Understanding Eventual
Consistency

Hongseok Yang

University of Oxford

Joint work with Sebastian Burckhardt (MSR), Alexey Gotsman (IMDEA)

4 » + @ www.amazon.co.uk

C_;ng

amazonoouk HONGSEOK's Amazon Today'sDeals GiftCards Sell Help
S —

Shop by N
Department Search | A

MP3s & Cloud Player

Amazon Cloud Drive

Appstore for Android Meet the

Books Kindle Fam||y
Music, Games, Fim & TV

Kindle Kindle Kindle pdpo:vwhlh:
Electronics » £69 » from £109
Computers & Office

Home, Garden & Pets
Toys, Children & Baby
Clothes, Shoes & Watches
Sports & Outdoors
Grocery, Health & Beauty
DIY, Tools & Car

Amazon Family Trade-in Clothing Store

FASHION i
More Items to Consider

You viewed Custiomers who viewed t™hs also viewed

» Full Shop Directory

£ INSIOR !

@

The Signal and the Noise: The Thinking Statistically

arma

1
& ;; &
a1l
Antifragile: How to Live in a Bad Pharma: How drug

Aftand.. » Url Bram World... companies...
* Nate Siver Paperback > Nassim Taleb > Ben Goldacre
Hardcover IR (9) Hardcover Paperback

L drdrdrde MRy fAnoan drdrdede 2R drdedededs ran

Amazon MP3 Cloud Player Kindle LOVEFILM

Appstore for Android Audible

Kindle Fire HD
» from £159

> Kingie ACCessdrms

Amazon Prime Subscribe & Save

»Clothing

up 10 60% Off
»Shoes & Bags
up 10 80% Off
» Jewellery

up to 70% Off
»Watches

up to 75% Off

K INSIDE !
19 e,
3 \\I(0\ \‘
-~ ’ \.\ I: o
-

The Thecry That Would Not Signal And Noise

Die: How. » John Griesemer
» Sharon Bertsch McGrayne Paperback
Paparback R (1)
Ordrdry o P

January Deals :.....

Hello, HONGSEOK 2 Wish
Your Account v .\.'!Baskot v List ~

New Resolutions

> See more

_oin amazoniamily

Save up to £50 every month
and get three months’ FREE
One-Day Delivery

Just some of the benefits of Amazon Famiy
» Become 2 membey

Advertsement |

Customised
Photo Calendar
with Delivery '8

See the deal .wa\ ocar

Particle Physics: A Very Short...

s In this compelling introduction o the
fundamental particles that make up the
universe, Frank... Read more
£7.00 £5.03

Monday, 11 February 13

Geo-replicated systems

_ >

® Every data centre stores a complete replica of data

® Purpose: fault tolerance, minimising latency
EE——m—m————

Monday, 11 February 13

! ' l .
-’ ! ,
L)

Geo-replicated systems

g >

® Every data centre stores a complete replica of data

® Purpose: fault tolerance, minimising latency
E—————————m——

Geo-replicated systems

- ~
- -
- ~
- s
“ ~

® Every data centre stores a complete replica of data

® Purpose: fault tolerance, minimising latency

—

Monday, 11 February 13

Data consistency problem

-

-

@ c.in[:()

® Any user can access any replica

-

- L

-

=
\

® Updating only one replica leads to weak
consistency - allows strange behaviours

Monday, 11 February 13

Data consistency problem

- -

- =

|
@ c.inc() c.reaL() :0 Q

® Any user can access any replica

.

F,
o

® Updating only one replica leads to weak
consistency - allows strange behaviours

Monday, 11 February 13

Data consistency problem

> -

T L
@ c.inc() / c.reaL():O Q

c.read() : 0

X

® Any user can access any replica

® Updating only one replica leads to weak
consistency - allows strange behaviours

Data consistency problem

> -

T L
@ c.inc() / c.reaL():O Q

c.read() : 0

X

® Any user can access any replica

® Updating only one replica leads to weak
consistency - allows strange behaviours

Data consistency problem

8 c.inc()

® Strong consistency requires updating multiple
replicas before completing a user request

® Problematic in geo-replicated systems: links
may go down = the network partitions

Monday, 11 February 13

Data consistency problem

— \ — / .

| |
@ c.inc() c.read() : | Q\

® Strong consistency requires updating multiple
replicas before completing a user request

® Problematic in geo-replicated systems: links
may go down = the network partitions

