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Lesson 1

• Handling procedures well is really important in 
static analysis.

• Hajoo: About 50% false alarms of Sparse Sparrow 
on make and tar are due to procedures.
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Lesson 2

• Two popular approaches for analysing procedures are 
equivalent, even when analyses are not distributive.
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Lesson 2

• Two popular approaches for analysing procedures are 
equivalent, even when analyses are not distributive.

0:   int x;
1:   void main() {       
2:     x = 1; inc();
3:     x = 1; foo();
4:     x = -x; 
5:     inc();
6:  }
7:
8:  void foo() { inc(); }
9:  void inc() { x++; }

Callstring-based summary of inc
[2]: x>0   [3,8]: x>0   [5]: x<=0

Input-output summary of inc
x>0 ↦ x>0         x<0 ↦ x<=0
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Lesson 3

• Often we can effectively guess program points 
where procedures should be analysed precisely.
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Outline

• Review of callstring and functional approaches.

• Equivalence between these approaches (Lesson 2).

• Partial context-sensitivity (Lesson 3).
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Sign domain

• Abstract values:

• An abstract state is a map from variables to 
abstract values. E.g. [x:0+, y:-].

0

-0

- +

0+

⊤

⊥
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Context-insensitive 
analysis

• It treats function calls and returns as gotos, 
and do not match call and return.

• Ignores calling contexts.

• Most imprecise but popular approach for 
handling procedures.
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0:   int x;
1:   void main() {       
2:     x = 0;
3:     while (*) { 
4:       inc();
5:     }
6:     inc();  
7:     assert(x > 0);
8:     x = -x; 
9:     inc();
10:    assert(x >= 0);
11:  }
12:
13:  void inc() {]
14:    x++;
15:  }

Context-insensitive analysis: 
Treat call & return as gotos, and do not match them.
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0:   int x;
1:   void main() {       
2:     x = 0;
3:     while (*) { 
4:       goto 14;
5:     }
6:     goto 14;  
7:     assert(x > 0);
8:     x = -x; 
9:     goto 14;
10:    assert(x >= 0);
11:  }
12:
13:  void inc() {
14:    x++; goto {5,7,10}
15:  }

Context-insensitive analysis: 
Treat call & return as gotos, and do not match them.

The analysis returns a false alarm at line 7.
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Context sensitivity

• Distinguish calling contexts and analyse each 
procedure separately for different contexts.

• The functional approach does so based on 
input abstract states.

• The callstring approach uses call strings (i.e., 
sequences of call sites) instead.
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0:   int x;
1:   void main() {       
2:     x = 0;
3:     while (*) { 
4:       inc();
5:     }
6:     inc();  
7:     assert(x > 0);
8:     x = -x; 
9:     inc();
10:    assert(x >= 0);
11:  }
12:
13:  void inc() {
14:    x++;
15:  }

Functional approach: 
Separate analysis for each input abstract state.
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Callstring approach: 
Separate analysis for each call string (call site here).
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Nothing strange.
Least fixpoint.

But some redundancy.
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How are functional and callstring approaches related?
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How are functional and callstring approaches related?
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How are functional and callstring approaches related?Function η:      3:[x:0+]   5:[x:0+]   8:[x:-] 
Relationship:    κ  = σ o η 
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ProgramLocation x CallString

ProgramLocation x AbstractState

AbstractState

κ

σ

λ(pc,s). 
  (pc, η(pc,s))
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ProgramLocation x CallString

ProgramLocation x AbstractState

AbstractState

κ

σ

λ(pc,s). 
  (pc, η(pc,s))

Defined from σ by finding an 
abstract state for each callstring.
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ProgramLocation x CallString

ProgramLocation x AbstractState

AbstractState

κ

σ

λ(pc,s). 
  (pc, η(pc,s))

Finite in many cases

Always infinite
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ProgramLocation x CallString

ProgramLocation x AbstractState

AbstractState

κ

σ

λ(pc,s). 
  (pc, η(pc,s))

Finite in many cases

Always infinite

This gives an algorithm for doing callstring-based 
fully context-sensitive analysis.
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ProgramLocation x CallString

ProgramLocation x AbstractState

AbstractState

κ

σ

λ(pc,s). 
  (pc, η(pc,s))

Sharir & Pnueli proved for path-sensitive analyses.
We generalised it for non path-sensitive analyses. 
Different proof techniques are needed.
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Some further words

• Dominance relation in the result of 
function approach.

