
Imperative Programming 2:
Inheritance 1

Hongseok Yang
University of Oxford

Tuesday, 23 April 13

Motivation

• Scala programs consist of classes, traits and
singleton objects.

• Inheritance is a fundamental building block
for relating and organising them.

Tuesday, 23 April 13

Plan

• Today: Inheritance 1 (Chap10).

• Basic concepts.

• Tomorrow: Inheritance 2 (Chap 10).

• Slightly bigger example.

Tuesday, 23 April 13

class Person {
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {
 override def work = “Party. “
 def cv = greet + “Scala expert. “
}

class FirstYear extends Student {
 override def work = “Study. “
 override def greet = “Busy. “
}

def f(s: Student) { println(s.work); println(s.cv) }

val yr1: FirstYear = new FirstYear; f(yr1)

What is the output?

Tuesday, 23 April 13

class Person {
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {
 override def work = “Party. “
 def cv = greet + “Scala expert. “
}

class FirstYear extends Student {
 override def work = “Study. “
 override def greet = “Busy. “
}

def f(s: Student) { println(s.work); println(s.cv) }

val yr1: FirstYear = new FirstYear; f(yr1)

What is the output?
(1) Compilation error

(2) Party.
 Hi. Scala expert.

(3) Study.
 Busy. Scala expert.

Tuesday, 23 April 13

class Person {
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {
 override def work = “Party. “
 def cv = greet + “Scala expert. “
}

class FirstYear extends Student {
 override def work = “Study. “
 override def greet = “Busy. “
}

def f(s: Student) { println(s.work); println(s.cv) }

val yr1: FirstYear = new FirstYear; f(yr1)

What is the output?
(1) Compilation error

(2) Party.
 Hi. Scala expert.

(3) Study.
 Busy. Scala expert.

Type mismatch?

Tuesday, 23 April 13

class Person {
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {
 override def work = “Party. “
 def cv = greet + “Scala expert. “
}

class FirstYear extends Student {
 override def work = “Study. “
 override def greet = “Busy. “
}

def f(s: Student) { println(s.work); println(s.cv) }

val yr1: FirstYear = new FirstYear; f(yr1)

What is the output?
(1) Compilation error

(2) Party.
 Hi. Scala expert.

(3) Study.
 Busy. Scala expert.

Static binding

Tuesday, 23 April 13

class Person {
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {
 override def work = “Party. “
 def cv = greet + “Scala expert. “
}

class FirstYear extends Student {
 override def work = “Study. “
 override def greet = “Busy. “
}

def f(s: Student) { println(s.work); println(s.cv) }

val yr1: FirstYear = new FirstYear; f(yr1)

What is the output?
(1) Compilation error

(2) Party.
 Hi. Scala expert.

(3) Study.
 Busy. Scala expert.

Static binding

Tuesday, 23 April 13

class Person {
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {
 override def work = “Party. “
 def cv = greet + “Scala expert. “
}

class FirstYear extends Student {
 override def work = “Study. “
 override def greet = “Busy. “
}

def f(s: Student) { println(s.work); println(s.cv) }

val yr1: FirstYear = new FirstYear; f(yr1)

What is the output?
(1) Compilation error

(2) Party.
 Hi. Scala expert.

(3) Study.
 Busy. Scala expert.

Dynamic binding

Tuesday, 23 April 13

class Person {
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {
 override def work = “Party. “
 def cv = greet + “Scala expert. “
}

class FirstYear extends Student {
 override def work = “Study. “
 override def greet = “Busy. “
}

def f(s: Student) { println(s.work); println(s.cv) }

val yr1: FirstYear = new FirstYear; f(yr1)

What is the output?
(1) Compilation error

(2) Party.
 Hi. Scala expert.

(3) Study.
 Busy. Scala expert.

Dynamic binding

Tuesday, 23 April 13

class Person {
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {
 override def work = “Party. “
 def cv = greet + “Scala expert. “
}

class FirstYear extends Student {
 override def work = “Study. “
 override def greet = “Busy. “
}

def f(s: Student) { println(s.work); println(s.cv) }

val yr1: FirstYear = new FirstYear; f(yr1)

What is the output?
(1) Compilation error

(2) Party.
 Hi. Scala expert.

