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Concurrent libraries

• Encapsulate efficient concurrent algorithms.

- Java: java.util.concurrent

- C++: Threading Building Blocks

- C#: System.Collections.Concurrent

• Implement stacks, queues, skip lists, hash tables, etc.

• But it is not easy to understand why they are 
correct.
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(t1, call push(42))

Non-blocking stack:

(t1, ret push) (t1, call isEmpty) (t1, ret isEmpty(yes))
t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:
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(t1, call push(42))

Non-blocking stack:

(t1, ret push) (t1, call isEmpty) (t1, ret isEmpty(yes))
t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

Why is it OK to return 
‘empty’ here?
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(t1, call push(42))

Non-blocking stack:

(t1, ret push) (t1, call isEmpty) (t1, ret isEmpty(no))
t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

It can also 
return no
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• A binary relation L ⊑ L’ 
on libraries L and L’.

• Usually, L is an impl. and 
L’ is a spec.
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Problem
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Shared address space

C

L

call m(42)

ret m(0)
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Shared address space

C

L
• Linearizability assumes a 

complete isolation 
between the library and 
its client.

call m(42)

ret m(0)
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Shared address space

C

L
• Linearizability assumes a 

complete isolation 
between the library and 
its client.

• If client and library share 
address space, they can 
corrupt each other.

call m(42)

ret m(0)
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• Boundary between data 
structures owned by the 
library and its client is not 
static. 

• Ownership = right to 
access. 

• Ownership of cells 
transferred between 
library and client.

Ownership transfer

C

L

call m(Node* p)

ret 
m(OK)
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Example: container

• Typically stores pointers to data structures.

Thread 1

A B

Thread 2

L

C
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Example: container

• Typically stores pointers to data structures.

Thread 1

A

Thread 2

L

B

C
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Example: container

Thread 1

A C

Thread 2

L

B

• Typically stores pointers to data structures.
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Example: container

Thread 1

A C

Thread 2

L

B

• Typically stores pointers to data structures.

Can’t access B after transferring its ownership!
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1. We generalised linearizability to a realistic setting: 
shared address space, ownership transfer.

2. Our generalisation gives the Abstraction Theorem:

Our paper

C
L

C
L’

L    L’v ⇒ Can replace L by L’ in a proof of C in C(L).
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Review of linearizability
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Histories
(t1, call push(42)) (t1, ret push) (t1, call isEmpty)

t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

H
(t1, ret isEmpty(yes))

(t1, call push(42))(t2, call pop)(t1, ret push)(t2, ret pop(42))(t2,call push(11)) ...
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Histories
(t1, call push(42)) (t1, ret push) (t1, call isEmpty)

t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

H
(t1, ret isEmpty(yes))
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Linearization relation
(t1, call push(42)) (t1, ret push) (t1, call isEmpty)

t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

(t1, call push(42))

(t1, ret push)

(t1, call isEmpty)

(t1, ret isEmpty(yes))

(t2, call pop)

(t2, ret pop(42))

(t2, call push(11))

(t2, ret push)

H

H 0

H v H 0

• We can permute calls and returns by different threads.

• But non-overlapping method invocations can’t be rearranged.

(t1, ret isEmpty(yes))
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Linearization relation
(t1, call push(42)) (t1, ret push) (t1, call isEmpty)

t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

(t1, call push(42))

(t1, ret push)

(t1, call isEmpty)(t2, call pop)

(t2, ret pop(42))

(t2, call push(11))

(t2, ret push)

H

H 0

H v H 0

• We can permute calls and returns by different threads.

• But non-overlapping method invocations can’t be rearranged.

✔

(t1, ret isEmpty(yes))

(t1, ret isEmpty(yes))
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(t1, call push(42)) (t1, ret push) (t1, call isEmpty)
t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

(t1, call push(42))

(t1, ret push)

(t1, call isEmpty)(t2, call pop)

(t2, ret pop(42))

(t2, call push(11))

(t2, ret push)

H

H 0

H v H 0

• We can permute calls and returns by different threads.

• But non-overlapping method invocations can’t be rearranged.

✔

(t1, ret isEmpty(yes))

(t1, ret isEmpty(yes))

Linearization relation
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(t1, call push(42)) (t1, ret push) (t1, call isEmpty)
t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

(t1, call push(42))

(t1, ret push)

(t2, call pop)

(t2, ret pop(42))

H

H 0

H v H 0

• We can permute calls and returns by different threads.

• But non-overlapping method invocations can’t be rearranged.

✔
(t1, call isEmpty)

(t1, ret isEmpty(no))

(t2, call push(11))

(t2, ret push)

(t1, ret isEmpty(no))

Linearization relation
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Linearization relation
(t1, call push(42)) (t1, ret push) (t1, call isEmpty)

t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

(t1, call push(42))

(t1, ret push)

(t2, call push(11))

(t2, ret push)

H

H 0

H v H 0

• We can permute calls and returns by different threads.

• But non-overlapping method invocations can’t be rearranged.

(t1, call isEmpty) (t2, call pop)

(t2, ret pop(42))

✘

(t1, ret isEmpty(no))

(t1, ret isEmpty(no))
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Linearization relation
(t1, call push(42)) (t1, ret push) (t1, call isEmpty)

t1:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
t2:

(t1, call push(42))

(t1, ret push)

(t2, call push(11))

(t2, ret push)

H

H 0

H v H 0

• We can permute calls and returns by different threads.