• Equivalence after garbage collection.
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Experimental results

0CFAI 1CFAI 2CFAI 0CFAS SBAS
antlr 1m45s 40m 72m 23m 21m
avrora 1m42s 38m 68m 26m 17m
bloat 3m10s 82m 239m 38m 60m
chart 4m40s 121m 256m 30m 51m
hsqldb 3m29s 74m 158m 34m 37m
luindex 2m34s 41m 83m 35m 27m
lusearch 2m22s 43m 80m 24m 16m
pmd 3m52s 61m 112m 34m 29m
sunflow 5m00s 148m 279m 58m 72m
xalan 2m32s 36m 82m 23m 16m

Table 3: Running times of the approaches from Table 1(b).

combined points-to and call graph analysis, it need not necessarily
help other clients like monomorphic call sites.

5.2.3 Scalability
Next, we compare the performance of the different approaches. Ta-
ble 3 shows their running times, exclusive of the client running
times. The running time increases from 0CFAI to 2CFAI with large
differences between the different flow insensitive approaches. Also,
the running time of 0CFAS2 and SBAS2 is shorter, compared to
0CFAS and SBAS respectively. This is an artifact of the latter anal-
yses performing heap updates context sensitively. Context sensitive
updates requires 0CFAS and SBAS to call the tabulation algorithm
multiple times, leading to longer running time. Furthermore, the
almost equivalent running times for the flow sensitive versions of
0-CFA and the summary-based versions can be attributed to the
use of the tabulation algorithm with almost identical implementa-
tion for both. Finally, across all the benchmarks, SBAS runs signif-
icantly faster than 2CFAI.

The improved performance of SBAS over 2CFAI can be ex-
plained with the help of the information about the number of
method contexts in Table 4. The table shows the total number of
distinct method contexts as computed by the different approaches
for each benchmark. The key result here is that 2CFAI computes
almost 4X-7X more contexts per benchmark than SBAS which, as
explained in Section 2, implies that the summary-based technique
used by SBAS is able to merge multiple call string contexts. Due
to the correlation between the number of contexts and the num-
ber of times a method is analyzed, more contexts correspond to a
longer running time, explaining the slower performance of 2CFAI
compared to SBAS. The substantial increase in running time from
0CFAI to 2CFAI can also be attributed to the large increase in the
number of method contexts across these analysis approaches. Fur-
ther, as the rate of increase in the number of method contexts from
0CFAI to 2CFAI suggests, approaches with k � 3 compute too
many contexts and run out of memory.

6. Related Work
This section surveys related work on the summary-based and
cloning-based approaches to top-down interprocedural static analy-
sis, including both precision and scalability results and some equiv-
alence results between these separate approaches.

Summary-based Interprocedural Analysis. Sharir and Pnueli
[19] first proposed using functional summaries to solve interpro-
cedural dataflow problems in a precise context sensitive manner.
Later, Reps et al. [17] proposed a context and flow sensitive, inter-
procedural tabulation algorithm based on CFL-reachability to solve
a specific class of dataflow problems. More recently, many demand-
driven CFL reachability algorithms [6, 22, 31] have been proposed
for various program analyses, including alias and points-to analy-
ses. Xu et al. [30] extend the CFL-reachability points-to analysis in
[22] by adding a pre-pass for scalability. Ball and Rajamani [1] use
BDDs to compactly represent results of the tabulation algorithm.
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Figure 9: Distribution of the number of methods reachable from
each method. Both axes show numbers of methods in thousands.

