Linearizability with
ownership transfer

Hongseok Yang
University of Oxford

Joint work with Alexey Gotsman
(IMDEA Software Institute, Spain)

Concurrent libraries

® Encapsulate efficient concurrent algorithms.

- Java:java.util.concurrent
- C++:Threading Building Blocks

- C#: System.Collections.Concurrent

® |mplement stacks, queues, skip lists, hash tables, etc.

® But it is not easy to understand why they are
correct.

Saturday, 13 October 12

Non-blocking stack:

(tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))

tl:

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)

t2:

Saturday, 13 October 12

Why is it OK to return

Non-blocking stack: ‘empty’ here!
/
. | (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))
tz (t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)

Saturday, 13 October 12

Non-blocking stack:

tl:

It can also
return no

(tl, call push(42)) (tl, ret push) (tl, call isEmpty)

t2:

“

(tl, ret isEmpty(no))

(t2, call pop) (t2, ret pop(42)) (t2, call push(11))

(t2, ret push)

Saturday, 13 October 12

Linearizability: A Correctness Condition for
Concurrent Objects

MAURICE P. HERLIHY and JEANNETTE M. WING
Carnegie Mellon University

A concurrent object is a data object shared by concurrent processes. Linearizability is a correctness
condition for concurrent objects that exploits the semantics of abstract data types. It permits a high
degree of concurrency, yet it permits programmers to specify and reason about concurrent objects
using known techniques from the sequential domain. Linearizability provides the illusion that each
operation applied by concurrent processes takes effect instantaneously at some point between its
invocation and its response, implying that the meaning of a concurrent object’s operations can be
given by pre- and post-conditions. This paper defines linearizability, compares it to other correctness
conditions, presents and demonstrates a method for proving the correctness of implementations, and
shows how to reason about concurrent objects, given they are linearizable.

Categories and Subject Descriptors: 1.1.3 [Programming Techniques): Concurrent Programming;
D.21 [Software Engineering): Requirements/Specifications; D.3.3 [Programming Lan-
guages): Language Constructs—ahstract data types, concurrent programming structures, data types
and structures; F.1.2 [Computation by Abstract Devices]: Modes of Computation—paralielism;
F.3.1 [Logics and Meanings of Programs|: Specifying and Verifying and Reasoning about
Programs—pre- and post-conditions, specification techniques

General Terms: Theory, Verification

Additional Key Words and Phruses: Concurrrency, correctness, Larch, linearizability, multi-
processing, serializability, shared memory, specification

1. WTRODUCTION ® A binary relation LC U

1.1 Overview
Informally, a concurrent system consists of a collection of sequential processes

° ° ’
that communicate through shared typed objects. This model encompasses both I b L d L
message-passing architectures in which the shared objects are message queues, O n I ra rl e S a n °

A preliminary version of this paper appeared in the Proceedings of the 14th ACM Symposium on

Principles of Programming Languages, January 1987 [21).

This research was sponsored by IBM and the Defense Advanced Research Projects Agents (DOD), e .

ARPA order 4976 (Amendment 20), under contract F33615-87-C-1499, monitored by the Avionics . S u a I S a n I I I I a n
Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, Additional spport)} i

for J. M. Wing was provided in part by the National Science Foundation under grant CCR-8620027.
The views and conclusions contained in this document are those of the muthors and shonld not he ’ °
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced L I S a S e C
Research Projects Agency or the US Government. °
Authors' address: Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213-3890.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Associntion
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permisaion.

© 1990 ACM 0164-0925/90/0700-0463 $01.50

ACM Tramsactions on Programaming Languages and Systeans, Vol. 12, No, 3, July 1990, Pages 463492

Saturday, 13 October 12

Problem

Saturday, 13 October 12

Shared address space

C —_cllm42)

(Y

ret m(0)

/f\\’
Gy

Shared address space

C —callm42) ® Linearizability assumes a

(Y

ret m(0) ot

complete isolation
between the library and
its client.

Saturday, 13 October 12

Shared address space

C

call m(42)

® |inearizability assumes a
complete isolation
between the library and
its client.

® |f client and library share
address space, they can
corrupt each other.

Saturday, 13 October 12

Ownership transfer

® Boundary between data

C —call m(Node p) structures owned by the
Q library and its client is not
ret ;

static.

® Ownership = right to
access.

® Ownership of cells
transferred between
library and client.

Saturday, 13 October 12

Example: container

® Typically stores pointers to data structures.

Thread |
Al |B

Thread 2
C

Example: container

® Typically stores pointers to data structures.

