
How to find a good program
abstraction automatically?

Hongseok Yang	

University of Oxford

Joint work with Ravi Mangal, Mayur Naik, Xin Zhang (Georgia Tech), Kihong
Heo, Wonchan Lee, Hakjoo Oh, Kwangkeun Yi (SNU), Radu Grigore (Oxford)	

Mooly Sagiv, Ghila Castelnuovo (Tel-Aviv)

How to find a good program
abstraction automatically?

Hongseok Yang	

University of Oxford

Joint work with Ravi Mangal, Mayur Naik, Xin Zhang (Georgia Tech), Kihong
Heo, Wonchan Lee, Hakjoo Oh, Kwangkeun Yi (SNU), Radu Grigore (Oxford)	

Mooly Sagiv, Ghila Castelnuovo (Tel-Aviv)

+ some old story

How to find a good program
abstraction automatically?

Hongseok Yang	

University of Oxford

+ some old story

Joint work with Ravi Mangal, Mayur Naik, Xin Zhang (Georgia Tech), Kihong
Heo, Wonchan Lee, Hakjoo Oh, Kwangkeun Yi (SNU), Radu Grigore (Oxford)	

Mooly Sagiv, Ghila Castelnuovo (Tel-Aviv)

Software verification

• Active research area in computer science.	

• Aims at verifying “no blue screen”, i.e.,
programs do not have errors.	

• Develops methods for such verification.

[Quiz] Who wrote the earliest paper on software
verification?

Hoare Floyd Turing Majumdar Dijkstra

[Quiz] Who wrote the earliest paper on software
verification?

Hoare Floyd Turing Majumdar Dijkstra

Turing in June 1949

Turing’s idea
Use intermediate assertions.

Turing’s idea

Verify that this program computes “100 * 30”.

Use intermediate assertions.

Turing’s idea

Verify that this program computes “100 * 30”.

Use intermediate assertions.
x = 30

and i = 1x = 60
and i = 2

x = 2970
and i = 29

Turing’s example

Turing’s example

Turing’s example
4+6+9+7+8 = 34

Turing’s example
4+6+9+7+8 = 34

7+0+1+3+6 = 17

Turing’s example
4+6+9+7+8 = 34

7+0+1+3+6 = 17

3+9+7+3+7 = 29

Turing’s example
4+6+9+7+8 = 34

7+0+1+3+6 = 17

3+9+7+3+7 = 29

1+5+6+4+7 = 23

Turing’s example
4+6+9+7+8 = 34

7+0+1+3+6 = 17

3+9+7+3+7 = 29

1+5+6+4+7 = 23

Intermediate assertions

• Form the basis of modern verification
methods.	

• Inferred automatically by commercial tools
nowadays.

Commercial tools in 2014
Microsoft SDV

Microsoft SDV
Coverity Prevent

Commercial tools in 2014

Microsoft SDV
Coverity Prevent

AbsInt Astree

Commercial tools in 2014

Microsoft SDV
Coverity Prevent

AbsInt AstreeGrammatech codesonar

Commercial tools in 2014

Abstraction

• Key idea behind automation.	

• Keeps only important properties of
programs. Forgets all the rest.

Fibonacci number

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }

F0 = F1 = 1 Fn = Fn-1 + Fn-2

Fibonacci number

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }

[n:3,x:0,y:0]
!
[n:4,x:1,y:1]
[n:4,x:1,y:1] [n:3,x:1,y:2] … [n:1,x:3,y:5]
!
[n:4,x:1,y:2] [n:2,x:2,y:3] …
 [n:1,x:3,y:5]
 [n:1,x:3,y:5]

F0 = F1 = 1 Fn = Fn-1 + Fn-2

Fibonacci number

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }

[n:3,x:0,y:0]
!
[n:3,x:1,y:1]
[n:4,x:1,y:1] [n:3,x:1,y:2] … [n:1,x:3,y:5]
!
[n:4,x:1,y:2] [n:2,x:2,y:3] …
 [n:1,x:3,y:5]
 [n:1,x:3,y:5]

F0 = F1 = 1 Fn = Fn-1 + Fn-2

Fibonacci number

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }

[n:3,x:0,y:0]
!
[n:3,x:1,y:1] [n:2,x:1,y:2]
[n:3,x:1,y:1] [n:2,x:1,y:2] … [n:1,x:3,y:5]
!
[n:2,x:1,y:2] [n:2,x:2,y:3] …
 [n:1,x:3,y:5]
 [n:1,x:3,y:5]

F0 = F1 = 1 Fn = Fn-1 + Fn-2

Fibonacci number

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }

[n:3,x:0,y:0]
!
[n:3,x:1,y:1] [n:2,x:1,y:2]
[n:3,x:1,y:1] [n:2,x:1,y:2] … [n:1,x:3,y:5]
!
[n:2,x:1,y:2] [n:2,x:2,y:3] …
 [n:1,x:3,y:5]
 [n:1,x:3,y:5]

F0 = F1 = 1 Fn = Fn-1 + Fn-2

Fibonacci number

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }

[n:3,x:0,y:0]
!
[n:3,x:1,y:1] [n:2,x:1,y:2]
[n:3,x:1,y:1] [n:2,x:1,y:2] … [n:1,x:3,y:5]
!
[n:2,x:1,y:2] [n:1,x:2,y:3] …
 [n:1,x:3,y:5]
 [n:1,x:3,y:5]

F0 = F1 = 1 Fn = Fn-1 + Fn-2

Fibonacci number

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }

[n:3,x:0,y:0]
!
[n:3,x:1,y:1] [n:2,x:1,y:2] [n:1,x:2,y:3]
[n:3,x:1,y:1] [n:2,x:1,y:2] … [n:1,x:3,y:5]
!
[n:2,x:1,y:2] [n:1,x:2,y:3] …
 [n:1,x:3,y:5]
 [n:1,x:3,y:5]

