Linearizability with
ownership transfer

Hongseok Yang
University of Oxford

Joint work with Alexey Gotsman
(IMDEA Software Institute, Spain)




Concurrent libraries

® Encapsulate efficient concurrent algorithms.

- Java:java.util.concurrent
- C++:Threading Building Blocks

- C#: System.Collections.Concurrent

® |mplement stacks, queues, skip lists, hash tables, etc.

® But it is not easy to understand why they are
correct.
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Non-blocking stack:

(tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))

tl:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)

t2:
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Why is it OK to return

Non-blocking stack: ‘empty’ here!
/
. | (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))
tz (t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
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Non-blocking stack:

tl:

It can also
return no

(tl, call push(42)) (tl, ret push) (tl, call isEmpty)

t2:

“

(tl, ret isEmpty(no))

(t2, call pop) (t2, ret pop(42)) (t2, call push(11))

(t2, ret push)

Saturday, 13 October 12




Linearizability: A Correctness Condition for
Concurrent Objects

MAURICE P. HERLIHY and JEANNETTE M. WING
Carnegie Mellon University

A concurrent object is a data object shared by concurrent processes. Linearizability is a correctness
condition for concurrent objects that exploits the semantics of abstract data types. It permits a high
degree of concurrency, yet it permits programmers to specify and reason about concurrent objects
using known techniques from the sequential domain. Linearizability provides the illusion that each
operation applied by concurrent processes takes effect instantaneously at some point between its
invocation and its response, implying that the meaning of a concurrent object’s operations can be
given by pre- and post-conditions. This paper defines linearizability, compares it to other correctness
conditions, presents and demonstrates a method for proving the correctness of implementations, and
shows how to reason about concurrent objects, given they are linearizable.

Categories and Subject Descriptors: 1.1.3 [Programming Techniques): Concurrent Programming;
D.21 [Software Engineering): Requirements/Specifications; D.3.3 [Programming Lan-
guages): Language Constructs—ahstract data types, concurrent programming structures, data types
and structures; F.1.2 [Computation by Abstract Devices]: Modes of Computation—paralielism;
F.3.1 [Logics and Meanings of Programs|: Specifying and Verifying and Reasoning about
Programs—pre- and post-conditions, specification techniques

General Terms: Theory, Verification

Additional Key Words and Phruses: Concurrrency, correctness, Larch, linearizability, multi-
processing, serializability, shared memory, specification
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Problem
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Shared address space

C —_cllm42)

(Y

ret m(0)

/f\\’
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Shared address space

C —callm42) ® Linearizability assumes a

(Y

ret m(0) ot

complete isolation
between the library and
its client.
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Shared address space

C

call m(42)

® |inearizability assumes a
complete isolation
between the library and
its client.

® |f client and library share
address space, they can
corrupt each other.
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Ownership transfer

® Boundary between data

C —call m(Node p) structures owned by the
Q library and its client is not
ret ;

static.

® Ownership = right to
access.

® Ownership of cells
transferred between
library and client.
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Example: container

® Typically stores pointers to data structures.

Thread |
Al |B

Thread 2
C




Example: container

® Typically stores pointers to data structures.

Thread | Thread 2

A C




Example: container

® Typically stores pointers to data structures.

Thread | Thread 2
A Bl |C




Example: container

® Typically stores pointers to data structures.

Thread | Thread 2
A Bl |C

Can’t access B after transferring its ownership!
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Our paper

|. We generalised linearizability to a realistic setting:
shared address space, ownership transfer.

2. Our generalisation gives the Abstraction Theorem:

LEL = Canreplace L by L in a proof of Cin C(L).
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Review of linearizability




Histories

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))
t : : : L [

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)

t2:

(tl, call push(42))(t2, call pop)(tl, ret push)(t2, ret pop(42))(t2,call push(l1)) ...
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Histories

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))
t : : : L [

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)

t2:
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Linearization relation

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))
o I : : :
2 (t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
tZ: \ , | ,
. (tl, call push(42)) (t2, call pop) (tl, call isEmpty) (t2, call push(11))
.H ' | | | 4 | .
(tl, ret push) (t2, ret pop(42)) (tl, ret isEmpty(yes)) (t2, ret push)

HLC H
® We can permute calls and returns by different threads.

