
Linearizability with
ownership transfer

Hongseok Yang
University of Oxford

Joint work with Alexey Gotsman
(IMDEA Software Institute, Spain)

Saturday, 13 October 12

Concurrent libraries

• Encapsulate efficient concurrent algorithms.

- Java: java.util.concurrent

- C++: Threading Building Blocks

- C#: System.Collections.Concurrent

• Implement stacks, queues, skip lists, hash tables, etc.

• But it is not easy to understand why they are
correct.

Saturday, 13 October 12

(t1, call push(42))

Non-blocking stack:

(t1, ret push) (t1, call isEmpty) (t1, ret isEmpty(yes))
t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

Saturday, 13 October 12

(t1, call push(42))

Non-blocking stack:

(t1, ret push) (t1, call isEmpty) (t1, ret isEmpty(yes))
t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

Why is it OK to return
‘empty’ here?

Saturday, 13 October 12

(t1, call push(42))

Non-blocking stack:

(t1, ret push) (t1, call isEmpty) (t1, ret isEmpty(no))
t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

It can also
return no

Saturday, 13 October 12

• A binary relation L ⊑ L’
on libraries L and L’.

• Usually, L is an impl. and
L’ is a spec.

Saturday, 13 October 12

Problem

Saturday, 13 October 12

Shared address space

C

L

call m(42)

ret m(0)

Saturday, 13 October 12

Shared address space

C

L
• Linearizability assumes a

complete isolation
between the library and
its client.

call m(42)

ret m(0)

Saturday, 13 October 12

Shared address space

C

L
• Linearizability assumes a

complete isolation
between the library and
its client.

• If client and library share
address space, they can
corrupt each other.

call m(42)

ret m(0)

Saturday, 13 October 12

• Boundary between data
structures owned by the
library and its client is not
static.

• Ownership = right to
access.

• Ownership of cells
transferred between
library and client.

Ownership transfer

C

L

call m(Node* p)

ret
m(OK)

Saturday, 13 October 12

Example: container

• Typically stores pointers to data structures.

Thread 1

A B

Thread 2

L

C

Saturday, 13 October 12

Example: container

• Typically stores pointers to data structures.

Thread 1

A

Thread 2

L

B

C

Saturday, 13 October 12

Example: container

Thread 1

A C

Thread 2

L

B

• Typically stores pointers to data structures.

Saturday, 13 October 12

Example: container

Thread 1

A C

Thread 2

L

B

• Typically stores pointers to data structures.

Can’t access B after transferring its ownership!
Saturday, 13 October 12

1. We generalised linearizability to a realistic setting:
shared address space, ownership transfer.

2. Our generalisation gives the Abstraction Theorem:

Our paper

C
L

C
L’

L L’v ⇒ Can replace L by L’ in a proof of C in C(L).

Saturday, 13 October 12

Review of linearizability

Saturday, 13 October 12

Histories
(t1, call push(42)) (t1, ret push) (t1, call isEmpty)

t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

H
(t1, ret isEmpty(yes))

(t1, call push(42))(t2, call pop)(t1, ret push)(t2, ret pop(42))(t2,call push(11)) ...

Saturday, 13 October 12

Histories
(t1, call push(42)) (t1, ret push) (t1, call isEmpty)

t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

H
(t1, ret isEmpty(yes))

Saturday, 13 October 12

Linearization relation
(t1, call push(42)) (t1, ret push) (t1, call isEmpty)

t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

(t1, call push(42))

(t1, ret push)

(t1, call isEmpty)

(t1, ret isEmpty(yes))

(t2, call pop)

(t2, ret pop(42))

(t2, call push(11))

(t2, ret push)

H

H 0

H v H 0

• We can permute calls and returns by different threads.

• But non-overlapping method invocations can’t be rearranged.