F0 = F1 = 1 Fn = Fn-1 + Fn-2

Fibonacci number

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }

[n:3,x:0,y:0]
!
[n:3,x:1,y:1] [n:2,x:1,y:2] [n:1,x:2,y:3]
[n:3,x:1,y:1] [n:2,x:1,y:2] … [n:1,x:3,y:5]
!
[n:2,x:1,y:2] [n:1,x:2,y:3] …
 [n:1,x:2,y:3]
 [n:1,x:3,y:5]

F0 = F1 = 1 Fn = Fn-1 + Fn-2

Fibonacci number

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }

[n:3,x:0,y:0]
!
[n:3,x:1,y:1] [n:2,x:1,y:2] [n:1,x:2,y:3]
[n:3,x:1,y:1] [n:2,x:1,y:2] … [n:1,x:3,y:5]
!
[n:2,x:1,y:2] [n:1,x:2,y:3] …
 [n:1,x:2,y:3]
 [n:1,x:3,y:5]

F0 = F1 = 1 Fn = Fn-1 + Fn-2

Fibonacci number

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: assert(y >= 0);

F0 = F1 = 1 Fn = Fn-1 + Fn-2

Fibonacci number

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: assert(y >= 0);

F0 = F1 = 1 Fn = Fn-1 + Fn-2

Because it computes fib. number.	

Irrelevant n. No negative numbers nor minus.

Fibonacci number

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: assert(y >= 0);

F0 = F1 = 1 Fn = Fn-1 + Fn-2

Because it computes fib. number.	

Irrelevant n. No negative numbers nor minus.

Simple sign abstraction

• Abstract values:	

!

!

• An abstract state is a map from variables to
abstract values. E.g. [n:⊤, x:+, y:+].

+

⊤

Analysing Fibonacci with
simple sign abstraction

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: assert(y >= 0);

[n:+,x:⊤,y:⊤]
[n:+,x:+,y:⊤]
[n:+,x:+,y:+] [n:⊤,x:+,y:+]
[n:+,x:+,y:+] [n:⊤,x:+,y:+]
!
[n:⊤,x:+,y:+] [n:⊤,x:+,y:+]
[n:⊤,x:+,y:+]
[n:⊤,x:+,y:+]

Analysing Fibonacci with
simple sign abstraction

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: assert(y >= 0);

[n:+,x:⊤,y:⊤]
[n:+,x:+,y:⊤]
[n:+,x:+,y:+] [n:⊤,x:+,y:+]
[n:+,x:+,y:+] [n:⊤,x:+,y:+]
!
[n:⊤,x:+,y:+] [n:⊤,x:+,y:+]
[n:⊤,x:+,y:+]
[n:⊤,x:+,y:+]

Analysing Fibonacci with
simple sign abstraction

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: assert(y >= 0);

[n:+,x:⊤,y:⊤]
[n:+,x:+,y:⊤]
[n:+,x:+,y:+] [n:⊤,x:+,y:+]
[n:+,x:+,y:+] [n:⊤,x:+,y:+]
!
[n:⊤,x:+,y:+] [n:⊤,x:+,y:+]
[n:⊤,x:+,y:+]
[n:⊤,x:+,y:+]

Analysing Fibonacci with
simple sign abstraction

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: assert(y >= 0);

[n:+,x:⊤,y:⊤]
[n:+,x:+,y:⊤]
[n:+,x:+,y:+] [n:⊤,x:+,y:+]
[n:+,x:+,y:+] [n:⊤,x:+,y:+]
!
[n:⊤,x:+,y:+] [n:⊤,x:+,y:+]
[n:⊤,x:+,y:+]
[n:⊤,x:+,y:+]

Analysing Fibonacci with
simple sign abstraction

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: assert(y >= 0);

[n:+,x:⊤,y:⊤]
[n:+,x:+,y:⊤]
[n:+,x:+,y:+] [n:⊤,x:+,y:+]
[n:+,x:+,y:+] [n:⊤,x:+,y:+]
!
[n:⊤,x:+,y:+]
[n:⊤,x:+,y:+]
[n:⊤,x:+,y:+]

Analysing Fibonacci with
simple sign abstraction

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: assert(y >= 0);

[n:+,x:⊤,y:⊤]
[n:+,x:+,y:⊤]
[n:+,x:+,y:+] [n:⊤,x:+,y:+]
[n:+,x:+,y:+] [n:⊤,x:+,y:+]
!
[n:⊤,x:+,y:+]
 [n:⊤,x:+,y:+]
[n:⊤,x:+,y:+]

Analysing Fibonacci with
simple sign abstraction

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: assert(y >= 0);

[n:+,x:⊤,y:⊤]
[n:+,x:+,y:⊤]
[n:+,x:+,y:+] [n:⊤,x:+,y:+]
[n:+,x:+,y:+] [n:⊤,x:+,y:+]
!
[n:⊤,x:+,y:+]
 [n:⊤,x:+,y:+]
[n:⊤,x:+,y:+]

Finding a good abstraction

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: assert(y >= 0);

• Typically done by hand.	

• Tricky.	

• Active research area:
how to automate this?

Finding a good abstraction

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: y = y-1;
9: assert(y >= 0);

• Typically done by hand.	

• Tricky.	

• Active research area:
how to automate this?

Our approach since 2011

• Formulate abstraction finding as a search
problem [POPL’12,PLDI’13,PLDI14a,PLDI14b].	

• Choose search space carefully.	

• Develop an efficient search algorithm.

Verifier with explicit
abstraction parameters

program p

query q

abstraction parameter

0 1 1

p ⊨ q

don’t know

parameterised	

verifier

Verifier with explicit
abstraction parameters

program p

query q

abstraction parameter

0 1 1

p

don’t know

parameterised	

verifier

000

111

001 010 100

011 110101

Verifier with explicit
abstraction parameters

program p

query q

abstraction parameter

0 1 1

p

don’t know

parameterised	

verifier

000

111

001 010 100

011 110101

Idea1: Prune.	