® But non-overlapping method invocations can’t be rearranged.
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Linearization relation

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))
Cl: : : :
2 (t2, call pop) (t2, ret pop(42)) (2, call pusA11)) (t2, ret push)
tZ: , , . ,
. (tl, call push(42)) (t2, call pop) (tl, call isEmpty) (t2, call push(11))
.H ' | | | 4 | .
(tl, ret push) (t2, ret pop(42)) (tl, ret isEmpty(yes)) (t2, ret push)

HLC H'
® We can permute calls and returns by different threads.

® But non-overlapping method invocations can’t be rearranged.
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Linearization relation

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))
o I : : :

(t2, call pop) (t2, ret pop(42)) (t2, call pusA11)) (t2, ret push)

t2:

(tl, call push(42)) (t2, call pop) (tl, call isEmpty) (t2 call push(11))

l i | 1 F

(tl, ret push) (t2, ret pop(42)) (tl, ret isEmpty(yes)) (t2, ret push)
— /
‘H L H '

® We can permute calls and returns by different threads.

® But non-overlapping method invocations can’t be rearranged.
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Linearization relation

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(no))
o I : : :

(t2, call pop) (t2, ret pop(42)) (2, call push(11)) (t2, ret push)

t2:

(tl, call push(42)) (t2, call pop) (t2, call push(11)) (tl, call isEmpty)

\H;H’]

® We can permute calls and returns by different threads.

| L.
|

(tl, ret push) (t2, ret pop(42)) (t2, ret push) (tl, ret isEmpty(no))

® But non-overlapping method invocations can’t be rearranged.
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Linearization relation

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(no))
o I : : :

sh(11)) (t2, ret push)

(t2, call pop) (t2, ret pop(42)) (t2,cal

t2:

X

(tl, call push(42)) (tl, call isEmpty) (t2, call pop) (t2, call push(11))

| L.

\H;H’]

® We can permute calls and returns by different threads.

(tl, ret push) (tl, ret isEmpty(no)) (t2, ret pop(42)) (t2, ret push)

® But non-overlapping method invocations can’t be rearranged.
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LCL < VHe[L].3H € [L'].H

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(no))
o I : : :

sh(11)) (t2, ret push)

(t2, call pop) (t2, ret pop(42)) (t2,cal

t2:

X

(tl, call push(42)) (tl, call isEmpty) (t2, call pop) (t2, call push(11))

| L.

\H;H’]

® We can permute calls and returns by different threads.

(tl, ret push) (tl, ret isEmpty(no)) (t2, ret pop(42)) (t2, ret push)

® But non-overlapping method invocations can’t be rearranged.
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Our results




Specified library “L : [

[ defines a light-weight specification {pm}m{qm}
for every method m in L.
E.e. {n—_}push(n){emp}, {emp}pop{res— }.

pm determines cells transferred from client to
library.

qm determines cells transferred from library to
client.
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Histories with ownership transfer

(tl, call push([10:07)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))

1
||

L
—

(t2, call pop) (t2, ret pop([10:0]))  (t2, call push([20:0])) (t2, ret push)

[ |
|

® Before: (t, call m(k)), (t, ret m(k)) for k in Integer.
® Now: (t, call m(0)), 0 € pm; (t, ret m(0)), 0 € qm.

® |inearizability as before.
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tl:
t2:

Why were we surprised?

® |Important properties of standard linearizability
rely on the movability of call and ret actions.

1 i | 1 |
r ' r '
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Why were we surprised?

® |Important properties of standard linearizability
rely on the movability of call and ret actions.
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Why were we surprised?