(t1, ret isEmpty(yes))

Saturday, 13 October 12

Linearization relation
(t1, call push(42)) (t1, ret push) (t1, call isEmpty)

t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

(t1, call push(42))

(t1, ret push)

(t1, call isEmpty)(t2, call pop)

(t2, ret pop(42))

(t2, call push(11))

(t2, ret push)

H

H 0

H v H 0

• We can permute calls and returns by different threads.

• But non-overlapping method invocations can’t be rearranged.

✔

(t1, ret isEmpty(yes))

(t1, ret isEmpty(yes))

Saturday, 13 October 12

(t1, call push(42)) (t1, ret push) (t1, call isEmpty)
t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

(t1, call push(42))

(t1, ret push)

(t1, call isEmpty)(t2, call pop)

(t2, ret pop(42))

(t2, call push(11))

(t2, ret push)

H

H 0

H v H 0

• We can permute calls and returns by different threads.

• But non-overlapping method invocations can’t be rearranged.

✔

(t1, ret isEmpty(yes))

(t1, ret isEmpty(yes))

Linearization relation

Saturday, 13 October 12

(t1, call push(42)) (t1, ret push) (t1, call isEmpty)
t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

(t1, call push(42))

(t1, ret push)

(t2, call pop)

(t2, ret pop(42))

H

H 0

H v H 0

• We can permute calls and returns by different threads.

• But non-overlapping method invocations can’t be rearranged.

✔
(t1, call isEmpty)

(t1, ret isEmpty(no))

(t2, call push(11))

(t2, ret push)

(t1, ret isEmpty(no))

Linearization relation

Saturday, 13 October 12

Linearization relation
(t1, call push(42)) (t1, ret push) (t1, call isEmpty)

t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

(t1, call push(42))

(t1, ret push)

(t2, call push(11))

(t2, ret push)

H

H 0

H v H 0

• We can permute calls and returns by different threads.

• But non-overlapping method invocations can’t be rearranged.

(t1, call isEmpty) (t2, call pop)

(t2, ret pop(42))

✘

(t1, ret isEmpty(no))

(t1, ret isEmpty(no))

Saturday, 13 October 12

Linearization relation
(t1, call push(42)) (t1, ret push) (t1, call isEmpty)

t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

(t1, call push(42))

(t1, ret push)

(t2, call push(11))

(t2, ret push)

H

H 0

H v H 0

• We can permute calls and returns by different threads.

• But non-overlapping method invocations can’t be rearranged.

(t1, call isEmpty) (t2, call pop)

(t2, ret pop(42))

✘

L v L0 () 8H 2 JLK. 9H 0 2 JL0K.H v H 0

(t1, ret isEmpty(no))

(t1, ret isEmpty(no))

Saturday, 13 October 12

Our results

Saturday, 13 October 12

Specified library “L : Γ”

• Γ defines a light-weight specification {pm}m{qm}
for every method m in L.

• E.g. {n↦_}push(n){emp}, {emp}pop{res↦_}.

• pm determines cells transferred from client to
library.

• qm determines cells transferred from library to
client.

Saturday, 13 October 12

Histories with ownership transfer

• Before: (t, call m(k)), (t, ret m(k)) for k in Integer.

• Now: (t, call m(θ)), θ ∈ pm; (t, ret m(θ)), θ ∈ qm.

• Linearizability as before.

(t1, call push([10:0])) (t1, ret push) (t1, call isEmpty) (t1, ret isEmpty(yes))

(t2, call pop) (t2, ret pop([10:0])) (t2, call push([20:0])) (t2, ret push)

Saturday, 13 October 12

Why were we surprised?

• Important properties of standard linearizability
rely on the movability of call and ret actions.

t1:
t2:

Saturday, 13 October 12

Why were we surprised?

• Important properties of standard linearizability
rely on the movability of call and ret actions.

t1:
t2:

t1:
t2:

Saturday, 13 October 12

Why were we surprised?

