
Imperative Programming 2:
Traits

Hongseok Yang
University of Oxford

Thursday, 25 April 13

• In IP1, you have used traits as interfaces, in
order to specify available methods and fields.

• But traits are more powerful. This power is
frequently used in practice.

Experience with traits so far

trait IntQueue {
 def get(): Int
 def put(x: Int): Unit
}

import scala.collection.mutable.ArrayBuffer
class ArrayQueue extends IntQueue {
 private val buf = new ArrayBuffer[Int]
 def get() = buf.remove(0)
 def put(x: Int) { buf += x }
}

Thursday, 25 April 13

• In IP1, you have used traits as interfaces, in
order to specify available methods and fields.

• But traits are more powerful. This power is
frequently used in practice.

trait IntQueue {
 def get(): Int
 def put(x: Int): Unit
}

import scala.collection.mutable.ArrayBuffer
class ArrayQueue extends IntQueue {
 private val buf = new ArrayBuffer[Int]
 def get() = buf.remove(0)
 def put(x: Int) { buf += x }
}

Experience with traits so far

class ListQueue extends IntQueue {
 private var l: List[Int] = List()
 def get() = ...
 def put(x: Int) { ... }
}

Thursday, 25 April 13

• In IP1, you have used traits as interfaces, in
order to specify available methods and fields.

• But traits are more powerful. This power is
frequently used in practice.

trait IntQueue {
 def get(): Int
 def put(x: Int): Unit
}

import scala.collection.mutable.ArrayBuffer
class ArrayQueue extends IntQueue {
 private val buf = new ArrayBuffer[Int]
 def get() = buf.remove(0)
 def put(x: Int) { buf += x }
}

Experience with traits so far

class ListQueue extends IntQueue {
 private var l: List[Int] = List()
 def get() = ...
 def put(x: Int) { ... }
}

Thursday, 25 April 13

Today’s lecture

• We will study powerful features of traits, and
discuss about idioms of using them.

Thursday, 25 April 13

Features of traits

1. We can define methods and fields in a trait.

2. Multiple traits can be inherited simultaneously.

3. They support so called stackable modification, a
powerful mechanism for composing traits.

Thursday, 25 April 13

1. We can define methods and fields in a trait.

• [Q] Add “putL(xs:List[Int]){..}”.

• Easy implementation of rich interfaces.

Thursday, 25 April 13

1. We can define methods and fields in a trait.

• [Q] Add “putL(xs:List[Int]){..}”.

• Easy implementation of rich interfaces.

trait IntQueue {
 def get(): Int
 def put(x: Int): Unit
}

import scala.collection.mutable.ArrayBuffer
class ArrayQueue extends IntQueue {
 private val buf = new ArrayBuffer[int]
 def get() = buf.remove(0)
 def put(x: Int) { buf += x }
}

class ListQueue extends IntQueue {
 private var l: List[Int] = List()
 def get() = { val res = l.head; l = l.tail; res }
 def put(x: Int) { l = l :+ x }
}

Thursday, 25 April 13

trait IntQueue {
 def get(): Int
 def put(x: Int): Unit
 def putL(xs: List[Int]) { for(x<-xs) put(x) }
}

import scala.collection.mutable.ArrayBuffer
class ArrayQueue extends IntQueue {
 private val buf = new ArrayBuffer[int]
 def get() = buf.remove(0)
 def put(x: Int) { buf += x }
}

class ListQueue extends IntQueue {
 private var l: List[Int] = List()
 def get() = { val res = l.head; l = l.tail; res }
 def put(x: Int) { l = l :+ x }
}

1. We can define methods and fields in a trait.

• [Q] Add “putL(xs:List[Int]){..}”.

• Easy implementation of rich interfaces.

Thursday, 25 April 13

trait IntQueue {
 def get(): Int
 def put(x: Int): Unit
 def putL(xs: List[Int]) { for(x<-xs) put(x) }
}

import scala.collection.mutable.ArrayBuffer
class ArrayQueue extends IntQueue {
 private val buf = new ArrayBuffer[int]
 def get() = buf.remove(0)
 def put(x: Int) { buf += x }
}

class ListIntQueue extends IntQueue {
 private var l: List[Int] = List()
 def get() = { val res = l.head; l = l.tail; res }
 def put(x: Int) { l += x }
}

trait IntQueue {
 def get(): Int
 def put(x: Int): Unit
 def putL(xs: List[Int]): Unit
}
import scala.collection.mutable.ArrayBuffer
class ArrayQueue extends IntQueue {
 private val buf = new ArrayBuffer[int]
 def get() = buf.remove(0)
 def put(x: Int) { buf += x }
 def putL(xs: List[Int]) { but ++= xs }
}
class ListQueue extends IntQueue {
 private var l: List[Int] = List()
 def get() = { val res = l.head; l = l.tail; res }
 def put(x: Int) { l += x }
 def putL(xs: List[Int]) { l ++= xs }
}

1. We can define methods and fields in a trait.

• [Q] Add “putL(xs:List[Int]){..}”.