Idea2: Predict.

Verifier with explicit
abstraction parameters

program p

query q

abstraction parameter

0 1 1

don’t know

parameterised	

verifier

Idea1: Prune.	

Idea2: Predict.

p ⊨ q

000

111

001 010 100

011 110101

Pruning based on
testing results

Two sign abstractions

+

⊤

S0 = { }
0+

⊤

-0 -+

0- +

⊥

S1= { }

Abstraction parameters

+

⊤

S0 = { }
0+

⊤

-0 -+

0- +

⊥

S1= { }
Abs = { n, x, y } → {0, 1}	

abs0 = [n:0,x:0,y:0]	

abs1 = [n:1,x:1,y:1]	

abs2 = [n:0,x:0,y:1]

Abstraction parameters
Abs = { n, x, y } → {0, 1}

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: y = y-1;
9: assert(y >= 0);

Abstraction parameters
Abs = { n, x, y } → {0, 1}

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: y = y-1;
9: assert(y >= 0);

[n:+,x:⊤,y:⊤]
!
!
!
!
!
[n:⊤,x:+,y:+]
[n:⊤,x:+,y:⊤]

…
…

[n:1, x:1, y:0]

4 iter

Abstraction parameters
Abs = { n, x, y } → {0, 1}

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: y = y-1;
9: assert(y >= 0);

[n:+,x:⊤,y:⊤]
!
!
!
!
!
[n:⊤,x:+,y:+]
[n:⊤,x:+,y:⊤]

…
…

[n:1, x:1, y:0]

4 iter

[n:+,x:⊤,y:⊤]
!
!
!
!
!
[n:⊤,x:+,y:+]
[n:⊤,x:+,y:0+]

…
…

[n:0, x:0, y:1]

2 iter

• Test a program.	

• If a bug is found, report an error.	

• Otherwise, identify bad abstractions and
prune the search space.

Testing and pruning

Testing and pruning

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: y = y-1;
9: assert(y >= 0);

Testing and pruning

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: y = y-1;
9: assert(y >= 0);

[n:1,x:0,y:0]
!
!
!
!
!
!
[n:1,x:1,y:0]

Testing and pruning

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: y = y-1;
9: assert(y >= 0);

[n:1,x:0,y:0]
!
!
!
!
!
!
[n:1,x:1,y:0]

[n:_, x:_, y:⊤] if abs(y)=0.	

Because S0 = {+, ⊤}.

Testing and pruning

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: y = y-1;
9: assert(y >= 0);

[n:1,x:0,y:0]
!
!
!
!
!
!
[n:1,x:1,y:0]

p

000

111

001 010 100

011 110101

[n:_, x:_, y:⊤] if abs(y)=0.	

Because S0 = {+, ⊤}.

Testing and pruning

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: y = y-1;
9: assert(y >= 0);

[n:1,x:0,y:0]
!
!
!
!
!
!
[n:1,x:1,y:0]

p

000

111

001 010 100

011 110101

[n:_, x:_, y:⊤] if abs(y)=0.	

Because S0 = {+, ⊤}.

Choose a minimal abs.

Testing and pruning

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: y = y+1;
9: y = y-1;
10: assert(y >= 0);

Testing and pruning

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: y = y+1;
9: y = y-1;
10: assert(y >= 0);

[n:1,x:0,y:0]
!
!
!
!
!
!
!
[n:1,x:1,y:1]

Testing and pruning

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: y = y+1;
9: y = y-1;
10: assert(y >= 0);

[n:1,x:0,y:0]
!
!
!
!
!
!
!
[n:1,x:1,y:1(dec)]

Testing and pruning

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: y = y+1;
9: y = y-1;
10: assert(y >= 0);

[n:1,x:0,y:0]
!
!
!
!
!
!
!
[n:1,x:1,y:1(dec)]

[n:_, x:_, y:⊤] if abs(y)=0.	

Because dec results in ⊤ in S0={+, ⊤}.

Testing and pruning

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: y = y+1;
9: y = y-1;
10: assert(y >= 0);

[n:1,x:0,y:0]
!
!
!
!
!
!
!
[n:1,x:1,y:1(dec)]

p

000

111

001 010 100

011 110101

[n:_, x:_, y:⊤] if abs(y)=0.	

Because dec results in ⊤ in S0={+, ⊤}.

Testing and pruning

1: assert(n >= 1);
2: x = 1;
3: y = 1;
4: while (n > 1) {
5: (x,y) = (y,x+y);
6: n = n-1;
7: }
8: y = y+1;
9: y = y-1;
10: assert(y >= 0);

[n:1,x:0,y:0]
!
!
!
!
!
!
!
[n:1,x:1,y:1(dec)]

p

000

111

001 010 100

011 110101

[n:_, x:_, y:⊤] if abs(y)=0.	

Because dec results in ⊤ in S0={+, ⊤}.

N , and defines N 0 = N [{(h1, P1), (h2, P2), (h3, P3)}. Choos-
ing such h

i

’s is possible since AllocSite is an infinite set and the
given program uses only finitely many allocation sites in AllocSite.
Then, our analysis uses P3 as a default parameter value, and con-
structs a configuration ⌘

N

0(h) = (if (h, v) 2 N 0 then v else P3).
Using P3 as a default value is our decision choice based on the ob-
servation: whatever parameter configuration ⌘ is used, the resulting
⌘-component points-to analysis is very cheap, hence it is wise to go
for the option that maximises precision, which is precisely to use
P3 as a default value. We point out that ⌘

N

0 belongs to PConfig
since N 0 includes the bindings (h1, P1), (h2, P2) and (h3, P3).