In contrast, our implementation of the summary-based analysis, is
neither demand-driven nor uses symbolic representations such as
BDDs. Instead, we use the lossy join operator to tame scalability.

Cloning-based Interprocedural Analysis. There is a large
body of work on bounded call-string-like analyses we collectively
call k-limited analyses. Besides k-CFA [20], another popular such
analysis is k-object sensitive analysis for object-oriented programs
[14, 21]. Many recent works express k-limited points-to and call-
graph analyses in Datalog, a declarative logic programming lan-
guage, and solve them using specialized Datalog solvers [3, 27].
These solvers exploit redundancy arising from large numbers of
similar contexts computed by k-limited analyses for high k val-
ues. They either use Binary Decision Diagrams (BDDs), which are
symbolic (graph-based) representations of boolean functions, to
represent and manipulate analysis results [2, 9, 28, 32], or explicit
representations and algorithms from the databases literature [3]. Xu
and Rountev [29] propose a call-string-based technique with heap-
cloning that merges equivalent analysis contexts in order to scale.
Other works [4, 11, 16] propose client-driven refinement of the in-
terprocedural analysis precision, in order to scale effectively. All
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Experimental results

0CFAI 1CFAI 2CFAI 0CFAS SBAS
antlr 1m45s 40m 72m 23m 21m
avrora 1m42s 38m 68m 26m 17m
bloat 3m10s 82m 239m 38m 60m
chart 4m40s 121m 256m 30m 51m
hsqldb 3m29s 74m 158m 34m 37m
luindex 2m34s 41m 83m 35m 27m
lusearch 2m22s 43m 80m 24m 16m
pmd 3m52s 61m 112m 34m 29m
sunflow 5m00s 148m 279m 58m 72m
xalan 2m32s 36m 82m 23m 16m

Table 3: Running times of the approaches from Table 1(b).

combined points-to and call graph analysis, it need not necessarily
help other clients like monomorphic call sites.

5.2.3 Scalability
Next, we compare the performance of the different approaches. Ta-
ble 3 shows their running times, exclusive of the client running
times. The running time increases from 0CFAI to 2CFAI with large
differences between the different flow insensitive approaches. Also,
the running time of 0CFAS2 and SBAS2 is shorter, compared to
0CFAS and SBAS respectively. This is an artifact of the latter anal-
yses performing heap updates context sensitively. Context sensitive
updates requires 0CFAS and SBAS to call the tabulation algorithm
multiple times, leading to longer running time. Furthermore, the
almost equivalent running times for the flow sensitive versions of
0-CFA and the summary-based versions can be attributed to the
use of the tabulation algorithm with almost identical implementa-
tion for both. Finally, across all the benchmarks, SBAS runs signif-
icantly faster than 2CFAI.

The improved performance of SBAS over 2CFAI can be ex-
plained with the help of the information about the number of
method contexts in Table 4. The table shows the total number of
distinct method contexts as computed by the different approaches
for each benchmark. The key result here is that 2CFAI computes
almost 4X-7X more contexts per benchmark than SBAS which, as
explained in Section 2, implies that the summary-based technique
used by SBAS is able to merge multiple call string contexts. Due
to the correlation between the number of contexts and the num-
ber of times a method is analyzed, more contexts correspond to a
longer running time, explaining the slower performance of 2CFAI
compared to SBAS. The substantial increase in running time from
0CFAI to 2CFAI can also be attributed to the large increase in the
number of method contexts across these analysis approaches. Fur-
ther, as the rate of increase in the number of method contexts from
0CFAI to 2CFAI suggests, approaches with k � 3 compute too
many contexts and run out of memory.

6. Related Work
This section surveys related work on the summary-based and
cloning-based approaches to top-down interprocedural static analy-
sis, including both precision and scalability results and some equiv-
alence results between these separate approaches.