(3) Study.
 Busy. Scala expert.

Tuesday, 23 April 13

Learning outcome

• Can write classes using inheritance.

• Can answer the question in the previous
slide, and explain the answer.

• Can explain key principles behind inheritance
- code reuse, dynamic binding and subtyping.

Tuesday, 23 April 13

Syntax: “class D extends C”

• C is called a superclass of D, and D a subclass of C.

• If class parameters are expected for a superclass, they
should be specified in the extends clause.

• “extends” can be used with singleton objects and traits.

class Company(name: String, type: String) { .. }
class Univ(name: String) extends Company(name, “Edu.“) { .. }

class Person { .. }
class Student extends Person { .. }

object OxfordUni extends Univ(“U. Oxford”) { .. }
class C {..}; trait D extends C {..}
trait X {..}; trait Y extends X {..}; class Z extends X {..}

Tuesday, 23 April 13

Consequence 1:
Inheriting methods & fields
• Methods and fields of a superclass become available

to a subclass (unless they are declared private).

• This enables code reuse.
class Person {
 val location = “UK”
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {

 def cv = greet + “Scala expert. “ + location
}

val st = new Student; println(st.greet)

Tuesday, 23 April 13

Consequence 1:
Inheriting methods & fields
• Methods and fields of a superclass become available

to a subclass (unless they are declared private).

• This enables code reuse.
class Person {
 val location = “UK“
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {

 def cv = greet + “Scala expert. “ + location
}

val st = new Student; println(st.greet)

Tuesday, 23 April 13

Consequence 1:
Inheriting methods & fields
• Methods and fields of a superclass become available

to a subclass (unless they are declared private).

• This enables code reuse.
class Person {
 private val location = “UK“
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {

 def cv = greet + “Scala expert. “ + location
}

val st = new Student; println(st.greet)

Tuesday, 23 April 13

Consequence 1:
Inheriting methods & fields
• Methods and fields of a superclass become available

to a subclass (unless they are declared private).

• This enables code reuse.
class Person {
 private val location = “UK“
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {

 def cv = greet + “Scala expert. “ + location
}

val st = new Student; println(st.greet)

Compilation error.
Private fields & methods
cannot be accessed in a
subclass.

Tuesday, 23 April 13

Consequence 2:
Subtyping

• A subclass becomes a subtype of a superclass.

• A subtype is a transitive relation among classes
and traits.

• If A is a subtype of B (denoted A <: B), an object of
type A can be used as an object of type B.

class Person { ... }
class Student extends Person { ... }
class FirstYear extends Student { ... }

def f(s: Student) { println(s.work); println(s.cv) }

val yr1: FirstYear = new FirstYear; f(yr1)

Tuesday, 23 April 13

Consequence 2:
Subtyping

• A subclass becomes a subtype of a superclass.

• A subtype is a transitive relation among classes
and traits.

• If A is a subtype of B (denoted A <: B), an object of
type A can be used as an object of type B.

class Person { ... }
class Student extends Person { ... }
class FirstYear extends Student { ... }

def f(s: Student) { println(s.work); println(s.cv) }
def g(s: Person) { println(s.work) }
val yr1: FirstYear = new FirstYear; f(yr1); g(yr1)

Tuesday, 23 April 13

Consequence 2:
Subtyping

• A subclass becomes a subtype of a superclass.

• A subtype is a transitive relation among classes
and traits.

• If A is a subtype of B (denoted A <: B), an object of
type A can be used as an object of type B.

class Person { ... }
class Student extends Person { ... }
class FirstYear extends Student { ... }

def f(s: Student) { println(s.work); println(s.cv) }
def g(s: Person) { println(s.work) }
val yr1: FirstYear = new FirstYear; f(yr1); g(yr1)

No complaint from the Scala compiler.
FirstYear <: Student and Student <: Person.
Hence, FirstYear <: Person, by transitivity.

Tuesday, 23 April 13

Consequence 3:
Overriding and specialisation
• A method of a superclass can be redefined in a

subclass. This is called method overriding.