6. Experimental evaluation
In this section, we evaluate the effectiveness of the two instance
analyses of our framework: the thread-escape analysis and the
points-to analysis. We implemented these analyses and applied
them to the six multi-threaded Java programs described in Table 1,
including four from the DaCapo benchmark suite [4].5 All exper-
iments were done using IBM J9 VM 1.6.0 on a Linux machine
with two Intel Xeon 2.9 GHz six-core processors and 32GB RAM
(though the experiments were run in a single thread and the JVM
was limited to use up to 4GB RAM). We next evaluate the precision
of these analyses (Section 6.1), their scalability (Section 6.2), and
the quality of the computed abstractions (Section 6.3).

6.1 Precision
In this section, we evaluate the precision of our thread-escape and
points-to analyses. Figure 3 shows the precision of our thread-
escape analysis. Each query to this analysis is a pair (pc, x) where
pc is the program position of a statement that accesses an instance
field or an array element of an object denoted by local variable x:

pc : y = x.f; pc : y = x[i]; pc : x.f = y; pc : x[i] = y;

Such queries may arise from any analysis of multi-threaded pro-
grams that desires to reason only about instructions that possibly
access thread-shared memory, such as a static race detection tool or
a software transactional memory runtime.

The top of each column shows how many queries were consid-
ered for each benchmark, that is, queries where program position
pc was reached at least once in a concrete trace of the benchmark
on a single supplied input. It shows both the absolute number of
considered queries and what fraction they constitute of the queries
reachable in a static 0-CFA call graph. The latter provides a mea-
sure of the coverage achieved by each trace (29–60%). The con-
sidered queries are classified into three categories: those disproven
by our dynamic analysis of the trace (“Escaping”), those proven by
our static analysis using the parameter configuration inferred by the
dynamic analysis (“Local”), and those neither disproven nor proven
(“Unknown”). On average, 80% of the queries in each benchmark
are either disproven (28%) or proven (52%), highlighting the effec-
tiveness of our approach using only a single trace. Also, note that
our approach does not preclude the use of multiple traces, which
would only further improve both coverage and precision.

Figure 4 shows the precision of our points-to analysis. Each
query to this analysis is a tuple (pc1, x, pc2, y) where (pc1, x)
and (pc2, y) are identical to the queries described above for our
thread-escape analysis, with the additional constraint that they both

5 Among all benchmarks in dacapo-2006-10-MR2, dacapo-9.10-beta0, and
dacapo-9.12, we excluded single-threaded benchmarks (bloat, chart,
antlr, fop, etc.), and multi-threaded benchmarks with little concurrency
(batik, pmd, etc.), because one of our instance analyses is thread-escape
analysis. We also excluded luindex because it is too similar to lusearch,
which we include (both are built atop Apache Lucene). We tried the remain-
ing four benchmarks in our experiments.

 0

 20

 40

 60

 80

 100

h

e

d

c

w

e

b

l

e

c

h

l

u

s

e

a

r

c

h

s

u

n

f

l

o

w

a

v

r

o

r

a

h

s

q

l

d

b

A

V

G

.

271

(47%)

421

(60%)

2027

(29%)

5336

(58%)

5090

(34%)

4190

(29%)

2889

(37%)

#queries

(coverage)

Escaping

Local

Unknown

Figure 3. Precision results for our thread-escape analysis.

 0

 20

 40

 60

 80

 100

h

e

d

c

w

e

b

l

e

c

h

l

u

s

e

a

r

c

h

s

u

n

f

l

o

w

a

v

r

o

r

a

h

s

q

l

d

b

A

V

G

.

6e+02

(18%)

5e+02

(31%)

2e+05

(14%)

3e+06

(51%)

9e+05

(7%)

7e+05

(17%)

9e+05

(21%)

#queries

(coverage)

Aliased

Not Aliased

Unknown

Figure 4. Precision results for our points-to analysis.

access array elements or they both access the same instance field,
and at least one of them is a write. Such queries may be posed by,
for instance, a static race detection client to determine whether the
statements at pc1 and pc2 can be involved in a race.

The top of each column shows how many queries were con-
sidered for each benchmark, that is, queries where both program
positions pc1 and pc2 were reached at least once in the single trace.
The traces cover 7–51% of all statically reachable queries. The av-
erage coverage is lower for queries of this analysis compared to
that of our thread-escape analysis (21% vs. 37%). This is because
the points-to analysis requires both pc1 and pc2 to be reached for a
query to be considered whereas the thread-escape analysis requires
a single program position pc to be reached.

The considered queries are classified into three categories: (1)
those disproven by our dynamic analysis of the trace (“Aliased”),
namely, those where x and y pointed to objects created at the same
allocation site at least once; (2) those proven by our static analysis
using the parameter configuration inferred by the dynamic analysis
(“Not Aliased”); and (3) those neither disproven nor proven (“Un-
known”). Note that category (1) includes not only queries that are
false concretely but also queries that might be true concretely but
are impossible to prove using an object allocation site abstraction.
Almost all queries (99% on average) are either disproven or proven.
This result suggests that, in practice, a flow- and context-insensitive
points-to analysis based on object allocation site abstraction for
Java does not require representing objects allocated at each site
using a separate abstract location; merely three abstract locations
(albeit specialised to the query) suffice.

[POPL’12]

Pruning based on
refinement

Limitation of testing

1: assert(n >= 1);
2: x = 1; y = 1;
3: while (n > 1) {
4: (x,y) = (y,x+y);
5: n = n-1;
6: }
7: x = x-1;
8: if (y == 832040)
9: assert(x >= 0)

Limitation of testing

1: assert(n >= 1);
2: x = 1; y = 1;
3: while (n > 1) {
4: (x,y) = (y,x+y);
5: n = n-1;
6: }
7: x = x-1;
8: if (y == 832040)
9: assert(x >= 0)

Reaching assert(…) by testing is not easy.

Iterative refinement

• Run a verifier with a cheap abstraction.	

• Prune all abstractions that lead to similar
verification failures.