Summary-based Interprocedural Analysis. Sharir and Pnueli
[19] first proposed using functional summaries to solve interpro-
cedural dataflow problems in a precise context sensitive manner.
Later, Reps et al. [17] proposed a context and flow sensitive, inter-
procedural tabulation algorithm based on CFL-reachability to solve
a specific class of dataflow problems. More recently, many demand-
driven CFL reachability algorithms [6, 22, 31] have been proposed
for various program analyses, including alias and points-to analy-
ses. Xu et al. [30] extend the CFL-reachability points-to analysis in
[22] by adding a pre-pass for scalability. Ball and Rajamani [1] use
BDDs to compactly represent results of the tabulation algorithm.
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Figure 9: Distribution of the number of methods reachable from
each method. Both axes show numbers of methods in thousands.

In contrast, our implementation of the summary-based analysis, is
neither demand-driven nor uses symbolic representations such as
BDDs. Instead, we use the lossy join operator to tame scalability.

Cloning-based Interprocedural Analysis. There is a large
body of work on bounded call-string-like analyses we collectively
call k-limited analyses. Besides k-CFA [20], another popular such
analysis is k-object sensitive analysis for object-oriented programs
[14, 21]. Many recent works express k-limited points-to and call-
graph analyses in Datalog, a declarative logic programming lan-
guage, and solve them using specialized Datalog solvers [3, 27].
These solvers exploit redundancy arising from large numbers of
similar contexts computed by k-limited analyses for high k val-
ues. They either use Binary Decision Diagrams (BDDs), which are
symbolic (graph-based) representations of boolean functions, to
represent and manipulate analysis results [2, 9, 28, 32], or explicit
representations and algorithms from the databases literature [3]. Xu
and Rountev [29] propose a call-string-based technique with heap-
cloning that merges equivalent analysis contexts in order to scale.
Other works [4, 11, 16] propose client-driven refinement of the in-
terprocedural analysis precision, in order to scale effectively. All
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antlr 1m45s 40m 72m 23m 21m
avrora 1m42s 38m 68m 26m 17m
bloat 3m10s 82m 239m 38m 60m
chart 4m40s 121m 256m 30m 51m
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Table 3: Running times of the approaches from Table 1(b).

combined points-to and call graph analysis, it need not necessarily
help other clients like monomorphic call sites.

5.2.3 Scalability
Next, we compare the performance of the different approaches. Ta-
ble 3 shows their running times, exclusive of the client running
times. The running time increases from 0CFAI to 2CFAI with large
differences between the different flow insensitive approaches. Also,
the running time of 0CFAS2 and SBAS2 is shorter, compared to
0CFAS and SBAS respectively. This is an artifact of the latter anal-
yses performing heap updates context sensitively. Context sensitive
updates requires 0CFAS and SBAS to call the tabulation algorithm
multiple times, leading to longer running time. Furthermore, the
almost equivalent running times for the flow sensitive versions of
0-CFA and the summary-based versions can be attributed to the
use of the tabulation algorithm with almost identical implementa-
tion for both. Finally, across all the benchmarks, SBAS runs signif-
icantly faster than 2CFAI.

The improved performance of SBAS over 2CFAI can be ex-
plained with the help of the information about the number of
method contexts in Table 4. The table shows the total number of
distinct method contexts as computed by the different approaches
for each benchmark. The key result here is that 2CFAI computes
almost 4X-7X more contexts per benchmark than SBAS which, as
explained in Section 2, implies that the summary-based technique
used by SBAS is able to merge multiple call string contexts. Due
to the correlation between the number of contexts and the num-
ber of times a method is analyzed, more contexts correspond to a
longer running time, explaining the slower performance of 2CFAI
compared to SBAS. The substantial increase in running time from
0CFAI to 2CFAI can also be attributed to the large increase in the
number of method contexts across these analysis approaches. Fur-
ther, as the rate of increase in the number of method contexts from
0CFAI to 2CFAI suggests, approaches with k � 3 compute too
many contexts and run out of memory.