® |Important properties of standard linearizability
rely on the movability of call and ret actions.

(tl, ret pop([10:0]))

tl: F 1 - .
2, push([10:0])
t2: v . JP L s
ﬁ’ ~§
o’ o
¢’ N

tl‘ ‘ﬁ‘ ~§*

. F . k:/,* .
t2: ¢ . |

® But this movability might not hold in the
presence of transferred cells.
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Well-balanced histories

® Histories that have correct accounting of cells owned
by library and its client.

(tl, call push([10:0])) (tl, ret push)

tl;
t2:

X

(t2, call push([10:0])) (t2, ret push) (t2, call pop())  (t2, ret pop([10:0]))
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Well-balanced histories

® Histories that have correct accounting of cells owned
by library and its client.

(tl, call push([10:0])) (tl, ret push)

tl: X
(t2, call push([10:0])) (t2, ret push) (t2, call pop())  (t2, ret pop([10:0]))
t2: L |
I (tl, call push([20:0])) (tl, ret push)
tl: | -

(t2, call push([10:0])) (t2, ret push) (t2, call pop())  (t2, ret pop([30:0])) x

t2:
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Well-balanced histories

® Histories that have correct accounting of cells owned
by library and its client.

(tl, call push([10:0])) (tl, ret push)

tl: X
(t2, call push([10:0])) (t2, ret push) (t2, call pop())  (t2, ret pop([10:0]))
t2: L |
(tl, call push([20:0])) (tl, ret push)
t I : ' | x
(t2, call push([10:0])) (t2, ret push) (t2, call pop())  (t2, ret pop([30:0]))
t2: ) |
I (tl, call push([20:0])) (tl, ret push)
Cl: ' '

(t2, call push([10:0])) (t2, ret push) (t2, call pop())  (t2, ret pop([20:0])) V

t2:
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Semantics of specified library [L:I']

while (true) {
n if (nondet()) {new p1; mi(nondet()); delete qi1;}
H else if (nondet()) {new p2; mo(nondet()); delete qgo2;}

else {new p;; m;(nondet()); delete q;;}
}
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Semantics of specified library [L:I']

Any number Any methods,
of threads in any order,
l with any parameters
while (true) { k///,
n if (nondet()) {new p1; mi(nondet()); delete qi1;}

H else if (nondet()) {new p2; mo(nondet()); delete qgo2;}
k=1

else {new p;; m;(nondet()); delete q;;}
}
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Semantics of specified library [L:[ ]

Any number Any methods,
of threads in any order,
l with any parameters
while (true) { /
n if (nondet()) {new p1; mi(nondet()); delete qi1;}

H else if (nondet()) {new p2; mo(nondet()); delete qgo2;}
k=1

else {new p;; m;(nondet()); delete q;;}

}

® new p: allocates an arbitrary state satisfying p.

® delete g: removes the part of state satisfying g.
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Semantics of specified library [L:I']

while (true) {
n if (nondet()) {new p1; mi(nondet()); delete qi1;}
H else if (nondet()) {new p2; mo(nondet()); delete qgo2;}

else {new p;; m;(nondet()); delete q;;}
}

® [L:I'] consists of histories generated by this most general client.

® | emma: Only well-behaved histories are generated.
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Linearizability

LCL <VHe|L].dH e [L'].HC H’

N/

Generated from the
most-general client

® Libraries L and L’ have the same specifications I.
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Abstraction Theorem

Assume:

o | L L

Can replace L by L in a proof of C:;

® (Client C and libraries L, L :

Then client([C(L)]) C client([C(L])

[ are safe.

= P = C'(L)




. Client and library
Abstraction Theor( 4, ot corrupt

each other.

Assume: /

® Client C and libraries L, L : I are safe.

o | L
Then client([C(L)]) C client([C(LN])

Can replace L by L in a proof of C:;

C(L'YE=EP=C(L)EP
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