Result with [n:0,x:0,y:0]

1: assert(n >= 1);
2: x = 1; y = 1;
3: while (n > 1) {
4: (x,y) = (y,x+y);
5: n = n-1;
6: }
7: x = x-1;
8: if (y == 832040)
9: assert(x >= 0)

is(x,⊤,1) is(y,⊤,1)abs(x,0) abs(y,0)

is(x,+,2) is(y,+,2)

is(x,+,5) is(y,+,5)

is(x,⊤,8)

abs(x,0)

abs(n,0)

Result with [n:0,x:0,y:0]

1: assert(n >= 1);
2: x = 1; y = 1;
3: while (n > 1) {
4: (x,y) = (y,x+y);
5: n = n-1;
6: }
7: x = x-1;
8: if (y == 832040)
9: assert(x >= 0)

is(x,⊤,1) is(y,⊤,1)abs(x,0) abs(y,0)

is(x,+,2) is(y,+,2)

is(x,+,5) is(y,+,5)

is(x,⊤,8)

abs(x,0)

[Goal] Destroy all derivations of is(x,⊤,8).

abs(n,0)

Result with [n:0,x:0,y:0]

1: assert(n >= 1);
2: x = 1; y = 1;
3: while (n > 1) {
4: (x,y) = (y,x+y);
5: n = n-1;
6: }
7: x = x-1;
8: if (y == 832040)
9: assert(x >= 0)

is(x,⊤,1) is(y,abs(x,0) abs(y,0)

is(x,+,2) is(y,+,2)

is(x,+,5) is(y,+,5)

is(x,⊤,8)

abs(x,0)

If abs(x,0), we cannot prove the query.	

If abs(x,0) and abs(y,0), we cannot prove.

[Goal] Destroy all derivations of is(x,⊤,8).

abs(n,0)

Result with [n:0,x:0,y:0]

1: assert(n >= 1);
2: x = 1; y = 1;
3: while (n > 1) {
4: (x,y) = (y,x+y);
5: n = n-1;
6: }
7: x = x-1;
8: if (y == 832040)
9: assert(x >= 0)

is(x, is(y,⊤,1)abs(x,0) abs(y,0)

is(x,+,2) is(y,+,2)

is(x,+,5) is(y,+,5)

is(x,⊤,8)

abs(x,0)

If abs(x,0), we cannot prove the query.	

If abs(x,0) or abs(y,0), we cannot prove the query.

[Goal] Destroy all derivations of is(x,⊤,8).

abs(n,0)

Result with [n:0,x:0,y:0]

1: assert(n >= 1);
2: x = 1; y = 1;
3: while (n > 1) {
4: (x,y) = (y,x+y);
5: n = n-1;
6: }
7: x = x-1;
8: if (y == 832040)
9: assert(x >= 0)

is(x, is(y,⊤,1)abs(x,0) abs(y,0)

is(x,+,2) is(y,+,2)

is(x,+,5) is(y,+,5)

is(x,⊤,8)

abs(x,0)

If abs(x,0), we cannot prove the query.	

If abs(x,0) or abs(y,0), we cannot prove the query.

[Goal] Destroy all derivations of is(x,⊤,8).

abs(n,0)

Result with [n:0,x:0,y:0]

1: assert(n >= 1);
2: x = 1; y = 1;
3: while (n > 1) {
4: (x,y) = (y,x+y);
5: n = n-1;
6: }
7: x = x-1;
8: if (y == 832040)
9: assert(x >= 0)

is(x,⊤,1) is(y,⊤,1)abs(x,0) abs(y,0)

is(x,+,2) is(y,+,2)

is(x,+,5) is(y,+,5)

is(x,⊤,8)

abs(x,0)

If abs(x,0), we cannot prove the query.	

If abs(x,0) or abs(y,0), we cannot prove the query.

[Goal] Destroy all derivations of is(x,⊤,8).

abs(n,0)

1: assert(n >= 1);
2: x = 1; y = 1;
3: while (n > 1) {
4: (x,y) = (y,x+y);
5: n = n-1;
6: }
7: x = x-1;
8: if (y == 832040)
9: assert(x >= 0)

is(x,⊤,1) is(y,⊤,1)abs(x,0) abs(y,0)

is(x,+,2) is(y,+,2)

is(x,+,5) is(y,+,5)

is(x,⊤,8)

abs(x,0)

MaxSat Encoding:	

Hard clauses: Soft clauses:

(is(x,⊤,1) & abs(x,0) => is(x,+,2))
& (abs(x,0) & is(x,+,2) => is(x,⊤,8))
& …
& (not is(x,T,8))

abs(n,0)
& abs(x,0)
& abs(y,0)

abs(n,0)

1: assert(n >= 1);
2: x = 1; y = 1;
3: while (n > 1) {
4: (x,y) = (y,x+y);
5: n = n-1;
6: }
7: x = x-1;
8: if (y == 832040)
9: assert(x >= 0)

is(x,⊤,1) is(y,⊤,1)abs(x,0) abs(y,0)

is(x,+,2) is(y,+,2)

is(x,+,5) is(y,+,5)

is(x,⊤,8)

abs(x,0)

MaxSat Encoding:	

Hard clauses: Soft clauses:

(is(x,⊤,1) & abs(x,0) => is(x,+,2))
& (abs(x,0) & is(x,+,2) => is(x,⊤,8))
& …
& (not is(x,T,8))

abs(n,0)
& abs(x,0)
& abs(y,0)

abs(n,0)

1: assert(n >= 1);
2: x = 1; y = 1;
3: while (n > 1) {
4: (x,y) = (y,x+y);
5: n = n-1;
6: }
7: x = x-1;
8: if (y == 832040)
9: assert(x >= 0)

is(x,⊤,1) is(y,⊤,1)abs(x,0) abs(y,0)

is(x,+,2) is(y,+,2)

is(x,+,5) is(y,+,5)

is(x,⊤,8)

abs(x,0)

MaxSat Encoding:	

Hard clauses: Soft clauses:

