
Understanding Eventual
Consistency

Hongseok Yang
University of Oxford

Joint work with Sebastian Burckhardt (MSR), Alexey Gotsman (IMDEA)

Monday, 11 February 13

Monday, 11 February 13

Geo-replicated systems

• Every data centre stores a complete replica of data

• Purpose: fault tolerance, minimising latency

Monday, 11 February 13

Geo-replicated systems

• Every data centre stores a complete replica of data

• Purpose: fault tolerance, minimising latency

✘

Monday, 11 February 13

Geo-replicated systems

• Every data centre stores a complete replica of data

• Purpose: fault tolerance, minimising latency

✘

Monday, 11 February 13

Data consistency problem

...

c.inc()

• Any user can access any replica

• Updating only one replica leads to weak
consistency - allows strange behaviours

Monday, 11 February 13

Data consistency problem

...

c.inc() c.read() : 0

• Any user can access any replica

• Updating only one replica leads to weak
consistency - allows strange behaviours

Monday, 11 February 13

Data consistency problem

...

c.inc() c.read() : 0
c.read() : 0

• Any user can access any replica

• Updating only one replica leads to weak
consistency - allows strange behaviours

✘

Monday, 11 February 13

Data consistency problem

...

c.inc() c.read() : 0
c.read() : 0

• Any user can access any replica

• Updating only one replica leads to weak
consistency - allows strange behaviours

✘

Monday, 11 February 13

...

c.inc()

• Strong consistency requires updating multiple
replicas before completing a user request

• Problematic in geo-replicated systems: links
may go down ⇒ the network partitions

Data consistency problem

Monday, 11 February 13

...

c.inc() c.read() : 1

• Strong consistency requires updating multiple
replicas before completing a user request

• Problematic in geo-replicated systems: links
may go down ⇒ the network partitions

Data consistency problem

Monday, 11 February 13

...

c.inc() c.read() : 1

• Strong consistency requires updating multiple
replicas before completing a user request

• Problematic in geo-replicated systems: links
may go down ⇒ the network partitions

Data consistency problem

Monday, 11 February 13

...

c.inc() c.read() : 1

Also an issue with mobile devices

Data consistency problem

Monday, 11 February 13

...

• Update other replicas later, when the connectivity is
restored: give up strong consistency

• Wait until the connectivity is restored: give up availability

• Assume network partitions don’t happen: give up
partition tolerance

Data consistency problem

Monday, 11 February 13

...

CAP Theorem [Lynch&Gilbert]:
Achieving all three at once is impossible

• Update other replicas later, when the connectivity is
restored: give up strong Consistency

• Wait until the connectivity is restored: give up Availability

• Assume network partitions don’t happen: give up
Partition tolerance

Data consistency problem

Monday, 11 February 13

...

CAP Theorem [Lynch&Gilbert]:
Achieving all three at once is impossible

• Update other replicas later, when the connectivity is
restored: give up strong Consistency

• Wait until the connectivity is restored: give up Availability

• Assume network partitions don’t happen: give up
Partition tolerance

eventual consistency

Data consistency problem

Monday, 11 February 13

“If no new updates are
made to the object,
eventually all accesses
will return the last
updated value”

Monday, 11 February 13

“If no new updates are
made to the object,
eventually all accesses
will return the last
updated value”

But updates never
stop!

So what does this tell
to me as a client?

Monday, 11 February 13

50 shades of eventual consistency

Add features
that make coping
with weak
consistency
easier

Strengthen
consistency
(somewhat)

Monday, 11 February 13

• Different formalisms/levels of
abstraction: how do I compare systems?

• Tied to implementation: what do I tell
the programmer/verification person?

• How do I combine different features/
explore the design space?

Problem

Need a formal and declarative definition for the
semantics of eventually consistent systems

Monday, 11 February 13

1. How do we resolve conflicts resulting from
concurrent updates at different replicas?

Update the local replica now,
propagate to others later

x.write(1) x.write(2)

Monday, 11 February 13

x.write(1) x.write(2)

1. How do we resolve conflicts resulting from
concurrent updates at different replicas?

Monday, 11 February 13

x.write(1) x.write(2)

x.write(2)

{x = 2} {x = 1}

x.write(1)

Replicas diverge ⇒ eventual consistency violated

1. How do we resolve conflicts resulting from
concurrent updates at different replicas?

Monday, 11 February 13

x.write(1) x.write(2)

x.write(2)

{x = 2} {x = 1}

x.write(1)

1. How do we resolve conflicts resulting from
concurrent updates at different replicas?

Updates have to commute ⇒ convergence guaranteed

Monday, 11 February 13

x.write(1,t1) x.write(2,t2)

x.write(2,t2)

{x = 2} {x = 2}

x.write(1,t1)

Timestamp updates if they don’t commute
Not only physical time [Lamport 78]

