
Imperative Programming 2:
Introduction

Hongseok Yang
University of Oxford

Monday, 22 April 13

• Michaelmas 2012 -- Functional programming.

• Recursion, list, higher-order function, etc.

• Hillary 2013 -- Imperative programming 1.

• Iteration, array, searching, sorting, invariant, etc.

• Emphasised skills for writing small tricky programs.

Programming courses so far

Monday, 22 April 13

Imperative programming 2

• Emphasises skills for writing well-modularised
software components, such as libraries.

• Main topics:

• Basic object-oriented programming.

• Effective combination of multiple
programming paradigms (FP, IP, OOP).

• Advanced Scala features.

Monday, 22 April 13

List library in Scala

• Very powerful.

• With Scala lists, you can do almost all the
things that you did with lists in Haskell.

Monday, 22 April 13

Implementation of Scala List

Monday, 22 April 13

Implementation of Scala List

1. Inheritance and mixin.
2. Type parameter and variance.
3. Abstract members.
4. Implicit parameter.
5. High-order function.

Monday, 22 April 13

Implementation of Scala List

1. Inheritance and mixin.
2. Type parameter and variance.
3. Abstract members.
4. Implicit parameter.
5. High-order function.

Monday, 22 April 13

Implementation of Scala List

1. Inheritance and mixin.
2. Type parameter and variance.
3. Abstract members.
4. Implicit parameter.
5. High-order function.

Monday, 22 April 13

Implementation of Scala List

1. Inheritance and mixin.
2. Type parameter and variance.
3. Abstract members.
4. Implicit parameter.
5. High-order function.

Monday, 22 April 13

Implementation of Scala List

1. Inheritance and mixin.
2. Type parameter and variance.
3. Abstract members.
4. Implicit parameter.
5. High-order function.

Monday, 22 April 13

Implementation of Scala List

1. Inheritance and mixin.
2. Type parameter and variance.
3. Abstract members.
4. Implicit parameter.
5. High-order function.

OO features

Multi paradigms

Advanced features

Monday, 22 April 13

Scala features and library design

• The List library uses the features in the
previous slides to achieve the following goals:

1. The library is easy to use.

2. It works well with the Scala type system.

3. No code duplication in its implementation.

• In IP2, we will study how to achieve these
goals using OO, multi-paradigms and advanced
features of Scala.

Monday, 22 April 13

Review of Scala

Monday, 22 April 13

Object

class Counter {
 private var n = 0
 def inc() { n += 1 }
 def get: Int = n
}

val c1 = new Counter
c1.inc()
c1.inc()
println(c1.get)

c1

0

inc

get

• An object is an encapsulation of a state. It
provides methods for accessing the state.

Monday, 22 April 13

Object

class Counter {
 private var n = 0
 def inc() { n += 1 }
 def get: Int = n
}

val c1 = new Counter
c1.inc()
c1.inc()
println(c1.get)

c1

1

inc

get

• An object is an encapsulation of a state. It
provides methods for accessing the state.

Monday, 22 April 13

Object

class Counter {
 private var n = 0
 def inc() { n += 1 }
 def get: Int = n
}

val c1 = new Counter
c1.inc()
c1.inc()
println(c1.get)

c1

2

inc

get

• An object is an encapsulation of a state. It
provides methods for accessing the state.

Monday, 22 April 13

Object

class Counter {
 private var n = 0
 def inc() { n += 1 }
 def get: Int = n
}

val c1 = new Counter
c1.inc()
c1.inc()
println(c1.get)

c1

2

inc

get
2

• An object is an encapsulation of a state. It
provides methods for accessing the state.

Monday, 22 April 13

• In Scala, every computation is done by a
method call on an object.

• [Q] Rewrite the following phrases to the
standard form of a method call o.meth(..):

(1) 3 + 4 ===> 3.+(4)

(2) x.f = 3 ===> x.f_=(3)

(3) println(3) ===> Predef.println(3)

(4) List(4,5) ===> List.apply(4,5)

Scala is a pure OO language

Monday, 22 April 13

• In Scala, every computation is done by a
method call on an object.