(is(x,⊤,1) & abs(x,0) => is(x,+,2))
& (abs(x,0) & is(x,+,2) => is(x,⊤,8))
& …
& (not is(x,T,8))

abs(n,0)
& abs(x,0)
& abs(y,0)

abs(n,0)

1: assert(n >= 1);
2: x = 1; y = 1;
3: while (n > 1) {
4: (x,y) = (y,x+y);
5: n = n-1;
6: }
7: x = x-1;
8: if (y == 832040)
9: assert(x >= 0)

is(x,⊤,1) is(y,⊤,1)abs(x,0) abs(y,0)

is(x,+,2) is(y,+,2)

is(x,+,5) is(y,+,5)

is(x,⊤,8)

abs(x,0)

MaxSat Encoding:	

Hard clauses: Soft clauses:

(is(x,⊤,1) & abs(x,0) => is(x,+,2))
& (abs(x,0) & is(x,+,2) => is(x,⊤,8))
& …
& (not is(x,T,8))

abs(n,0)
& abs(x,0)
& abs(y,0)

abs(n,0)

Full story

• The process is repeated until we prune the
whole search space or prove the query.	

• Implemented in the context of program
analyses (or verifiers) written in Datalog.	

• See PLDI’14a for details.

description # classes # methods bytecode (KB) KLOC
app total app total app total app total

toba-s java bytecode to C compiler 25 158 149 745 32 56 6 69
javasrc-p java source code to HTML translator 49 135 461 789 43 60 13 66
weblech website download/mirror tool 11 576 78 3,326 6 208 12 194
hedc web crawler from ETH 44 353 230 2,134 16 140 6 153
antlr A parser/translator generator 111 350 1,150 2,370 128 186 29 131
luindex document indexing and search tool 206 619 1,390 3,732 102 235 39 190
lusearch text indexing and search tool 219 640 1,399 3,923 94 250 40 198
schroeder-m sampled audio editing tool 109 936 617 6,435 37 352 12 334

Table 2: Benchmark characteristics. All numbers are computed using a 0-CFA call-graph analysis.

pointer analysis typestate analysis
queries abstraction size

iterations
queries abstraction size iterations

total resolved final max. total resolved final max.
CURRENT BASELINE CURRENT BASELINE

toba-s 7 7 0 17 1,782 10 543 543 62 14,781 15 159
javasrc-p 46 46 0 47 1,845 13 159 159 89 13,653 14 92
weblech 5 5 2 14 3,095 10 13 13 33 25,781 14 16
hedc 47 47 6 73 2,948 18 24 24 14 23,622 7 10
antlr 143 143 5 97 2,917 15 77 77 66 24,815 12 45
luindex 138 138 67 116 4,055 26 248 248 79 33,835 16 72
lusearch 322 322 29 146 3,936 17 45 45 74 33,526 13 52
schroeder-m 51 51 25 45 5,826 15 194 194 71 54,741 9 49

Table 3: Results showing statistics of queries, abstractions, and iterations of our approach (CURRENT) and the baseline approaches (BASELINE).

dispatching call site in the benchmark is monomorphic, i.e., has
a single target method. We excluded queries that could be proven
by a context-insensitive pointer analysis. For the typestate analysis,
each query corresponds to a typestate assertion. We tracked typestate
properties for the objects from the same set of classes as used by
Fink et al. [9] in their evaluation.

The “resolved” column shows the number of queries proven or
shown to be impossible to prove using any abstraction in the search
space. For the pointer analysis, impossibility means that a call site
cannot be proven monomorphic no matter how high the k values are.
For the typestate analysis, impossibility implies that the typestate
assertion cannot be proven even by tracking all program variables. In
our experiments, we found that our approach successfully resolved
all the queries for the pointer analysis, by using a maximum k value
of 10 at any allocation site. However, the baseline 4-object-sensitive
analysis without refinement could only resolve up to 50% of the
queries. Selectively increasing the k value allowed our approach to
scale better and try higher k values, leading to greater precision. For
the typestate analysis client, both of our approach and the baseline
approach resolved all queries.

The “max.” column under abstractions shows the abstraction
size—the quantity x such that the space of abstractions considered
by our approach is of size 2

x (i.e., x = log2 |A|). For our bench-
marks, the abstraction size ranges from 1k to 5k for the pointer
analysis, and from 13k to 54k for the typestate analysis. For the
pointer analysis, the cheapest abstraction that our approach consid-
ers is equivalent to a context-insensitive analysis with all k = 0 and
the most expensive is equivalent to a 10-object-sensitive analysis.
For the typestate analysis, the cheapest abstraction is the empty set
of access paths, and the most expensive is the set of all program vari-
ables of reference type. Both our analyses ran out of memory on the
more expensive abstractions in these spaces, even for our smallest
benchmark, emphasizing the need for our CEGAR approach.

The “final” column shows the abstraction size that was used
in the last iteration of our approach. For all the benchmarks and
both clients, these sizes are below 5% of the maximum abstraction
size, shown in the ”max.” column. Lastly, the “iterations” column
shows the number of iterations that were taken by our approach.
They show that our approach is capable of exploring a huge space of
abstractions for a large number of queries simultaneously, in under

a few iterations. In comparison, the baseline approach (BASELINE)
of Zhang et al. invokes the typestate client analysis far more
frequently as it refines each query individually. For example, the
baseline approach took 159 iterations to finish the typestate analysis
on toba-s, while our approach only needed 15 iterations. Since
the baseline for the pointer analysis client is not a refinement-
based approach, it invokes the client analysis just once and is not
comparable with our approach.

In the rest of this section, we evaluate the performance of the
Datalog solver and the MAXSAT solver in more detail.