• [Q] What’s the problem of this alternative?

Thursday, 25 April 13

trait IntQueue {
 def get(): Int
 def put(x: Int): Unit
 def putL(xs: List[Int]) { for(x<-xs) put(x) }
 def putUpto(upper: Int) { for(x<- 1 to upper) put(x) }
 def remove(n: Int) { for(i<-1 to n) get() }
 ...
}
class ArrayQueue extends IntQueue ...

class ListQueue extends IntQueue ...

1. We can define methods and fields in a trait.

• [Q] Add “putL(xs:List[Int]){..}”.

• [Q] What’s the problem of this alternative?

• By defining methods in a trait, we can easily
support rich interfaces without duplicating
code.

By defining N functions,
we can add 2xN methods

Thursday, 25 April 13

1. We can define methods and fields in a trait.

2. Multiple traits can be inherited simultaneously.

• Syntax: ... extends T0 with T1 ... with Tn

Thursday, 25 April 13

trait IntQueue {
 def get(): Int
 def put(x: Int): Unit
 def putL(xs: List[Int]) { for(x<-xs) put(x) }
}
trait Ordered[A] {
 def compare(that: A): Int
 def <(that: A): Boolean = (this compare that) < 0
 def >(that: A): Boolean = (this compare that) > 0
 def <=(that: A): Boolean = (this compare that) <= 0
}
import scala.collection.mutable.ArrayBuffer
class ArrayQueue extends IntQueue with Ordered[ArrayQueue]{
 private val buf = new ArrayBuffer[int]
 def get() = buf.remove(0)
 def put(x: Int) { buf += x }
 def compare(that: ArrayQueue) = buf.length - that.buf.length
}

1. We can define methods and fields in a trait.

2. Multiple traits can be inherited simultaneously.

• Syntax: ... extends T0 with T1 ... with Tn

Thursday, 25 April 13

1. We can define methods and fields in a trait.

2. Multiple traits can be inherited simultaneously.

• Syntax: ... extends T0 with T1 ... with Tn

• The same syntax for trait definition.

• Terminology: We mix in Ti’s.

• Methods in T, T1, ... and Tn are combined in an
intricate way.

• In particular, super.meth(..) in a trait has a
special semantics that affects this combination.

• This is exploited in the stackable modification
pattern.

Thursday, 25 April 13

Thursday, 25 April 13

Any is a superclass of everything. It defines basic
methods, like ==, !=, equals, hashCode, etc.
AnyVal is a superclass of all values.
AnyRef is a superclass of all user-defined classes.

Thursday, 25 April 13

Any is a superclass of everything. It defines basic
methods, like ==, !=, equals, hashCode, etc.
AnyVal is a superclass of all values.
AnyRef is a superclass of all user-defined classes.

Thursday, 25 April 13

Any is a superclass of everything. It defines basic
methods, like ==, !=, equals, hashCode, etc.
AnyVal is a superclass of all values.
AnyRef is a superclass of all user-defined classes.

Thursday, 25 April 13

Default trait inheritance

• If the “extend’ clause is missing, a trait
inherits from the Scala class AnyRef.

trait IntQueue {
 def get(): Int
 def put(x: Int): Unit
 def putL(xs: List[Int]) { for(x<-xs) put(x) }
}

AnyRef

IntQueue

Any

Thursday, 25 April 13

Linearization

• Linearization determines a linear order of all inherited
classes and traits by C and T.

• Recursive algorithm : Handle T0, ... then Tn, finally C/T.

• Recursive step : Extend the current linearization by
adding classes and traits that are inherited by Ti
(including Ti) but not linearized so far.

trait Animal
trait Furry extends Animal
trait HasLegs extends Animal
trait FourLegged extends HasLegs
class Cat extends Animal with Furry with FourLegged

class C extends T0 with T1 ... with Tn
trait T extends T0 with T1 ... with Tn

Thursday, 25 April 13

Linearization

• Linearization determines a linear order of all inherited
classes and traits by C and T.

• It decides methods to be called.