• But non-overlapping method invocations can’t be rearranged.

(t1, call isEmpty) (t2, call pop)

(t2, ret pop(42))

✘

L v L0 () 8H 2 JLK. 9H 0 2 JL0K.H v H 0

(t1, ret isEmpty(no))

(t1, ret isEmpty(no))
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Our results
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Specified library “L : Γ”

• Γ defines a light-weight specification {pm}m{qm} 
for every method m in L.

• E.g.  {n↦_}push(n){emp},  {emp}pop{res↦_}.

• pm determines cells transferred from client to 
library.

• qm determines cells transferred from library to 
client.
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Histories with ownership transfer

• Before: (t, call m(k)), (t, ret m(k)) for k in Integer.

• Now: (t, call m(θ)), θ ∈ pm;  (t, ret m(θ)), θ ∈ qm.

• Linearizability as before.

(t1, call push([10:0])) (t1, ret push) (t1, call isEmpty) (t1, ret isEmpty(yes))

(t2, call pop) (t2, ret pop([10:0])) (t2, call push([20:0])) (t2, ret push)
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Why were we surprised?

• Important properties of standard linearizability 
rely on the movability of call and ret actions.

t1:
t2:
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Why were we surprised?

• Important properties of standard linearizability 
rely on the movability of call and ret actions.

t1:
t2:

t1:
t2:
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Why were we surprised?

• Important properties of standard linearizability 
rely on the movability of call and ret actions.

t1:
t2:

t1:
t2:

• But this movability might not hold in the 
presence of transferred cells.

(t1, ret pop([10:0]))

(t2, push([10:0]))
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• Histories that have correct accounting of cells owned 
by library and its client.

(t1, call push([10:0])) (t1, ret push)
t1:

(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([10:0]))
t2:

✘

Well-balanced histories
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• Histories that have correct accounting of cells owned 
by library and its client.

(t1, call push([10:0])) (t1, ret push)
t1:

(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([10:0]))
t2:

(t1, call push([20:0])) (t1, ret push)
t1:

(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([30:0]))
t2:

✘

✘

Well-balanced histories
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• Histories that have correct accounting of cells owned 
by library and its client.

Well-balanced histories

(t1, call push([10:0])) (t1, ret push)
t1:

(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([10:0]))
t2:

(t1, call push([20:0])) (t1, ret push)
t1:

(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([30:0]))
t2:

(t1, call push([20:0])) (t1, ret push)
t1:

(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([20:0]))
t2:

✘

✘

✔
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n

k
k=1

while (true) {

if (nondet()) {new p1; m1(nondet()); delete q1;}
else if (nondet()) {new p2; m2(nondet()); delete q2;}
...

else {new pl; ml(nondet()); delete ql;}
}

0

BBBBBBB@

1

CCCCCCCA

Semantics of specified library ⟦L:Γ⟧
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Semantics of specified library ⟦L:Γ⟧

n

k
k=1

while (true) {

if (nondet()) {new p1; m1(nondet()); delete q1;}
else if (nondet()) {new p2; m2(nondet()); delete q2;}
...

else {new pl; ml(nondet()); delete ql;}
}

0

BBBBBBB@

1

CCCCCCCA

Any number 
of threads

Any methods, 
in any order, 

with any parameters
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n

k
k=1

while (true) {

if (nondet()) {new p1; m1(nondet()); delete q1;}
else if (nondet()) {new p2; m2(nondet()); delete q2;}
...

else {new pl; ml(nondet()); delete ql;}
}

0

BBBBBBB@

1

CCCCCCCA

• new p:  allocates an arbitrary state satisfying p.

• delete q: removes the part of state satisfying q.

Any number 
of threads

Any methods, 
in any order, 

with any parameters

Semantics of specified library ⟦L:Γ⟧
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n

k
k=1

while (true) {

if (nondet()) {new p1; m1(nondet()); delete q1;}
else if (nondet()) {new p2; m2(nondet()); delete q2;}
...

else {new pl; ml(nondet()); delete ql;}
}

0

BBBBBBB@

1

CCCCCCCA

• ⟦L:Γ⟧ consists of histories generated by this most general client.

• Lemma: Only well-behaved histories are generated.

Semantics of specified library ⟦L:Γ⟧
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Linearizability

• Libraries L and L’ have the same specifications Γ.

L v L0 () 8H 2 JLK. 9H 0 2 JL0K.H v H 0

Generated from the 
most-general client
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Abstraction Theorem

• Client C and libraries L, L’ : Γ are safe.

• L     L’.v

C
L

C
L’

client(JC(L)K) ✓ client(JC(L0)K)

Assume:

Then

Can replace L by L’ in a proof of C:

C(L0) |= P � C(L) |= P
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Abstraction Theorem

• Client C and libraries L, L’ : Γ are safe.

• L     L’.v

C
L

C
L’

client(JC(L)K) ✓ client(JC(L0)K)

Assume:

Then

Can replace L by L’ in a proof of C:

C(L0) |= P � C(L) |= P

Client and library 
do not corrupt 

each other.
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