Monday, 11 February 13

Data consistency problem

-8 - B

A \ -

| |
@ c.inc() c.read() : | Q\

® Strong consistency requires updating multiple
replicas before completing a user request

® Problematic in geo-replicated systems: links
may go down = the network partitions

Monday, 11 February 13

Data consistency problem

8 c.inc()

Also an issue with mobile devices

Data consistency problem

-

-

-

— i1 :
i =
\

___—

-

-

® Update other replicas later, when the connectivity is

restored: give up strong consistency

® Wait until the connectivity is restored: give up availability

® Assume network partitions don’t happen: give up
partition tolerance

Monday, 11 February 13

Data consistency problem

= N = D =

® Update other replicas later, when the connectivity is
restored: give up strong Consistency

® Wit until the connectivity is restored: give up Availability

® Assume network partitions don’t happen: give up
Partition tolerance

CAP Theorem [Lynch&Gilbert]:
Achieving all three at once is impossible

Monday, 11 February 13

Data consistency problem

-
- e -

= N = D =

L e .

Update other replicas later, when the connectivity is

restored: give up strengCeonsistency eventual consistency

Wait until the connectivity is restored: give up Availability

Assume network partitions don’t happen: give up
Partition tolerance

CAP Theorem [Lynch&Gilbert]:
Achieving all three at once is impossible

Monday, 11 Februa

ry 13

“If no new updates are
made to the object,
eventually all accesses
will return the last
updated value”

practice

DOI:10.1145/1435417.1435432

Building reliable distributed systems
at a worldwide scale demands trade-offs
between consistency and availability.

| BY WERNER VOGELS

Eventually
Consistent

AT THE FOUNDATION of Amazon's cloud computing are
infrastructure services such as Amazon’s S3 (Simple
Storage Service), SimpleDB, and EC2 (Elastic Compute
Cloud) that provide the resources for constructing
Internet-scale computing platforms and a great variety
of applications. The requirements placed on these
infrastructure services are very strict; they need to
score high marks in the areas of security, scalability,
availability, performance, and cost-effectiveness, and
they need to meet these requirements while serving
millions of customers around the globe, continuously.
Under the covers these services are massive
distributed systems that operate on a worldwide scale.
I'his scale creates additional challenges, because
when a system processes trillions and trillions of
requests, events that normally have a low probability
of occurrence are now guaranteed to happen and
must be accounted for upfront in the design and
architecture of the system. Given the worldwide

scope of these systems, we use replication techniques

ubiquitously to guarantee consistent performance and
high availability. Although replication brings us closer
to our goals, it cannot achieve them in a perfectly

transparent manner; under a number
of conditions the customers of these
services will be confronted with the
consequences of using replication
techniques inside the services.

One of the ways in which this mani-
fests itself is in the type of data con-
sistency that is provided, particularly
when many widespread distributed
systems provide an eventual consis-
tency model in the context of data rep-
lication. When designing these large-
scale systems at Amazon, we use a set
of guiding principles and abstractions
related to large-scale data replication
and focus on the trade-offs between
high availability and data consistency.
Here, 1 present some of the relevant
background that has informed our ap-
proach to delivering reliable distrib-
uted systems that must operate on a
global scale. (An earlier version of this
article appeared as a posting on the
“All Things Distributed”™ Weblog and
was greatly improved with the help of
its readers.)

Historical Perspective

In an ideal world there would be only
one consistency model: when an up-
date is made all observers would see
that update. The first time this sur-
faced as difficult to achieve was in the
database systems of the late 1970s.
The best “period piece” on this topic
is “Notes on Distributed Databases™
by Bruce Lindsay et al.” It lays out the
fundamental principles for database
replication and discusses a number
of techniques that deal with achieving
consistency, Many of these techniques
try to achieve distribution transparen-
cy—that is, to the user of the system it
appears as if there is only one system
instead of a number of collaborating
systems. Many systems during this
time took the approach that it was bet-
ter to fail the complete system than to
break this transparency.*

In the mid-1990s, with the rise of
larger Internet systems, these practic-
¢s were revisited. At that time people
began to consider the idea that avail-
ability was perhaps the most impor-

Monday, 11 February 13

“If no new updates are
made to the object,
eventually all accesses
will return the last
updated value”

But updates never
stop!