1. How do we resolve conflicts resulting from
concurrent updates at different replicas?

t1 < t2

Monday, 11 February 13

• Lots more interesting ways to make operations
commutative and specify a conflict resolution
policy (an example shortly)

• More complicated data types than counters or
read/write registers: sets, graphs, sequences, file
systems [Shapiro+ 2011]

• Every object in the database can be assigned a
replicated data type ➔ conflict resolution policy

Replicated data types

Monday, 11 February 13

2. Does a user’s knowledge change in line with the
system evolution?

c.inc()

c.read() : 0

Thread ➔ Session

⇧

Monday, 11 February 13

access.write(all)

access.write(noboss)

post.write(photo)

2. Does a user’s knowledge change in line with the
system evolution?

Monday, 11 February 13

access.write(all)

access.write(noboss)

post.write(photo)

2. Does a user’s knowledge change in line with the
system evolution?

Monday, 11 February 13

access.write(all)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

2. Does a user’s knowledge change in line with the
system evolution?

Monday, 11 February 13

Formalising eventual consistency

1. How do we resolve conflicts resulting from
concurrent updates at different replicas?

2. Does a user’s knowledge change in line with
the system evolution?

• First, define a notion of an execution

• Weak consistency ➜ straightforward
interleaving semantics doesn’t work

• Similar to axiomatic memory models

Monday, 11 February 13

Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

Session 1 Session 2

soar

Monday, 11 February 13

Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

Actions

access.write(all)

Session 1 Session 2

soar

What happens on the interface client/database
Monday, 11 February 13

Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

Session 1 Session 2

soar

Monday, 11 February 13

Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis
Session
order

access.write(all)

Session 1 Session 2

soar

The order of submission to the database by a session
Monday, 11 February 13

Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

so so
vis

vis

access.write(all)

Session 1 Session 2

soar

post.read() : photo

access.read() : all

Monday, 11 February 13

Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

so so
vis

vis

Visibility orderaccess.write(all)

Session 1 Session 2

soar

The update is visible to the session: has been
delivered to the replica it is connected to

post.read() : photo

access.read() : all

Monday, 11 February 13

Execution: (A, so, vis, ar)

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

Visibility orderaccess.write(all)

Session 1 Session 2

soar

Affects the results of operations

vis

Monday, 11 February 13

Execution: (A, so, vis, ar)

so so
vis

vis

Session 1 Session 2

soar

access.write(noboss)

post.write(photo)

access.write(all)

vis

post.read() : photo

access.read() : noboss

Monday, 11 February 13

Execution: (A, so, vis, ar)

so so
vis

vis

Session 1 Session 2

soarArbitration
order

The order of timestamps, used for conflict resolution

access.write(noboss)

post.write(photo)

access.write(all)

vis

post.read() : photo

access.read() : noboss

Monday, 11 February 13

Execution: (A, so, vis, ar)

so so
vis

vis

Session 1 Session 2

soar

access.write(noboss)

post.write(photo)

access.write(all)

vis

post.read() : photo

access.read() : noboss

Monday, 11 February 13

System specification = set of valid executions

1. How do we resolve conflicts resulting from
concurrent updates at different replicas?

Data type specification

2. Does a user’s knowledge change in line with
the system evolution?

Consistency axioms

Monday, 11 February 13

System specification = set of valid executions

1. How do we resolve conflicts resulting from
concurrent updates at different replicas?

Data type specification

2. Does a user’s knowledge change in line with
the system evolution?

Consistency axioms

Monday, 11 February 13

System specification = set of valid executions

1. How do we resolve conflicts resulting from
concurrent updates at different replicas?

Data type specification

2. Does a user’s knowledge change in line with
the system evolution?

Consistency axioms

Monday, 11 February 13

Data type specification

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

• How do I compute the return value of an action a?

• Only actions visible to a are important: have been delivered
to the replica performing a

Monday, 11 February 13

Data type specification

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

• How do I compute the return value of an action a?

• Only actions visible to a are important: have been delivered
to the replica performing a

• Context of a - projection of the execution onto such actions

Monday, 11 February 13

Data type specification

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

QUERY. 8a 2 A. retval(a) = Ftype(a)(ctxt(a))

F: context of a → return value of a

Monday, 11 February 13

Data type specification

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

F for read-write registers: sort
all actions according to ar and
return the last value written

QUERY. 8a 2 A. retval(a) = Ftype(a)(ctxt(a))

F: context of a → return value of a

Monday, 11 February 13

Counter data type

counter.inc()

counter.read() : 3

vis

counter.inc()

vis

F: apply standard counter operations in any order
Commutative ➜ ar is not used

counter.inc()

vis

F: context of a → return value of a

ar

ar

Monday, 11 February 13

s.add(x) s.remove(x)

A set data type

s = {x}

?