Thread | Thread 2

A C

Example: container

® Typically stores pointers to data structures.

Thread | Thread 2
A Bl |C

Example: container

® Typically stores pointers to data structures.

Thread | Thread 2
A Bl |C

Can’t access B after transferring its ownership!

Saturday, 13 October 12

Our paper

|. We generalised linearizability to a realistic setting:
shared address space, ownership transfer.

2. Our generalisation gives the Abstraction Theorem:

LEL = Canreplace L by L in a proof of Cin C(L).

Saturday, 13 October 12

Review of linearizability

Histories

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))
t : : : L [

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)

t2:

(tl, call push(42))(t2, call pop)(tl, ret push)(t2, ret pop(42))(t2,call push(l1)) ...

Saturday, 13 October 12

Histories

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))
t : : : L [

(t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)

t2:

Saturday, 13 October 12

Linearization relation

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))
o I : : :
2 (t2, call pop) (t2, ret pop(42)) (t2, call push(11)) (t2, ret push)
tZ: \ , | ,
. (tl, call push(42)) (t2, call pop) (tl, call isEmpty) (t2, call push(11))
.H ' | | | 4 | .
(tl, ret push) (t2, ret pop(42)) (tl, ret isEmpty(yes)) (t2, ret push)

HLC H
® We can permute calls and returns by different threads.

® But non-overlapping method invocations can’t be rearranged.

Saturday, 13 October 12

Linearization relation

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))
Cl: : : :
2 (t2, call pop) (t2, ret pop(42)) (2, call pusA11)) (t2, ret push)
tZ: , , . ,
. (tl, call push(42)) (t2, call pop) (tl, call isEmpty) (t2, call push(11))
.H ' | | | 4 | .
(tl, ret push) (t2, ret pop(42)) (tl, ret isEmpty(yes)) (t2, ret push)

HLC H'
® We can permute calls and returns by different threads.

® But non-overlapping method invocations can’t be rearranged.

Saturday, 13 October 12

Linearization relation

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))
o I : : :

(t2, call pop) (t2, ret pop(42)) (t2, call pusA11)) (t2, ret push)

t2:

(tl, call push(42)) (t2, call pop) (tl, call isEmpty) (t2 call push(11))

l i | 1 F

(tl, ret push) (t2, ret pop(42)) (tl, ret isEmpty(yes)) (t2, ret push)
— /
‘H L H '

® We can permute calls and returns by different threads.

® But non-overlapping method invocations can’t be rearranged.

Saturday, 13 October 12

Linearization relation

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(no))
o I : : :

(t2, call pop) (t2, ret pop(42)) (2, call push(11)) (t2, ret push)

t2:

(tl, call push(42)) (t2, call pop) (t2, call push(11)) (tl, call isEmpty)

\H;H’]

® We can permute calls and returns by different threads.

| L.
|

(tl, ret push) (t2, ret pop(42)) (t2, ret push) (tl, ret isEmpty(no))

® But non-overlapping method invocations can’t be rearranged.

Saturday, 13 October 12

Linearization relation

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(no))
o I : : :

sh(11)) (t2, ret push)

(t2, call pop) (t2, ret pop(42)) (t2,cal

t2:

X

(tl, call push(42)) (tl, call isEmpty) (t2, call pop) (t2, call push(11))

| L.

\H;H’]

® We can permute calls and returns by different threads.

(tl, ret push) (tl, ret isEmpty(no)) (t2, ret pop(42)) (t2, ret push)

® But non-overlapping method invocations can’t be rearranged.

Saturday, 13 October 12

LCL < VHe[L].3H € [L'].H

I (tl, call push(42)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(no))
o I : : :

sh(11)) (t2, ret push)

(t2, call pop) (t2, ret pop(42)) (t2,cal

t2:

X

(tl, call push(42)) (tl, call isEmpty) (t2, call pop) (t2, call push(11))

| L.

\H;H’]

® We can permute calls and returns by different threads.

(tl, ret push) (tl, ret isEmpty(no)) (t2, ret pop(42)) (t2, ret push)

® But non-overlapping method invocations can’t be rearranged.

Saturday, 13 October 12

Our results

Specified library “L : [

[defines a light-weight specification {pm}m{qm}
for every method m in L.
E.e. {n—_}push(n){emp}, {emp}pop{res— }.

pm determines cells transferred from client to
library.

qm determines cells transferred from library to
client.