So what does this tell
to me as a client?

practice

DOI:10.1145/1435417.1435432

Building reliable distributed systems
at a worldwide scale demands trade-offs
between consistency and availability.

| BY WERNER VOGELS

Eventually
Consistent

AT THE FOUNDATION of Amazon’s cloud computing are
infrastructure services such as Amazon’s S3 (Simple
Storage Service), SimpleDB, and EC2 (Elastic Compute
Cloud) that provide the resources for constructing
Internet-scale computing platforms and a great variet)
of applications. The requirements placed on these
infrastructure services are very strict; they need to
score high marks in the areas of security, scalability,
availability, performance, and cost-effectiveness, and
they need to meet these requirements while serving
millions of customers around the globe, continuously.
Under the covers these services are massive
distributed systems that operate on a worldwide scale.
his scale creates additional challenges, because
when a system processes trillions and trillions of
requests, events that normally have a low probability
of occurrence are now guaranteed to happen and
must be accounted for upfront in the design and
architecture of the system. Given the worldwide
scope of these systems, we use replication techniques
ubiquitously to guarantee consistent performance and
high availability. Although replication brings us closer

to our goals, it cannot achieve them in a perfecth

transparent manner; under a number
of conditions the customers of these
services will be confronted with the
consequences of using replication
techniques inside the services.

One of the ways in which this mani-
fests itself is in the type of data con-
sistency that is provided, particularly
when many widespread distributed
systems provide an eventual consis-
tency model in the context of data rep-
lication. When designing these large-
scale systems at Amazon, we use a set
of guiding principles and abstractions
related to large-scale data replication
and focus on the trade-offs between
high availability and data consistency.
Here, | present some of the relevant
background that has informed our ap-
proach to delivering reliable distrib-
uted systems that must operate on a
global scale. (An earlier version of this
article appeared as a posting on the
“All Things Distributed”™ Weblog and
was greatly improved with the help of
its readers.)

Historical Perspective

In an ideal world there would be only
one consistency model: when an up-
date is made all observers would see
that update. The first time this sur-
faced as difficult to achieve was in the
database systems of the late 1970s.
The best “period piece” on this topic
is “Notes on Distributed Databases™
by Bruce Lindsay et al.” It lays out the
fundamental principles for database
replication and discusses a number
of techniques that deal with achieving
consistency, Many of these techniques
try to achieve distribution transparen-
cy—that is, to the user of the system it
appears as if there is only one system
instead of a number of collaborating
systems. Many systems during this
time took the approach that it was bet-
ter to fail the complete system than to
break this transparency.*

In the mid-1990s, with the rise of
larger Internet systems, these practic-
¢s were revisited. At that time people
began to consider the idea that avail-
ability was perhaps the most impor-

Monday, 11 February 13

50 shades of eventual consistency

Session Guarantees for Weakly Consistent Replicated Data

Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M. Theimer,
and Brent B. Welch

Don’t Settle for Eventual:
Scalable Causal Consistency for Wide-Area Storage with COPS

Wyatt Lloyd*, Michael J. Freedman*, Michael Kaminsky*, and David G. Andersent
*Princeton University, Intel Labs, *Carnegie Mellon University

Conflict-free Replicated Data Types *

Mare Shapiro!®, Nuno Preguica®!, Carlos Baquero®, and Marek Zawirski'-*

! INRIA, Paris, France
2 CITI, Universidade Nova de Lisboa, Portugal
* Universidade do Minho, Portugal
i UPMC, Paris, France
® LIPG, Paris, France

Transactional storage for geo-replicated systems

Yair Sovran® Russell Powers Marcos K. Aguilerai Jinyang Li*
*New York University " Microsoft Research Silicon Valley

Strengthen
consistency
(somewhat)

Add features

that make coping
with weak
consistency
easier

Monday, 11 February 13

Problem

® Different formalisms/levels of
abstraction: how do | compare systems!?

® Tied to implementation:whatdo | tell -
the programmer/verification person!

&

® How do | combine different features/
explore the design space?

Need a formal and declarative definition for the
semantics of eventually consistent systems

Monday, 11 February 13

|. How do we resolve conflicts resulting from
concurrent updates at different replicas!?

&

A

x.write(1) x.write(2)

Update the local replica now,
propagate to others later

Monday, 11 February 13

|. How do we resolve conflicts resulting from
concurrent updates at different replicas!?

S A

x.write(1) x.write(2)

“
w

Monday, 11 February 13

|. How do we resolve conflicts resulting from
concurrent updates at different replicas!?

- -

- -

S A
x.wri:te() >< x.wri:te(2)

x.write(Z) x.write()

{X;Z} {x;l}

Replicas diverge = eventual consistency violated

Monday, 11 February 13

|. How do we resolve conflicts resulting from
concurrent updates at different replicas!?