• Changes the meaning of inherited methods. They
use overriden methods, not original ones.

• Frequently used for specialising a superclass.
class Person {
 def work = ““
 def greet = “Hi. “+ work
}
class Student extends Person { override def work = “Party. “ }
val s = new Student; println(s.work); println(s.greet)
class Tutor extends Person { override def work = “Sleep. “ }
val t = new Tutor; println(t.greet)

Tuesday, 23 April 13

Consequence 3:
Overriding and specialisation
• A method of a superclass can be redefined in a

subclass. This is called method overriding.

• Changes the meaning of inherited methods. They
use overriden methods, not original ones.

• Frequently used for specialising a superclass.
class Person {
 def work = ““
 def greet = “Hi. “+ work
}
class Student extends Person { override def work = “Party. “ }
val s = new Student; println(s.work); println(s.greet)
class Tutor extends Person { override def work = “Sleep. “ }
val t = new Tutor; println(t.greet)

Tuesday, 23 April 13

Dynamic binding

• For each method call obj.meth, a compiler chooses
code to run based on the dynamic type of obj.

class Person {
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {
 override def work = “Party. “
 def cv = greet + “Scala expert. “
}

val s: Student = new Student; println(s.cv)
val p: Person = s; println(p.work)

Tuesday, 23 April 13

Dynamic binding

• For each method call obj.meth, a compiler chooses
code to run based on the dynamic type of obj.

class Person {
 def work = ““
 def greet = “Hi. “+ this.work
}

class Student extends Person {
 override def work = “Party. “
 def cv = this.greet + “Scala expert. “
}

val s: Student = new Student; println(s.cv)
val p: Person = s; println(p.work)

Tuesday, 23 April 13

class Person {
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {
 override def work = “Party. “
 def cv = greet + “Scala expert. “
}

class FirstYear extends Student {
 override def work = “Study. “
 override def greet = “Busy. “
}

def f(s: Student) { println(s.work); println(s.cv) }

val yr1: FirstYear = new FirstYear; f(yr1)

What is the output?
(1) Compilation error

(2) Party.
 Hi. Scala expert.

(3) Study.
 Busy. Scala expert.

Tuesday, 23 April 13

class Person {
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {
 override def work = “Party. “
 def cv = greet + “Scala expert. “
}

class FirstYear extends Student {
 override def work = “Study. “
 override def greet = “Busy. “
}

def f(s: Student) { println(s.work); println(s.cv) }

val yr1: FirstYear = new FirstYear; f(yr1)

Follow-up 1:
Can we bind greet statically?

Expected output:
 Study.
 Hi. Study. Scala expert.

Tuesday, 23 April 13

class Person {
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {
 override def work = “Party. “
 def cv = super.greet + “Scala expert. “
}

class FirstYear extends Student {
 override def work = “Study. “
 override def greet = “Busy. “
}

def f(s: Student) { println(s.work); println(s.cv) }

val yr1: FirstYear = new FirstYear; f(yr1)

Follow-up 1:
Can we bind greet statically?

Expected output:
 Study.
 Hi. Study. Scala expert.

Tuesday, 23 April 13

• Always calls the method meth of the superclass.

• Binds a method call to an implementation statically.

• Stops the influence of overriding and dynamic
binding.

super.meth

Tuesday, 23 April 13

class Person {
 def work = ““
 def greet = “Hi. “+ work
}

class Student extends Person {
 override def work = “Party. “
 def cv = super.greet + “Scala expert. “
}

class FirstYear extends Student {
 override def work = “Study. “
 override def greet = “Busy. “
}

def f(s: Student) { println(s.work); println(s.cv) }

val yr1: FirstYear = new FirstYear; f(yr1)

Follow-up 2:
Make parameterisation explicit

Intention:
greet in Person is a method
parameterised by work.

Tuesday, 23 April 13

abstract class Person {
 def work: String
 def greet = “Hi. “+ work
}

class Student extends Person {
 override def work = “Party. “
 def cv = super.greet + “Scala expert. “
}

class FirstYear extends Student {
 override def work = “Study. “
 override def greet = “Busy. “
}

def f(s: Student) { println(s.work); println(s.cv) }

val yr1: FirstYear = new FirstYear; f(yr1)

Follow-up 2:
Make parameterisation explicit

Intention:
greet in Person is a method
parameterised by work.

