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Geo-replicated systems

• Every data centre stores a complete replica of data

• Purpose: fault tolerance, minimising latency
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Data consistency problem

...

c.inc()

• Any user can access any replica

• Updating only one replica leads to weak 
consistency - allows strange behaviours

Monday, 11 February 13



Data consistency problem

...

c.inc() c.read() : 0

• Any user can access any replica

• Updating only one replica leads to weak 
consistency - allows strange behaviours

Monday, 11 February 13



Data consistency problem

...

c.inc() c.read() : 0
c.read() : 0

• Any user can access any replica

• Updating only one replica leads to weak 
consistency - allows strange behaviours

✘

Monday, 11 February 13



Data consistency problem

...

c.inc() c.read() : 0
c.read() : 0

• Any user can access any replica

• Updating only one replica leads to weak 
consistency - allows strange behaviours

✘

Monday, 11 February 13



...

c.inc()

• Strong consistency requires updating multiple 
replicas before completing a user request

• Problematic in geo-replicated systems: links 
may go down ⇒ the network partitions
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• Strong consistency requires updating multiple 
replicas before completing a user request

• Problematic in geo-replicated systems: links 
may go down ⇒ the network partitions
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...

c.inc() c.read() : 1

Also an issue with mobile devices

Data consistency problem

Monday, 11 February 13



...

• Update other replicas later, when the connectivity is 
restored: give up strong consistency

• Wait until the connectivity is restored: give up availability

• Assume network partitions don’t happen: give up 
partition tolerance

Data consistency problem
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...

CAP Theorem [Lynch&Gilbert]: 
Achieving all three at once is impossible

• Update other replicas later, when the connectivity is 
restored: give up strong Consistency

• Wait until the connectivity is restored: give up Availability

• Assume network partitions don’t happen: give up 
Partition tolerance
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...

CAP Theorem [Lynch&Gilbert]: 
Achieving all three at once is impossible

• Update other replicas later, when the connectivity is 
restored: give up strong Consistency

• Wait until the connectivity is restored: give up Availability

• Assume network partitions don’t happen: give up 
Partition tolerance

eventual consistency

Data consistency problem
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“If no new updates are 
made to the object, 
eventually all accesses 
will return the last 
updated value”
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“If no new updates are 
made to the object, 
eventually all accesses 
will return the last 
updated value”

But updates never 
stop!

So what does this tell 
to me as a client?
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50 shades of eventual consistency

Add features
that make coping 
with weak 
consistency 
easier

Strengthen 
consistency
(somewhat)
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• Different formalisms/levels of 
abstraction: how do I compare systems?

• Tied to implementation: what do I tell 
the programmer/verification person?

• How do I combine different features/
explore the design space?

Problem

Need a formal and declarative definition for the 
semantics of eventually consistent systems
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1. How do we resolve conflicts resulting from 
concurrent updates at different replicas?

Update the local replica now, 
propagate to others later

x.write(1) x.write(2)
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x.write(1) x.write(2)

x.write(2)

{x = 2} {x = 1}

x.write(1)

Replicas diverge ⇒ eventual consistency violated

1. How do we resolve conflicts resulting from 
concurrent updates at different replicas?
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x.write(1) x.write(2)

x.write(2)

{x = 2} {x = 1}

x.write(1)

1. How do we resolve conflicts resulting from 
concurrent updates at different replicas?

Updates have to commute ⇒ convergence guaranteed
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x.write(1,t1) x.write(2,t2)

x.write(2,t2)

{x = 2} {x = 2}

x.write(1,t1)

Timestamp updates if they don’t commute 
Not only physical time [Lamport 78]

1. How do we resolve conflicts resulting from 
concurrent updates at different replicas?

t1 < t2
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• Lots more interesting ways to make operations 
commutative and specify a conflict resolution 
policy (an example shortly)

• More complicated data types than counters or 
read/write registers: sets, graphs, sequences, file 
systems [Shapiro+ 2011]