• [Q] Rewrite the following phrases to the
standard form of a method call o.meth(..):

(1) 3 + 4 ===> 3.+(4)

(2) x.f = 3 ===> x.f_=(3)

(3) println(3) ===> Predef.println(3)

(4) List(4,5) ===> List.apply(4,5)

Scala is a pure OO language

Monday, 22 April 13

• A rule of thumb -- In Scala, you can do most
of the things that you did with Haskell.

Scala fully supports FP

Monday, 22 April 13

• A rule of thumb -- In Scala, you can do most
of the things that you did with Haskell.

Scala fully supports FP

filter
 (\x -> x*x*x - 27 == 0)
 [0..100]

Haskell

Monday, 22 April 13

• A rule of thumb -- In Scala, you can do most
of the things that you did with Haskell.

Scala fully supports FP

filter
 (\x -> x*x*x - 27 == 0)
 [0..100]

(0 to 100).toList.filter(x => x*x*x - 27 == 0)

(0.to(100)).toList.filter(x => x.*(x).*(x).-(27).==(0))

with explicit method calls

Haskell

Scala

Monday, 22 April 13

• A rule of thumb -- In Scala, you can do most
of the things that you did with Haskell.

Scala fully supports FP

filter
 (\x -> x*x*x - 27 == 0)
 [0..100]

(0 to 100).toList.filter(x => x*x*x - 27 == 0)

Haskell

Scala

Monday, 22 April 13

• A rule of thumb -- In Scala, you can do most
of the things that you did with Haskell.

Scala fully supports FP

filter
 (\x -> x*x*x - 27 == 0)
 [0..100]

(0 to 100).toList.filter(x => x*x*x - 27 == 0)

Haskell

Scala

Monday, 22 April 13

• A rule of thumb -- In Scala, you can do most
of the things that you did with Haskell.

Scala fully supports FP

filter
 (\x -> x*x*x - 27 == 0)
 [0..100]

(0 to 100).toList.filter(x => x*x*x - 27 == 0)

Haskell

Scala

Monday, 22 April 13

• A rule of thumb -- In Scala, you can do most
of the things that you did with Haskell.

Scala fully supports FP

filter
 (\x -> x*x*x - 27 == 0)
 [0..100]

(0 to 100).toList.filter(x => x*x*x - 27 == 0)

Haskell

Scala

Monday, 22 April 13

• A rule of thumb -- In Scala, you can do most
of the things that you did with Haskell.

Scala fully supports FP

[Q] Wait. Surely, functions are not objects. Does
this contradict Scala being a pure OO language?

filter
 (\x -> x*x*x - 27 == 0)
 [0..100]

(0 to 100).toList.filter(x => x*x*x - 27 == 0)

Haskell

Scala

Monday, 22 April 13

Functions in Scala

• Functions are objects with a method apply.

• A function application is expanded to the call
of this apply method by the Scala compiler.

Monday, 22 April 13

Functions in Scala

• Functions are objects with a method apply.

• A function application is expanded to the call
of this apply method by the Scala compiler.

val f = ((x:Int) => x*x*x - 27 == 0)
f(3)

val f = ((x:Int) => x*x*x - 27 == 0)
f.apply(3)

Monday, 22 April 13

Other FP features of Scala

• Scala supports pattern matching.

• Scala supports the list comprehension of
Haskell via the for and yield constructs.

Haskell

Scala

[x | x <- [0..100], mod x 3 == 0]

for(x <- (0 to 100).toList; if x % 3 == 0)
 yield x

def len(l : List[Any]): Int = l match {
 case Nil => 0
 case _::rest => 1+len(rest)
}

Monday, 22 April 13

Resources

• Textbook.

• Scala API: http://www.scala-lang.org/api

• Source code of Scala compiler and library:
https://github.com/scala/scala/tree/master/src

Monday, 22 April 13

http://www.scala-lang.org/api
http://www.scala-lang.org/api
https://github.com/scala/scala/tree/master/src
https://github.com/scala/scala/tree/master/src

Scala is a bit of a chameleon. It makes many
programming tasks refreshingly easy and at
the same time contains some pretty intricate
constructs that allow experts to design truly
advanced typesafe libraries.

Martin Ordersky

Monday, 22 April 13