6. Related Work
This section surveys related work on the summary-based and
cloning-based approaches to top-down interprocedural static analy-
sis, including both precision and scalability results and some equiv-
alence results between these separate approaches.

Summary-based Interprocedural Analysis. Sharir and Pnueli
[19] first proposed using functional summaries to solve interpro-
cedural dataflow problems in a precise context sensitive manner.
Later, Reps et al. [17] proposed a context and flow sensitive, inter-
procedural tabulation algorithm based on CFL-reachability to solve
a specific class of dataflow problems. More recently, many demand-
driven CFL reachability algorithms [6, 22, 31] have been proposed
for various program analyses, including alias and points-to analy-
ses. Xu et al. [30] extend the CFL-reachability points-to analysis in
[22] by adding a pre-pass for scalability. Ball and Rajamani [1] use
BDDs to compactly represent results of the tabulation algorithm.
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Figure 9: Distribution of the number of methods reachable from
each method. Both axes show numbers of methods in thousands.

In contrast, our implementation of the summary-based analysis, is
neither demand-driven nor uses symbolic representations such as
BDDs. Instead, we use the lossy join operator to tame scalability.

Cloning-based Interprocedural Analysis. There is a large
body of work on bounded call-string-like analyses we collectively
call k-limited analyses. Besides k-CFA [20], another popular such
analysis is k-object sensitive analysis for object-oriented programs
[14, 21]. Many recent works express k-limited points-to and call-
graph analyses in Datalog, a declarative logic programming lan-
guage, and solve them using specialized Datalog solvers [3, 27].
These solvers exploit redundancy arising from large numbers of
similar contexts computed by k-limited analyses for high k val-
ues. They either use Binary Decision Diagrams (BDDs), which are
symbolic (graph-based) representations of boolean functions, to
represent and manipulate analysis results [2, 9, 28, 32], or explicit
representations and algorithms from the databases literature [3]. Xu
and Rountev [29] propose a call-string-based technique with heap-
cloning that merges equivalent analysis contexts in order to scale.
Other works [4, 11, 16] propose client-driven refinement of the in-
terprocedural analysis precision, in order to scale effectively. All
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0:   int x = -10;
1:   void main() {       
2:     while (*) { 
3:       inc();
4:     }
5:     x = 0;
6:     inc();  
7:     assert(x > 0);
8:     x = -x; 
9:     inc();
10:    assert(x >= 0);
11:  }
12:
13:  void inc() {
14:    x++;
15:  }
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1:   void main() {       
2:     while (*) { 
3:       inc();
4:     }
5:     x = 0;
6:     inc();  
7:     assert(x > 0);
8:     x = -x; 
9:     inc();
10:    assert(x >= 0);
11:  }
12:
13:  void inc() {
14:    x++;
15:  }

[Q] Which one should we treat 
context-sensitively (i.e. inline)?

1. Line 6
2. Line 9
3. Lines 6,9
4. Lines 3,6,9
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0:   int x = -10;
1:   void main() {       
2:     while (*) { 
3:       inc();
4:     }
5:     x = 0;
6:     x++;  
7:     assert(x > 0);
8:     x = -x; 
9:     inc();
10:    assert(x >= 0);
11:  }
12:
13:  void inc() {
14:    x++;
15:  }

[Q] Which one should we treat 
context-sensitively (i.e. inline)?

1. Line 6
2. Line 9
3. Lines 6,9
4. Lines 3,6,9
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0:   int x = -10;
1:   void main() {       
2:     while (*) { 
3:       inc();
4:     }
5:     x = 0; // [x:0]
6:     x++;   // [x:+]
7:     assert(x > 0);
8:     x = -x; 
9:     inc();
10:    assert(x >= 0);
11:  }
12:
13:  void inc() {
14:    x++;
15:  }

[Q] Which one should we treat 
context-sensitively (i.e. inline)?