• Every object in the database can be assigned a 
replicated data type ➔ conflict resolution policy

Replicated data types
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2. Does a user’s knowledge change in line with the 
system evolution?

c.inc()

c.read() : 0

Thread ➔ Session

⇧
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access.write(all)

access.write(noboss)

post.write(photo)

2. Does a user’s knowledge change in line with the 
system evolution?
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access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

2. Does a user’s knowledge change in line with the 
system evolution?
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Formalising eventual consistency

1. How do we resolve conflicts resulting from 
concurrent updates at different replicas?

2. Does a user’s knowledge change in line with 
the system evolution?

• First, define a notion of an execution

• Weak consistency ➜ straightforward 
interleaving semantics doesn’t work 

• Similar to axiomatic memory models
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Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

Session 1 Session 2

soar
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Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

Actions

access.write(all)

Session 1 Session 2

soar

What happens on the interface client/database
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Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis
Session 
order

access.write(all)

Session 1 Session 2

soar

The order of submission to the database by a session
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Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

so so
vis

vis

access.write(all)

Session 1 Session 2

soar

post.read() : photo

access.read() : all
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Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

so so
vis

vis

Visibility orderaccess.write(all)

Session 1 Session 2

soar

The update is visible to the session: has been 
delivered to the replica it is connected to

post.read() : photo

access.read() : all
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Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

Visibility orderaccess.write(all)

Session 1 Session 2

soar

Affects the results of operations

vis
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Execution: (A, so, vis, ar)

so so
vis

vis

Session 1 Session 2

soar

access.write(noboss)

post.write(photo)

access.write(all)

vis

post.read() : photo

access.read() : noboss

Monday, 11 February 13



Execution: (A, so, vis, ar)

so so
vis

vis

Session 1 Session 2

soarArbitration 
order

The order of timestamps, used for conflict resolution

access.write(noboss)

post.write(photo)

access.write(all)

vis

post.read() : photo

access.read() : noboss
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Execution: (A, so, vis, ar)

so so
vis

vis

Session 1 Session 2

soar

access.write(noboss)

post.write(photo)

access.write(all)

vis

post.read() : photo

access.read() : noboss
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System specification = set of valid executions

1. How do we resolve conflicts resulting from 
concurrent updates at different replicas?

Data type specification

2. Does a user’s knowledge change in line with 
the system evolution?

Consistency axioms

Monday, 11 February 13



System specification = set of valid executions

1. How do we resolve conflicts resulting from 
concurrent updates at different replicas?

Data type specification

2. Does a user’s knowledge change in line with 
the system evolution?

Consistency axioms

Monday, 11 February 13



System specification = set of valid executions

1. How do we resolve conflicts resulting from 
concurrent updates at different replicas?

Data type specification

2. Does a user’s knowledge change in line with 
the system evolution?

Consistency axioms

Monday, 11 February 13



Data type specification

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

• How do I compute the return value of an action a?

• Only actions visible to a are important: have been delivered 
to the replica performing a
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Data type specification

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

• How do I compute the return value of an action a?

• Only actions visible to a are important: have been delivered 
to the replica performing a

• Context of a - projection of the execution onto such actions
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Data type specification

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

QUERY. 8a 2 A. retval(a) = Ftype(a)(ctxt(a))

F: context of a → return value of a
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Data type specification

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

F for read-write registers: sort 
all actions according to ar and 
return the last value written

QUERY. 8a 2 A. retval(a) = Ftype(a)(ctxt(a))

F: context of a → return value of a
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Counter data type

counter.inc()

counter.read() : 3

vis

counter.inc()

vis

F: apply standard counter operations in any order 
Commutative ➜ ar is not used

counter.inc()

vis

F: context of a → return value of a

ar

ar
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s.add(x) s.remove(x)

A set data type

s = {x}

?
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s.add(x) s.remove(x)