• Important properties of standard linearizability
rely on the movability of call and ret actions.

t1:
t2:

t1:
t2:

• But this movability might not hold in the
presence of transferred cells.

(t1, ret pop([10:0]))

(t2, push([10:0]))

Saturday, 13 October 12

• Histories that have correct accounting of cells owned
by library and its client.

(t1, call push([10:0])) (t1, ret push)
t1:

(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([10:0]))
t2:

✘

Well-balanced histories

Saturday, 13 October 12

• Histories that have correct accounting of cells owned
by library and its client.

(t1, call push([10:0])) (t1, ret push)
t1:

(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([10:0]))
t2:

(t1, call push([20:0])) (t1, ret push)
t1:

(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([30:0]))
t2:

✘

✘

Well-balanced histories

Saturday, 13 October 12

• Histories that have correct accounting of cells owned
by library and its client.

Well-balanced histories

(t1, call push([10:0])) (t1, ret push)
t1:

(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([10:0]))
t2:

(t1, call push([20:0])) (t1, ret push)
t1:

(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([30:0]))
t2:

(t1, call push([20:0])) (t1, ret push)
t1:

(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([20:0]))
t2:

✘

✘

✔

Saturday, 13 October 12

n

k
k=1

while (true) {

if (nondet()) {new p1; m1(nondet()); delete q1;}
else if (nondet()) {new p2; m2(nondet()); delete q2;}
...

else {new pl; ml(nondet()); delete ql;}
}

0

BBBBBBB@

1

CCCCCCCA

Semantics of specified library ⟦L:Γ⟧

Saturday, 13 October 12

Semantics of specified library ⟦L:Γ⟧

n

k
k=1

while (true) {

if (nondet()) {new p1; m1(nondet()); delete q1;}
else if (nondet()) {new p2; m2(nondet()); delete q2;}
...

else {new pl; ml(nondet()); delete ql;}
}

0

BBBBBBB@

1

CCCCCCCA

Any number
of threads

Any methods,
in any order,

with any parameters

Saturday, 13 October 12

n

k
k=1

while (true) {

if (nondet()) {new p1; m1(nondet()); delete q1;}
else if (nondet()) {new p2; m2(nondet()); delete q2;}
...

else {new pl; ml(nondet()); delete ql;}
}

0

BBBBBBB@

1

CCCCCCCA

• new p: allocates an arbitrary state satisfying p.

• delete q: removes the part of state satisfying q.

Any number
of threads

Any methods,
in any order,

with any parameters

Semantics of specified library ⟦L:Γ⟧

Saturday, 13 October 12

n

k
k=1

while (true) {

if (nondet()) {new p1; m1(nondet()); delete q1;}
else if (nondet()) {new p2; m2(nondet()); delete q2;}
...

else {new pl; ml(nondet()); delete ql;}
}

0

BBBBBBB@

1

CCCCCCCA

• ⟦L:Γ⟧ consists of histories generated by this most general client.

• Lemma: Only well-behaved histories are generated.

Semantics of specified library ⟦L:Γ⟧

Saturday, 13 October 12

Linearizability

• Libraries L and L’ have the same specifications Γ.

L v L0 () 8H 2 JLK. 9H 0 2 JL0K.H v H 0

Generated from the
most-general client

Saturday, 13 October 12

Abstraction Theorem

• Client C and libraries L, L’ : Γ are safe.

• L L’.v

C
L

C
L’

client(JC(L)K) ✓ client(JC(L0)K)

Assume:

Then

Can replace L by L’ in a proof of C:

C(L0) |= P � C(L) |= P

Saturday, 13 October 12

Abstraction Theorem

• Client C and libraries L, L’ : Γ are safe.

• L L’.v

C
L

C
L’

client(JC(L)K) ✓ client(JC(L0)K)

Assume:

Then

Can replace L by L’ in a proof of C:

C(L0) |= P � C(L) |= P

Client and library
do not corrupt

each other.

Saturday, 13 October 12