Tuesday, 23 April 13

Abstract class

• A class is abstract if it declares methods (or types)
without giving their implementations.

• Such a class should be declared “abstract”.

• Missing implementations are provided by subclasses.

• Intuition: View an abstract class as a parameterised
class, and its subclass as an instantiation.

abstract class Person { def work: String; ... }
class Student extends Person {
 override def work = “Party. “
 ... }
class FirstYear extends Student {
 override def work = “Study. “
 ... }

Tuesday, 23 April 13

Follow-up 3:
Which one compiles?

class Person
class Student extends Person
class FirstYear extends Student

abstract class Univ { def teach(x: Student): Student }

class Oxford1 extends Univ {
 override def teach(x: Student): FirstYear = new FirstYear
}

class Oxford2 extends Univ {
 override def teach(x: Person): Student = new Student
}

class Oxford3 extends Univ {
 override def teach(x: FirstYear): Student = new Student
}

1

2

3

Tuesday, 23 April 13

Follow-up 3:
Which one compiles?

class Person
class Student extends Person
class FirstYear extends Student

abstract class Univ { def teach(x: Student): Student }

class Oxford1 extends Univ {
 override def teach(x: Student): FirstYear = new FirstYear
}

class Oxford2 extends Univ {
 override def teach(x: Person): Student = new Student
}

class Oxford3 extends Univ {
 override def teach(x: FirstYear): Student = new Student
}

1

2

3

Rule for overriding: Keep the types of the arguments.
But we can replace the result’s type by a subtype.

Tuesday, 23 April 13

Follow-up 3:
Which one compiles?

class Person
class Student extends Person
class FirstYear extends Student { def f() { println(“FY“) } }

abstract class Univ { def teach(x: Student): Student }

class Oxford1 extends Univ {
 override def teach(x: Student): FirstYear = new FirstYear
}

class Oxford2 extends Univ {
 override def teach(x: Person): Student = new Student
}

class Oxford3 extends Univ {
 override def teach(x: FirstYear): Student =
 x.f(); new Student
}

1

2

3

Rule for overriding: Keep the types of the arguments.
But we can replace the result’s type by a subtype.

Tuesday, 23 April 13

Follow-up 3:
Which one compiles?

class Person
class Student extends Person
class FirstYear extends Student

abstract class Univ { def teach(x: Student): Student }

class Oxford1 extends Univ {
 override def teach(x: Student): FirstYear = new FirstYear
}

class Oxford2 extends Univ {
 override def teach(x: Person): Student = new Student
}

class Oxford3 extends Univ {
 override def teach(x: FirstYear): Student = new Student
}

1

2

3

Rule for overriding: Keep the types of the arguments.
But we can replace the result’s type by a subtype.

Again, we lose the guarantee of the type system.

Tuesday, 23 April 13

Exercise:
What is the output?

abstract class A {
 def f = "A.f calls "+ g +" and "+ h
 def g: String
 def h: String
}

class B extends A {
 override def g = "B.g"
 override def h = "B.h calls " + g
}

class C extends B {
 override def f = "C.f calls " + super.f
 override def h = "C.h calls " + super.h
}

val c = new C; println(c.f)

Tuesday, 23 April 13

Exercise:
What is the output?

abstract class A {
 def f = "A.f calls "+ g +" and "+ h
 def g: String
 def h: String
}

class B extends A {
 override def g = "B.g"
 override def h = "B.h calls " + g
}

class C extends B {
 override def f = "C.f calls " + super.f
 override def h = "C.h calls " + super.h
}

val c = new C; println(c.f)

C.f calls A.f calls B.g and C.h calls B.h calls B.g

Tuesday, 23 April 13

Summary

• Consequences of inheritance.

• Inheriting methods and fields -- code reuse.

• Subtyping -- reuse of client programs of a class.

• Overloading and dynamic binding -- parameterisation.

• Read: Chap 10.

Tuesday, 23 April 13

