interpro-
cedural data flow. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (San Francisco, California, USA). ACM Press, New York, 37–48.

Filé, G., Giacobazzi, R., and Ranzato, F. 1996. A unifying view of abstract domain design.

ACM Computing Surveys 28, 2, 333–336.

Giacobazzi, R. and Mastroeni, I. 2004. Abstract non-interference: parameterizing non-

interference by abstract interpretation. In Proceedings of the ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages (Venice, Italy). ACM Press, New York, 186–197.

Giacobazzi, R. and Ranzato, F. 1997. Refining and compressing abstract domains. In Inter-

national Colloquium on Automata, Languages and Programming. Lecture Notes in Computer
Science, vol. 1256. Springer-Verlag, 771–781.

Giacobazzi, R. and Ranzato, F. 1999. The reduced relative power operation on abstract do-

mains. Theoretical Computer Science 216, 1-2, 159–211.

Giacobazzi, R., Ranzato, F., and Scozzari, F. 2000. Making abstract interpretations complete.

Journal of the ACM 47, 2, 361–416.

Giacobazzi, R. and Scozzari, F. 1998. A logical model for relational abstract domains. ACM

Transactions on Programming Languages and Systems 20, 5, 1067–1109.

Graf, S. and Säıdi, H. 1997. Construction of abstract state graphs with pvs. In Computer Aided

Verification (Haifa, Israel). Lecture Notes in Computer Science, vol. 1254. Springer-Verlag, 72–

83.

Hamid, N., Shaoi, Z., Trifonov, V., Monnier, S., and Ni, Z. 2002. A syntactic approach to

foundational proof-carrying code. In Proceedings of the IEEE Symposium on Logic in Computer

Science (Copenhagen, Denmark). IEEE Computer Society Press, Los Alamitos, 89–100.

Henzinger, T., Jhala, R., Majumdar, R., and Sutre, G. 2002. Lazy abstraction. In Proceed-

ings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(Portland, Oregon, USA). ACM Press, New York, 58–70.

Henzinger, T., Jhala, R., Majumdar, R., and Sutre, G. 2003. Software verification with blast.

In Proceedings of the SPIN Workshop on Model Checking of Software (Portland, Oregon, USA).

Lecture Notes in Computer Science, vol. 2648. Springer-Verlag, 235–239.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

38 ·

Hoare, C. A. R. 1969. An axiomatic basis for computer programming. Communications of the

ACM 12, 10, 576–580.

Howe, J. M., King, A., and Lu, L. 2004. Analysing logic programs by reasoning backwards. In

Program Development in Computational Logic. Lecture Notes in Computer Science, vol. 3049.

Springer-Verlag, 152–188.

Hughes, J. 1988. Backwards analysis of functional programs. In Proceedings of the IFIP TC2

Workshop on Partial Evaluation and Mixed Computation. 187–208.

Hughes, J. and Launchbury, J. 1992. Reversing abstract interpretations. In European Sympo-

sium on Programming (Rennes, France). Lecture Notes in Computer Science, vol. 582. Springer-

Verlag, 269–286.

King, A. and Lu, L. 2002. A backward analysis for constraint logic programs. Theory and

Practice of Logic Programming 2, 4-5, 517–547.

Massé, D. 2001. Combining backward and forward analyses of temporal properties. In Proceedings

of the Second Symposium PADO’2001, Programs as Data Objects (Arhus, Denmark). Lecture

Notes in Computer Science, vol. 2053. Springer-Verlag, 155–172.

Miné, A. 2001. A new numerical abstract domain based on difference-bound matrices. In Pro-

ceedings of the Second Symposium PADO’2001, Programs as Data Objects (Aarhus, Denmark).

Lecture Notes in Computer Science, vol. 2053. Springer-Verlag, 155–172.

Morrisett, G., Walker, D., Crary, K., and Glew, N. 1998. From System F to typed assem-

bly language. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (San Diego, California, USA). ACM Press, New York, 85–97.

Necula, G. C. 1997. Proof-carrying code. In Proceedings of the ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (Paris, France). ACM Press, New York,
106–119.

Necula, G. C. and Lee, P. 1997. Safe, untrusted agents using proof-carrying code. In Special

Issue on Mobile Agent Security, G. Vigna, Ed. Lecture Notes in Computer Science, vol. 1419.
Springer-Verlag, 61–91.

Necula, G. C. and Rahul, S. P. 2001. Oracle-based checking of untrusted software. In Proceed-

ings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(London, UK). ACM Press, New York, 142–154.

Necula, G. C. and Schneck, R. 2002. Proof-carrying code with untrusted proof rules. In
Software Security – Theories and Systems (Tokyo, Japan). Lecture Notes in Computer Science,

vol. 2609. Springer-Verlag, 283–298.

Rival, X. 2005a. Abstract dependences for alarm diagnosis. In Asian Symposium on Programming

Languages and Systems (Tsukuba, Japan). Lecture Notes in Computer Science, vol. 3780.

Springer-Verlag, 347–363.

Rival, X. 2005b. Understanding the origin of alarms in ASTRÉE. In Static Analysis Symposium

(London, UK). Lecture Notes in Computer Science, vol. 3672. Springer-Verlag, 303–319.

Seo, S., Yang, H., and Yi, K. 2003. Automatic construction of Hoare proofs from abstract

interpretation results. In Asian Symposium on Programming Languages and Systems (Beijing,

China). Lecture Notes in Computer Science, vol. 2895. Springer-Verlag, 230–245.

Tip, F. 1995. A survey of program slicing techniques. Journal of Programming Languages 3, 3,

121–189.

Wadler, P. and Hughes, R. J. M. 1987. Projections for Strictness Analysis. In Functional

Programming Languages and Computer Architecture (Portland, Oregon, USA), G. Kahn, Ed.

Lecture Notes in Computer Science, vol. 274. Springer, Berlin, 385–407.

Yang, H., Seo, S., Yi, K., and Han, T. 2006. Off-line semantic slicing from abstract interpre-

tation results. Technical Memorandum ROPAS-2006-34, Programming Research Laboratory,

School of Computer Science & Engineering, Seoul National University. October. Available at

http://ropas.snu.ac.kr/lib/dock/YaSeYiHa2006.pdf.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, May 2007.