Saturday, 13 October 12

Histories with ownership transfer

(tl, call push([10:07)) (tl, ret push) (tl, call isEmpty) (tl, ret isEmpty(yes))

1
||

L
—

(t2, call pop) (t2, ret pop([10:0])) (t2, call push([20:0])) (t2, ret push)

[|
|

® Before: (t, call m(k)), (t, ret m(k)) for k in Integer.
® Now: (t, call m(0)), 0 € pm; (t, ret m(0)), 0 € qm.

® |inearizability as before.

Saturday, 13 October 12

tl:
t2:

Why were we surprised?

® |Important properties of standard linearizability
rely on the movability of call and ret actions.

1 i | 1 |
r ' r '

Saturday, 13 October 12

Why were we surprised?

® |Important properties of standard linearizability
rely on the movability of call and ret actions.

tI: | -] i -],
| D | I ~
N
~§
i |

t2. F 1 H

° L o N

2 N
N
' N
g [N
g 'S
g N
g 'S
- ~
s’ *

[}

t . L -] I el |

| g L] P

Saturday, 13 October 12

Why were we surprised?

® |Important properties of standard linearizability
rely on the movability of call and ret actions.

(tl, ret pop([10:0]))

tl: F 1 - .
2, push([10:0])
t2: v . JP L s
ﬁ’ ~§
o’ o
¢’ N

tl‘ ‘ﬁ‘ ~§*

. F . k:/,* .
t2: ¢ . |

® But this movability might not hold in the
presence of transferred cells.

Saturday, 13 October 12

Well-balanced histories

® Histories that have correct accounting of cells owned
by library and its client.

(tl, call push([10:0])) (tl, ret push)

tl;
t2:

X

(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([10:0]))

Saturday, 13 October 12

Well-balanced histories

® Histories that have correct accounting of cells owned
by library and its client.

(tl, call push([10:0])) (tl, ret push)

tl: X
(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([10:0]))
t2: L |
I (tl, call push([20:0])) (tl, ret push)
tl: | -

(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([30:0])) x

t2:

Saturday, 13 October 12

Well-balanced histories

® Histories that have correct accounting of cells owned
by library and its client.

(tl, call push([10:0])) (tl, ret push)

tl: X
(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([10:0]))
t2: L |
(tl, call push([20:0])) (tl, ret push)
t I : ' | x
(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([30:0]))
t2:) |
I (tl, call push([20:0])) (tl, ret push)
Cl: ' '

(t2, call push([10:0])) (t2, ret push) (t2, call pop()) (t2, ret pop([20:0])) V

t2:

Saturday, 13 October 12

Semantics of specified library [L:I']

while (true) {
n if (nondet()) {new p1; mi(nondet()); delete qi1;}
H else if (nondet()) {new p2; mo(nondet()); delete qgo2;}

else {new p;; m;(nondet()); delete q;;}
}

Saturday, 13 October 12

Semantics of specified library [L:I']

Any number Any methods,
of threads in any order,
l with any parameters
while (true) { k///,
n if (nondet()) {new p1; mi(nondet()); delete qi1;}

H else if (nondet()) {new p2; mo(nondet()); delete qgo2;}
k=1

else {new p;; m;(nondet()); delete q;;}
}

Saturday, 13 October 12

Semantics of specified library [L:[]

Any number Any methods,
of threads in any order,
l with any parameters
while (true) { /
n if (nondet()) {new p1; mi(nondet()); delete qi1;}

H else if (nondet()) {new p2; mo(nondet()); delete qgo2;}
k=1

else {new p;; m;(nondet()); delete q;;}

}

® new p: allocates an arbitrary state satisfying p.

® delete g: removes the part of state satisfying g.

Saturday, 13 October 12

Semantics of specified library [L:I']

while (true) {
n if (nondet()) {new p1; mi(nondet()); delete qi1;}
H else if (nondet()) {new p2; mo(nondet()); delete qgo2;}

else {new p;; m;(nondet()); delete q;;}
}

® [L:I'] consists of histories generated by this most general client.

® | emma: Only well-behaved histories are generated.

Saturday, 13 October 12

Linearizability

LCL <VHe|L].dH e [L'].HC H’

N/

Generated from the
most-general client

® Libraries L and L’ have the same specifications I.

Saturday, 13 October 12

Abstraction Theorem

Assume:

o | L L

Can replace L by L in a proof of C:;

® (Client C and libraries L, L :

Then client([C(L)]) C client([C(L])

[are safe.

= P = C'(L)

. Client and library
Abstraction Theor(4, ot corrupt

each other.

Assume: /

® Client C and libraries L, L : I are safe.

o | L
Then client([C(L)]) C client([C(LN])

Can replace L by L in a proof of C:;

C(L'YE=EP=C(L)EP

Saturday, 13 October 12