1. Line 6
2. Line 9
3. Lines 6,9
4. Lines 3,6,9
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7:     assert(x > 0);
8:     x = -x; 
9:     x++;
10:    assert(x >= 0);
11:  }
12:
13:  void inc() {
14:    x++;
15:  }

[Q] Which one should we treat 
context-sensitively (i.e. inline)?

1. Line 6
2. Line 9
3. Lines 6,9
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0:   int x = -10;
1:   void main() {       
2:     while (*) { 
3:       inc();
4:     }
5:     x = 0; // [x:0]
6:     x++;   // [x:+]
7:     assert(x > 0);
8:     x = -x;// [x:-] 
9:     x++;   // [x:-0]
10:    assert(x >= 0);
11:  }
12:
13:  void inc() {
14:    x++;
15:  }

[Q] Which one should we treat 
context-sensitively (i.e. inline)?

1. Line 6
2. Line 9
3. Lines 6,9
4. Lines 3,6,9
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0:   int x = -10;
1:   void main() {       
2:     while (*) { 
3:       inc();
4:     }
5:     x = 0; // [x:0]
6:     x++;   // [x:+]
7:     assert(x > 0);
8:     x = -x;// [x:-] 
9:     x++;   // [x:-0]
10:    assert(x >= 0);
11:  }
12:
13:  void inc() {
14:    x++;
15:  }

[Q] Which one should we treat 
context-sensitively (i.e. inline)?

1. Line 6
2. Line 9
3. Lines 6,9
4. Lines 3,6,9

We want to predict where context-sensitivity would 
help, without running the context-sensitive analysis.

Saturday, 8 June 13



• Further abstraction of abstract values.
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Approximate a static analysis

• Further abstraction of transfer functions:

(γ o ⟦x=x+y⟧new)a  ⊒  (⟦x=x+y⟧old o γ)a

• Use transfer functions of particular form only:

⟦x=x+y⟧new a = a[x: a(x) ⊔ a(y)]

• This restriction ensures an efficient algorithm 
for doing a fully context-sensitive analysis.
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Approximate queries

• Express queries using new abstract states.

• Replace x>0 by x>=0 (i.e., a(x)=0+).

0:   int x = -10;
1:   void main() {       
2:     while (*) {
3:       inc();
4:     }
5:     x = 0;
6:     inc();
7:     assert(x > 0);
8:     x = -x;
9:     inc();
10:    assert(x >= 0);
11:  }

0:   int x = -10;
1:   void main() {       
2:     while (*) {
3:       inc();
4:     }
5:     x = 0;
6:     inc();
7:     assert(x >= 0);
8:     x = -x;
9:     inc();
10:    assert(x >= 0);
11:  }
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0:   int x = -10;
1:   void main() {       
2:     while (*) {    // [x:⊤]
3:       inc();       // [x:⊤]
4:     }              // [x:⊤]
5:     x = 0;         // [x:0+]
6:     inc();         // [x:0+] 
7:     assert(x >= 0);
8:     x = -x;        // [x:⊤]
9:     inc();         // [x:⊤]
10:    assert(x >= 0);
11:  }
12:
13:  void inc() {     // [x:0+]     [x:⊤]
14:    x++;           // [x:0+]     [x:⊤]
15:  }
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11:  }
12:
13:  void inc() {     // [x:0+]     [x:⊤]
14:    x++;           // [x:0+]     [x:⊤]
15:  }

1) Collect all the proved 
approximate queries.
2) For such queries, find 
relevant procedure calls.
3) All those calls should be 
treated context-sensitively. 
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7:     assert(x >= 0);
8:     x = -x;        // [x:⊤]
9:     inc();         // [x:⊤]
10:    assert(x >= 0);
11:  }
12:
13:  void inc() {     // [x:0+]     [x:⊤]
14:    x++;           // [x:0+]     [x:⊤]
15:  }