• Recursive step : Extend the current linearization by
adding classes and traits that are inherited by Ti
(including Ti) but not linearized so far.

trait Animal { def f(){ println(“A“) } }
trait Furry extends Animal { override def f(){ println(“F“) } }
trait HasLegs extends Animal { override def f(){ println(“H“) } }
trait FourLegged extends HasLegs
class Cat extends Animal with Furry with FourLegged
(new Cat).f()

class C extends T0 with T1 ... with Tn
trait T extends T0 with T1 ... with Tn

Thursday, 25 April 13

super.m in a trait
• super.m in a trait T is bound not when the trait T

is defined, but when it is mixed in.

• super.m is resolved according to linearization.

• It refers to the most recent m defined in a class or
trait before T in the linearization.

• Use the keyword “abstract override” when m is not
defined in a superclass or supertrait of T.

trait Animal { def f(){ println(“A”) } }
trait Furry extends Animal {
 override def f(){ super.f(); println(“F”) } }
trait HasLegs extends Animal {
 override def f(){ super.f(); println(“H”) } }
trait FourLegged extends HasLegs
class Cat extends Animal with Furry with FourLegged
(new Cat).f()

Thursday, 25 April 13

super.m in a trait

• Use the keyword “abstract override” when m is not
defined in a superclass or supertrait of T.

trait Animal { def f() }
trait NormalAnimal extends Animal { def f() { println(“NA“) } }
trait Furry extends Animal {
 abstract override def f(){ super.f(); println(“F”) } }
trait HasLegs extends Animal {
 abstract override def f(){ super.f(); println(“H”) } }
trait FourLegged extends HasLegs
class Cat extends NormalAnimal with Furry with FourLegged
(new Cat).f()

Thursday, 25 April 13

super.m in a trait

• Use the keyword “abstract override” when m is not
defined in a superclass or supertrait of T.

trait Animal { def f() }
trait NormalAnimal extends Animal { def f() { println(“NA“) } }
trait Furry extends Animal {
 abstract override def f(){ super.f(); println(“F”) } }
trait HasLegs extends Animal {
 abstract override def f(){ super.f(); println(“H”) } }
trait FourLegged extends HasLegs
class Cat extends NormalAnimal with Furry with FourLegged
class Cat2 extends NormalAnimal with FourLegged with Furry
(new Cat).f(); (new Cat2).f()

Stackable modification:
Implement a new functionality by mixing in
traits with super calls in a particular order.

Thursday, 25 April 13

Exercise: Fill in the boxes
trait IntQueue {
 def get(): Int
 def put(x: Int): Unit
}
import scala.collection.mutable.ArrayBuffer
class ArrayQueue extends IntQueue {
 private val buf = new ArrayBuffer[int]
 def get() = buf.remove(0)
 def put(x: Int) { buf += x }
}
trait Filtering extends IntQueue {
 abstract override def put(x:Int) { if (x > 0) super.put(x) }
}
trait Doubling extends IntQueue {
 abstract override put(x: Int) { super.put(2*x) }
}
trait Increasing extends IntQueue {
 abstract override put(x: Int) { super.put(1+x) }
}
class IncFilteringArrayQueue extends ArrayQueue
 with Filtering with Increasing
class IncFilterDoubleArrayQueue extends ArrayQueue
 with Doubling with Filtering with Increasing

Thursday, 25 April 13

Exercise: Fill in the boxes
trait IntQueue {
 def get(): Int
 def put(x: Int): Unit
}
import scala.collection.mutable.ArrayBuffer
class ArrayQueue extends IntQueue {
 private val buf = new ArrayBuffer[int]
 def get() = buf.remove(0)
 def put(x: Int) { buf += x }
}
trait Filtering extends IntQueue {
 abstract override def put(x:Int) { if (x > 0) super.put(x) }
}
trait Doubling extends IntQueue {
 abstract override def put(x:Int) { super.put(2*x) }
}
trait Increasing extends IntQueue {
 abstract override def put(x:Int) { super.put(1+x) }
}
class IncFilteringArrayQueue extends ArrayQueue
 with Filtering with Increasing
class IncFilterDoubleArrayQueue extends ArrayQueue
 with Doubling with Filtering with Increasing

Thursday, 25 April 13

Trait vs class

• When do you want to use traits?

• When do you want to use classes or
abstract classes?

Thursday, 25 April 13

Summary

• Traits can include method and field definitions.

• Multiple traits can be inherited simultaneously.
Linearization determines their inheritance hierarchy.

• Traits support stackable modification via super call.

• Read Chap 12.

Thursday, 25 April 13

