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• Michaelmas 2012 -- Functional programming.

• Recursion, list, higher-order function, etc.

• Hillary 2013 -- Imperative programming 1.

• Iteration, array, searching, sorting, invariant, etc.

• Emphasised skills for writing small tricky programs.

Programming courses so far
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Imperative programming 2

• Emphasises skills for writing well-modularised 
software components, such as libraries.

• Main topics:

• Basic object-oriented programming.

• Effective combination of multiple 
programming paradigms (FP, IP, OOP).

• Advanced Scala features.
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List library in Scala

• Very powerful.

• With Scala lists, you can do almost all the 
things that you did with lists in Haskell.
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Implementation of Scala List
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Implementation of Scala List

1. Inheritance and mixin.
2. Type parameter and variance.
3. Abstract members.
4. Implicit parameter.
5. High-order function.
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Implementation of Scala List

1. Inheritance and mixin.
2. Type parameter and variance.
3. Abstract members.
4. Implicit parameter.
5. High-order function.

OO features

Multi paradigms

Advanced features
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Scala features and library design

• The List library uses the features in the 
previous slides to achieve the following goals: 

1. The library is easy to use.

2. It works well with the Scala type system.

3. No code duplication in its implementation.

• In IP2, we will study how to achieve these 
goals using OO, multi-paradigms and advanced 
features of Scala.
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Review of Scala
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Object

class Counter {
  private var n = 0
  def inc() { n += 1 }
  def get: Int = n
}

val c1 = new Counter
c1.inc()
c1.inc()
println(c1.get)

c1

0

inc

get

• An object is an encapsulation of a state. It 
provides methods for accessing the state.
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Object

class Counter {
  private var n = 0
  def inc() { n += 1 }
  def get: Int = n
}

val c1 = new Counter
c1.inc()
c1.inc()
println(c1.get)

c1

2

inc

get
2

• An object is an encapsulation of a state. It 
provides methods for accessing the state.
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• In Scala, every computation is done by a 
method call on an object.

• [Q] Rewrite the following phrases to the 
standard form of a method call o.meth(..): 

(1) 3 + 4        ===>  3.+(4)

(2) x.f = 3      ===>  x.f_=(3)

(3) println(3)   ===>  Predef.println(3)

(4) List(4,5)    ===>  List.apply(4,5)

Scala is a pure OO language
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• A rule of thumb -- In Scala, you can do most 
of the things that you did with Haskell.

Scala fully supports FP
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• A rule of thumb -- In Scala, you can do most 
of the things that you did with Haskell.

Scala fully supports FP

filter 
  (\x -> x*x*x - 27 == 0) 
  [0..100]

(0 to 100).toList.filter(x => x*x*x - 27 == 0)

(0.to(100)).toList.filter(x => x.*(x).*(x).-(27).==(0))

with explicit method calls

Haskell

Scala
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• A rule of thumb -- In Scala, you can do most 
of the things that you did with Haskell.

Scala fully supports FP

[Q] Wait. Surely, functions are not objects. Does 
this contradict Scala being a pure OO language?

filter 
  (\x -> x*x*x - 27 == 0) 
  [0..100]

(0 to 100).toList.filter(x => x*x*x - 27 == 0)

Haskell

Scala
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Functions in Scala

• Functions are objects with a method apply.

• A function application is expanded to the call 
of this apply method by the Scala compiler.
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Functions in Scala

• Functions are objects with a method apply.

• A function application is expanded to the call 
of this apply method by the Scala compiler.

val f = ((x:Int) => x*x*x - 27 == 0)
f(3)

val f = ((x:Int) => x*x*x - 27 == 0)
f.apply(3)
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Other FP features of Scala

• Scala supports pattern matching.

• Scala supports the list comprehension of 
Haskell via the for and yield constructs.

Haskell

Scala

[x | x <- [0..100], mod x 3 == 0]

for(x <- (0 to 100).toList; if x % 3 == 0)
  yield x

def len(l : List[Any]): Int = l match {
  case Nil => 0
  case _::rest => 1+len(rest)
}
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Resources

• Textbook.

• Scala API: http://www.scala-lang.org/api

• Source code of Scala compiler and library: 
https://github.com/scala/scala/tree/master/src
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Scala is a bit of a chameleon. It makes many 
programming tasks refreshingly easy and at 
the same time contains some pretty intricate 
constructs that allow experts to design truly 
advanced typesafe libraries.

Martin Ordersky
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