1) Collect all the proved 
approximate queries.
2) For such queries, find 
relevant procedure calls.
3) All those calls should be 
treated context-sensitively. 
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0:   int x = -10;
1:   void main() {       
2:     while (*) {    // [x:⊤]
3:       inc();       // [x:⊤]
4:     }              // [x:⊤]
5:     x = 0;         // [x:0+]
6:     x++;           // [x:0+] 
7:     assert(x >= 0);
8:     x = -x;        // [x:⊤]
9:     inc();         // [x:⊤]
10:    assert(x >= 0);
11:  }
12:
13:  void inc() {     // [x:0+]     [x:⊤]
14:    x++;           // [x:0+]     [x:⊤]
15:  }

1) Collect all the proved 
approximate queries.
2) For such queries, find 
relevant procedure calls.
3) All those calls should be 
treated context-sensitively. 
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0:   int x = -10;
1:   void main() {       
2:     while (*) {    
3:       inc();       
4:     }              
5:     x = 0;        
6:     x++;            
7:     assert(x > 0);
8:     x = -x;        
9:     inc();         
10:    assert(x >= 0);
11:  }
12:
13:  void inc() {     
14:    x++;           
15:  }

1) Collect all the proved 
approximate queries.
2) For such queries, find 
relevant procedure calls.
3) All those calls should be 
treated context-sensitively. 
4) Run the original analysis.
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Experimental results

Program LOC C.I.A. Partially Context-Sensitive Analysis Alarms# Time"
#alarm time #alarm pre main total #selected call-sites depth

spell-1.0 2K 58 0.6 30 0.3 0.9 1.2 25 / 124 (20.2%) 1.08 (3) 48.3% 2.0⇥
bc-1.06 13K 606 15.6 483 6.5 15.3 21.8 29 / 777 (3.7%) 1.16 (2) 20.3% 1.4⇥
tar-1.17 20K 940 43.8 799 11.8 43.5 55.3 56 / 1213 (4.6%) 1.02 (3) 15.0% 1.3⇥
less-382 24K 654 131.1 561 11.9 184.7 196.6 59 / 1522 (3.9%) 1.71 (4) 14.2% 1.5⇥
make-3.76.1 27K 1500 89.3 1002 20.3 124.2 144.5 87 / 1050 (8.3%) 1.20 (2) 33.2% 1.6⇥
grep-2.5 31K 1191 12.5 1182 5.8 15.4 21.2 37 / 530 (8.3%) 1.16 (3) 0.8% 1.7⇥
wget-1.9 35K 1307 72.0 905 29.9 126.1 156.0 111 / 1973 (5.6%) 1.39 (5) 30.8% 2.2⇥
bison-2.4 56K 2439 61.9 2249 52.6 37.5 69.93 165 / 1457(11.3%) 1.53 (4) 7.8% 1.5⇥
a2ps-4.14 64K 3682 125.0 2004 205.3 343.6 548.9 263 / 2450(10.7%) 2.20 (9) 45.6% 4.4⇥
lsh-2.0.4 111K 631 256.9 626 142.6 271.7 414.3 63 / 891 (7.7%) 2.96 (5) 0.8% 1.6⇥
Total 385K 13008 808.7 9841 486.9 1162.9 1629.7 764 / 13558(5.6%) 24.3% 2.0⇥

Table 1. Experiemntal results: performance comparison between context-insensitive analysis (C.I.A.) and our partially
context-sensitive analysis. Lines of code (LOC) was obtained by running wc on the source code before preprocessing and
macro expansion. #alarm reports the number of buffer-overrun alarms raised by the analysis. pre reports the time spent by the
pre-analysis and main reports the time spent by the main analysis of our approach. Each entry a/b (c%) in column #selected
call-sites means that, among b call-sites in the program, a call-sites are selected to be context-sensitive by our pre-analysis
and the selection ratio is c%. Each x (y) in column depth reports the average call-depth (x) of the call sequences that are
distinguished by our approach and the maximum call-depth (y). Alarms# reports the reduction of alarms and Time" shows
the time overhead of our method.
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We used an interval analysis for C programs.
Alarms are related to potential buffer overruns.
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