Performance of Datalog solver. Table 4 shows statistics of the
running time of the Datalog solver in different iterations of our
approach. These statistics include the minimum, maximum, and
average running time over all iterations for a given analysis and
benchmark. The numbers in Table 4 indicate that the abstractions
chosen by our approach are small enough to allow the analyses to
scale. For schroeder-m, one of our largest benchmarks, the change
in running time from the slowest to the fastest run is only 2X for
both client analyses. This further indicates that our approach is
able to resolve all posed queries simultaneously before the sizes
of the chosen abstractions start affecting the scalability of the
client Datalog analyses. In contrast, the baseline k-object-sensitive
analysis could only scale upto k = 4 on our larger benchmarks.
Even with k = 4, the Datalog solver ran for over six hours on
our largest benchmark when using the baseline approach. With our
approach, on the other hand, the longest single run of the Datalog
solver for the pointer analysis client was only seven minutes.

Figures 9 and 10 show the change in abstraction size and
the analysis running time across iterations for the pointer and
typestate analysis, respectively, applied on schroeder-m. There
is a clear correlation between the growth in abstraction size and the
increase in the running times. For both analyses, since our approach
only chooses the cheapest viable abstraction in each iteration, the
abstraction size grows almost linearly, as expected. Further, for
typestate analysis, an increase in abstraction size typically results
in an almost linear growth in the number of abstract states tracked.
Consequently, the linear growth in the running time for the typestate
analysis is also expected behavior. However, for the pointer analysis,
typically, the number of distinct calling contexts grows exponentially
with the increase in abstraction size. The linear curve for the running

8

running time of the Datalog solver (in seconds) running time of the MAXSAT solver (in seconds)
pointer analysis typestate analysis pointer analysis typestate analysis

BASELINE min. max. avg. min. max. avg. min. max. avg. min. max. avg.
toba-s 11 5 7 6 49 82 68.1 2 7 3.1 1 6 3.1
javasrc-p 29 7 11 9 76 152 120.8 <1 4 1.6 2 19 6.4
weblech 2,574 44 54 47.5 121 172 146.6 5 11 6.7 3 8 5.3
hedc 5,058 21 37 27.9 52 58 54.3 1 23 3.7 1 2 1.7
antlr 3,723 30 55 39.3 193 325 264.8 11 44 24.1 5 27 13.25
luindex 913 59 84 76.4 311 512 426.7 8 48 16.3 6 26 14.7
lusearch 7,040 59 85 72.7 238 437 343.9 7 62 23.9 6 29 15.9
schroeder-m 23,038 192 428 289.6 1,778 2,681 2,304.6 34 257 114 37 308 138.6

Table 4: Running time of the Datalog and MAXSAT solvers in each iteration.

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14 16

 0

 100

 200

 300

 400

 500

a
b
s
t
r
a
c
t
i
o
n

s
i
z
e

r
u
n
n
i
n
g

t
i
m

e

(
s
e
c
.
)

iterations

abstraction size

running time

Figure 9: Running time of the Datalog solver and abstraction size
for pointer analysis on schroeder-m in each iteration.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

 0

 500

 1000

 1500

 2000

 2500

 3000

a
b
s
t
r
a
c
t
i
o
n

s
i
z
e

r
u
n
n
i
n
g

t
i
m

e

(
s
e
c
.
)

iterations

abstraction size

running time

Figure 10: Running time of the Datalog solver and abstraction size
for typestate analysis on schroeder-m in each iteration.

time in Figure 9 indicates that the abstractions chosen by our
approach are small enough to limit this exponential growth.

Performance of MAXSAT solver. Table 4 shows statistics of
the running time of the MAXSAT solver in different iterations of
our approach. The metrics reported are the same as those for the
Datalog solver. Although the performance of MAXSAT solvers is
not completely deterministic, it is largely affected by two factors,
(1) the size of boolean constraints posed to the solver, and (2) the
structure of these constraints. For both analyses, as seen previously,
the abstraction size increases with the number of iterations while
the number of unresolved queries decreases. Growth in abstraction
size increases the complexity of the client Datalog analyses, causing
an increase in the number of boolean constraints generated. On
the other hand, fewer queries tends to simplify the structure of the
constraints to be solved.

Figure 11 shows the running time of the MAXSAT solver
across all iterations for the pointer analysis applied to our largest
benchmark schroeder-m. Initially, the solver running time shows
an increasing trend but this reverses towards the end. We believe that
the two conflicting factors of size and structure of the constraints
are at play here. While the complexity of the constraints increases
initially due to their growing size, after a certain iteration, the
number of unresolved queries becomes small enough to suitably
simplify the structure of the constraints and overwhelm the effect of

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16

r
u
n
n
i
n
g

t
i
m

e

(
s
e
c
.
)

iterations

Figure 11: Running time of the MAXSAT solver for pointer analysis
on schroeder-m in each iteration.

pointer analysis typestate analysis
variables # clauses # variables # clauses

toba-s 784k 1,485k 741k 938k
javasrc-p 470k 877k 1,022k 1,333k
weblech 1,620k 3,307k 1,374k 1,807k
hedc 1,245k 2,664k 606k 751k
antlr 3,621k 6,875k 2,318k 3,009k
luindex 2,406k 5,643k 2,829k 3,784k
lusearch 2,103k 5,011k 2,626k 3,524k
schroeder-m 6,706k 23,680k 16,293k 22,257k

Table 5: Statistics of MAXSAT formula in the final iteration.

growing constraint size. For the remaining benchmarks and analyses,
we observed a similar trend, which we omit for the sake of brevity.

Finally, Table 5 shows the number of variables and clauses in the
largest constraint that the MAXSAT solver had to solve for a given
analysis and benchmark. Though the structure of the constraints is
not apparent from these numbers, the large size of the constraints
indicates the difficulty of the problems that the solver is tackling.

6. Related Work
Our approach is broadly related to work on constraint-based analysis,
including analysis based on boolean constraints, set constraints, and
SMT constraints. Constraint-based analysis has well-known benefits
that our approach also avails, such as the ability to reason about
the analysis and leveraging sophisticated solvers to implement the
analysis. A key difference is that constraint-based analyses typically
solve constraints generated from program text, whereas our approach
solves constraints generated from an analysis run, which is itself
obtained by solving constraints generated from program text.