Monday, 11 February 13

s.add(x) s.remove(x)

A set data type

s = {x}

?
Remove wins: s.add(x); s.remove(x) ➜ s = {}

Add wins: s.remove(x); s.add(x) ➜ s = {x}

Monday, 11 February 13

s.add(x) s.remove(x)

A set data type

s = {x}

?
Remove wins: s.add(x); s.remove(x) ➜ s = {}

Add wins: s.remove(x); s.add(x) ➜ s = {x}

• Time-stamping is not always the best solution

• Application semantics might prefer a given outcome:
add wins for a shopping cart

Monday, 11 February 13

s.get() : {x}

vis vis

s.add(x)

vis

s.remove(x)s.add(x) vis

Add-wins set

F: remove cancels out only vis-preceding adds
If you saw it, it’s not a conflict

F: context of a → return value of a

Monday, 11 February 13

s.get() : {}

vis vis

s.add(x)

vis

s.remove(x)s.add(x) vis

Add-wins set

F: remove cancels out only vis-preceding adds
If you saw it, it’s not a conflict

F: context of a → return value of a
vis

Monday, 11 February 13

System specification = set of valid executions

1. How do we resolve conflicts resulting from
concurrent updates at different replicas?

Data type specification

2. Does a user’s knowledge change in line with
the system evolution?

Consistency axioms

Monday, 11 February 13

Basic eventual consistency

Session guarantees

Per-object causal consistency

Causal consistency

Strong consistency

Axioms

Monday, 11 February 13

Formalising “eventual”

EVENTUAL.
8a 2 A.¬(9 infinitely many b 2 A. sameobj(a, b) ^ ¬(a vis�! b))

An action cannot be invisible to infinitely many
actions on the same object

Monday, 11 February 13

Formalising “eventual”

c.inc()
c.read() : 0

EVENTUAL.
8a 2 A.¬(9 infinitely many b 2 A. sameobj(a, b) ^ ¬(a vis�! b))

An action cannot be invisible to infinitely many
actions on the same object

Monday, 11 February 13

Formalising “eventual”

c.inc()
c.read() : 0

...
c.read() : 1

c.inc()

EVENTUAL.
8a 2 A.¬(9 infinitely many b 2 A. sameobj(a, b) ^ ¬(a vis�! b))

An action cannot be invisible to infinitely many
actions on the same object

Monday, 11 February 13

Strengthening consistency

c.inc()

c.read() : 1

so vis

READ YOUR WRITES: so \ sameobj ✓ vis

General principle: mandate that certain actions be
visible by including additional edges into vis

c.inc()
c.read() : 0

✘

Monday, 11 February 13

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

How do we disallow this?

Monday, 11 February 13

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so so
vis

vis

access.write(all)

soar

How do we disallow this?

write(noboss) happened-before the read,
but the read didn’t see it

Monday, 11 February 13

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : noboss

so so
vis

vis

access.write(all)

soar

vis

How do we disallow this?

Mandate that all actions that
happened before have to be visible

Monday, 11 February 13

so

a0

a1

vis

so

a2

a3

vis

so

an-1

an

vis

...

Happens-before relation:

Causal consistency

hb = (so [vis)+

CAUSAL CONSISTENCY:

(hb \ sameobj) ✓ vis

(hb \ sameobj) ✓ ar

Monday, 11 February 13

vis

so

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so

Causal consistency

hb = (so [vis)+

CAUSAL CONSISTENCY:

(hb \ sameobj) ✓ vis

(hb \ sameobj) ✓ ar

Happens-before relation:

Monday, 11 February 13

vis

so

access.write(noboss)

post.write(photo)

post.read() : photo

access.read() : all

so

Causal consistency

hb = (so [vis)+

CAUSAL CONSISTENCY:

(hb \ sameobj) ✓ vis

(hb \ sameobj) ✓ ar

vis

✘

Happens-before relation:

Monday, 11 February 13

Technical take-aways
• Ways in which the database processes requests

specified declaratively by vis and ar

• Conflict resolution policies specified by functions
of vis and ar

• Consistency strengthened by including additional
edges into vis or ar

READ YOUR WRITES:

so \ sameobj ✓ vis

CAUSAL CONSISTENCY:

(hb \ sameobj) ✓ vis

(hb \ sameobj) ✓ ar

Monday, 11 February 13

What does this buy us?

• Exploiting testing and verification technology developed
for weak memory models

Throw the axiomatic model at a SAT solver to do bounded
model checking

• Letting the programmer switch between different types
of eventual consistency within the same system
implementation

E.g., using fences, like in weak memory

• Compositional reasoning about eventually consistent
systems

Monday, 11 February 13

Draft paper available at

http://www.cs.ox.ac.uk/people/
hongseok.yang/Public/Publications.html

The End

Monday, 11 February 13

http://software.imdea.org/~gotsman/
http://software.imdea.org/~gotsman/
http://software.imdea.org/~gotsman/
http://software.imdea.org/~gotsman/