A set data type

s = {x}

?
Remove wins:  s.add(x); s.remove(x) ➜ s = {}

Add wins:        s.remove(x); s.add(x) ➜ s = {x}
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s.add(x) s.remove(x)

A set data type

s = {x}

?
Remove wins:  s.add(x); s.remove(x) ➜ s = {}

Add wins:        s.remove(x); s.add(x) ➜ s = {x}

• Time-stamping is not always the best solution

• Application semantics might prefer a given outcome: 
add wins for a shopping cart
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s.get() : {x}

vis vis

s.add(x)

vis

s.remove(x)s.add(x) vis

Add-wins set

F: remove cancels out only vis-preceding adds
If you saw it, it’s not a conflict

F: context of a → return value of a
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s.get() : {}

vis vis

s.add(x)

vis

s.remove(x)s.add(x) vis

Add-wins set

F: remove cancels out only vis-preceding adds
If you saw it, it’s not a conflict

F: context of a → return value of a
vis
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System specification = set of valid executions

1. How do we resolve conflicts resulting from 
concurrent updates at different replicas?

Data type specification

2. Does a user’s knowledge change in line with 
the system evolution?

Consistency axioms
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Basic eventual consistency

Session guarantees

Per-object causal consistency

Causal consistency

Strong consistency

Axioms
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Formalising “eventual”

EVENTUAL.
8a 2 A.¬(9 infinitely many b 2 A. sameobj(a, b) ^ ¬(a vis�! b))

An action cannot be invisible to infinitely many 
actions on the same object
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Formalising “eventual”

c.inc()
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Formalising “eventual”

c.inc()
c.read() : 0

...
c.read() : 1

c.inc()

EVENTUAL.
8a 2 A.¬(9 infinitely many b 2 A. sameobj(a, b) ^ ¬(a vis�! b))

An action cannot be invisible to infinitely many 
actions on the same object
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Strengthening consistency

c.inc()

c.read() : 1

so vis

READ YOUR WRITES: so \ sameobj ✓ vis

General principle: mandate that certain actions be 
visible by including additional edges into vis

c.inc()
c.read() : 0

✘
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access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

How do we disallow this?
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access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

How do we disallow this?

write(noboss) happened-before the read,
but the read didn’t see it
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access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

How do we disallow this?

Mandate that all actions that 
happened before have to be visible
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so

a0

a1

vis

so

a2

a3

vis

so

an-1

an

vis

...

Happens-before relation:

Causal consistency

hb = (so [ vis)+

CAUSAL CONSISTENCY:

(hb \ sameobj) ✓ vis

(hb \ sameobj) ✓ ar
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vis

so

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so

Causal consistency

hb = (so [ vis)+

CAUSAL CONSISTENCY:

(hb \ sameobj) ✓ vis

(hb \ sameobj) ✓ ar

Happens-before relation:
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vis

so

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so

Causal consistency

hb = (so [ vis)+

CAUSAL CONSISTENCY:

(hb \ sameobj) ✓ vis

(hb \ sameobj) ✓ ar

vis

✘

Happens-before relation:
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Technical take-aways
• Ways in which the database processes requests 

specified declaratively by vis and ar

• Conflict resolution policies specified by functions 
of vis and ar

• Consistency strengthened by including additional 
edges into vis or ar

READ YOUR WRITES:

so \ sameobj ✓ vis

CAUSAL CONSISTENCY:

(hb \ sameobj) ✓ vis

(hb \ sameobj) ✓ ar
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What does this buy us?

• Exploiting testing and verification technology developed 
for weak memory models

Throw the axiomatic model at a SAT solver to do bounded 
model checking

• Letting the programmer switch between different types 
of eventual consistency within the same system 
implementation

E.g., using fences, like in weak memory

• Compositional reasoning about eventually consistent 
systems
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Draft paper available at

http://www.cs.ox.ac.uk/people/
hongseok.yang/Public/Publications.html

The End
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