Our approach is also related to work on CEGAR-based model
checking and program analyses using Datalog, as we discuss next.

CEGAR-based Model Checking. CEGAR was originally pro-
posed to enable model checkers to scale to even larger state-spaces
than those possible using symbolic approaches such as BDDs [8].
Our motivation for using CEGAR, in contrast, is to enable designers
of analyses in Datalog to express flexible abstractions. Moreover, our
notions of counterexamples and refined abstractions differ radically

9

running time of the Datalog solver (in seconds) running time of the MAXSAT solver (in seconds)
pointer analysis typestate analysis pointer analysis typestate analysis

BASELINE min. max. avg. min. max. avg. min. max. avg. min. max. avg.
toba-s 11 5 7 6 49 82 68.1 2 7 3.1 1 6 3.1
javasrc-p 29 7 11 9 76 152 120.8 <1 4 1.6 2 19 6.4
weblech 2,574 44 54 47.5 121 172 146.6 5 11 6.7 3 8 5.3
hedc 5,058 21 37 27.9 52 58 54.3 1 23 3.7 1 2 1.7
antlr 3,723 30 55 39.3 193 325 264.8 11 44 24.1 5 27 13.25
luindex 913 59 84 76.4 311 512 426.7 8 48 16.3 6 26 14.7
lusearch 7,040 59 85 72.7 238 437 343.9 7 62 23.9 6 29 15.9
schroeder-m 23,038 192 428 289.6 1,778 2,681 2,304.6 34 257 114 37 308 138.6

Table 4: Running time of the Datalog and MAXSAT solvers in each iteration.

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14 16

 0

 100

 200

 300

 400

 500

a
b
s
t
r
a
c
t
i
o
n

s
i
z
e

r
u
n
n
i
n
g

t
i
m

e

(
s
e
c
.
)

iterations

abstraction size

running time

Figure 9: Running time of the Datalog solver and abstraction size
for pointer analysis on schroeder-m in each iteration.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

 0

 500

 1000

 1500

 2000

 2500

 3000

a
b
s
t
r
a
c
t
i
o
n

s
i
z
e

r
u
n
n
i
n
g

t
i
m

e

(
s
e
c
.
)

iterations

abstraction size

running time

Figure 10: Running time of the Datalog solver and abstraction size
for typestate analysis on schroeder-m in each iteration.

time in Figure 9 indicates that the abstractions chosen by our
approach are small enough to limit this exponential growth.

Performance of MAXSAT solver. Table 4 shows statistics of
the running time of the MAXSAT solver in different iterations of
our approach. The metrics reported are the same as those for the
Datalog solver. Although the performance of MAXSAT solvers is
not completely deterministic, it is largely affected by two factors,
(1) the size of boolean constraints posed to the solver, and (2) the
structure of these constraints. For both analyses, as seen previously,
the abstraction size increases with the number of iterations while
the number of unresolved queries decreases. Growth in abstraction
size increases the complexity of the client Datalog analyses, causing
an increase in the number of boolean constraints generated. On
the other hand, fewer queries tends to simplify the structure of the
constraints to be solved.

Figure 11 shows the running time of the MAXSAT solver
across all iterations for the pointer analysis applied to our largest
benchmark schroeder-m. Initially, the solver running time shows
an increasing trend but this reverses towards the end. We believe that
the two conflicting factors of size and structure of the constraints
are at play here. While the complexity of the constraints increases
initially due to their growing size, after a certain iteration, the
number of unresolved queries becomes small enough to suitably
simplify the structure of the constraints and overwhelm the effect of

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16

r
u
n
n
i
n
g

t
i
m

e

(
s
e
c
.
)

iterations

Figure 11: Running time of the MAXSAT solver for pointer analysis
on schroeder-m in each iteration.

pointer analysis typestate analysis
variables # clauses # variables # clauses

toba-s 784k 1,485k 741k 938k
javasrc-p 470k 877k 1,022k 1,333k
weblech 1,620k 3,307k 1,374k 1,807k
hedc 1,245k 2,664k 606k 751k
antlr 3,621k 6,875k 2,318k 3,009k
luindex 2,406k 5,643k 2,829k 3,784k
lusearch 2,103k 5,011k 2,626k 3,524k
schroeder-m 6,706k 23,680k 16,293k 22,257k

Table 5: Statistics of MAXSAT formula in the final iteration.

growing constraint size. For the remaining benchmarks and analyses,
we observed a similar trend, which we omit for the sake of brevity.

Finally, Table 5 shows the number of variables and clauses in the
largest constraint that the MAXSAT solver had to solve for a given
analysis and benchmark. Though the structure of the constraints is
not apparent from these numbers, the large size of the constraints
indicates the difficulty of the problems that the solver is tackling.

6. Related Work
Our approach is broadly related to work on constraint-based analysis,
including analysis based on boolean constraints, set constraints, and
SMT constraints. Constraint-based analysis has well-known benefits
that our approach also avails, such as the ability to reason about
the analysis and leveraging sophisticated solvers to implement the
analysis. A key difference is that constraint-based analyses typically
solve constraints generated from program text, whereas our approach
solves constraints generated from an analysis run, which is itself
obtained by solving constraints generated from program text.

Our approach is also related to work on CEGAR-based model
checking and program analyses using Datalog, as we discuss next.

CEGAR-based Model Checking. CEGAR was originally pro-
posed to enable model checkers to scale to even larger state-spaces
than those possible using symbolic approaches such as BDDs [8].
Our motivation for using CEGAR, in contrast, is to enable designers
of analyses in Datalog to express flexible abstractions. Moreover, our
notions of counterexamples and refined abstractions differ radically

9

How to find a good program
abstraction automatically?

• Formulate it as a search problem.	

• Develop a good pruning strategy.	

• Predict based on the knowledge of a verifier.