- -

- -

S A
x.wri:te() >< x.wri:te(2)

x.write(Z) x.write()

{X;Z} {x;l}

Updates have to commute = convergence guaranteed

Monday, 11 February 13

|. How do we resolve conflicts resulting from
concurrent updates at different replicas!?

£

@ X'Writ;(l’t')><X.Wri;:e 2.0) -

X.Write(Z,tZ) t| < t2

x.write(l,t|)

{X;Z} {X;Z}

Timestamp updates if they don’t commute
Not only physical time [Lamport 78]

Replicated data types

® | ots more interesting ways to make operations
commutative and specify a conflict resolution
policy (an example shortly)

® More complicated data types than counters or
read/write registers: sets, graphs, sequences, file
systems [Shapiro+ 201 1]

® Every object in the database can be assigned a
replicated data type => conflict resolution policy

2. Does a user’s knowledge change in line with the
system evolution!?

& |

c.inc()

c.read() : 0
>
Thread = Session

Monday, 11 February 13

2. Does a user’s knowledge change in line with the
system evolution?

£ g

&

access.write(noboss)

access.write(all)

post.write(photo)

Monday, 11 February 13

2. Does a user’s knowledge change in line with the
system evolution?

£ §

&

access.write(noboss)

access.write(all) >

post.write(photo)

Monday, 11 February 13

2. Does a user’s knowledge change in line with the
system evolution?

£ §

&

access.write(noboss)

access.write(all) >

post.read() : photo

post.write(photo) access.read() : all

Monday, 11 February 13

Formalising eventual consistency

|. How do we resolve conflicts resulting from
concurrent updates at different replicas!?

2. Does a user’s knowledge change in line with
the system evolution!?

® First, define a notion of an execution

® VWeak consistency =¥ straightforward
interleaving semantics doesn’t work

® Similar to axiomatic memory models

Monday, 11 February 13

Execution: (A, so, vis, ar)

access.write(all)

ar SO

. Y
access.write(noboss)

SO

post.write(pﬁoto)

Session |

Vis

post.read() : photo

VIS
SO

v
access.read() : all

Session 2

Execution: (A, so, vis, ar)

access.write(all)

ar

SO

. Y
access.write(noboss)

SO

post.write(pﬁoto)

Session |

Vis

Actions

post.read() : photo

VIS
SO

v
access.read() : all

Session 2

What happens on the interface client/database

Monday, 11 February 13

Execution: (A, so, vis, ar)

access.write(all)

ar SO

. Y
access.write(noboss)

SO

post.write(pﬁoto)

Session |

Vis

post.read() : photo

VIS
SO

v
access.read() : all

Session 2

Execution: (A, so, vis, ar)

access.write(all)

ar

SO

access.write(noboss) post.read() : photo
Session > so vis "

order Vis

post.write(photo) access.read() : all

Session |

Session 2

The order of submission to the database by a session

Monday, 11 February 13

Execution: (A, so, vis, ar)

access.write(all)

ar SO

. Y
access.write(noboss)

SO

post.write(pﬁoto)

Session |

Vis

post.read() : photo

VIS
SO

v
access.read() : all

Session 2

Execution: (A, so, vis, ar)

access.write(all) Visibility order

ar SO

access.write(noboss) post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () :all

Session | Session 2

The update is visible to the session: has been
delivered to the replica it is connected to

Monday, 11 February 13

Execution: (A, so, vis, ar)

access.write(all)

ar SO

. Y
access.write(noboss)

SO

post.write(pﬁoto)

Session |

Vis

Visibility order

post.read() : photo

VIS
SO

v
access.read() : noboss

Session 2

Affects the results of operations

Monday, 11 February 13

Execution: (A, so, vis, ar)

access.write(all)

ar SO

. Y
access.write(noboss)

SO

post.write(pﬁoto)

Session |

Vis

post.read() : photo

VIS
SO

v
access.read() : noboss

Session 2

Execution: (/

access.write(all)

Arbitration 1 o
order

access.write(noboss)

SO

post.write(pﬁoto)

Session |

Vis

g

)

& A
x.write(l,t)) x.write(2,t2)
X.write(2,t2) x.write(l,t))

x = 2) x = 2)

post.read() : photo

VIS
SO

v
access.read() : noboss

Session 2

The order of timestamps, used for conflict resolution

Monday, 11 February 13

Execution: (A, so, vis, ar)

access.write(all)

ar SO

. Y
access.write(noboss)

SO

post.write(pﬁoto)

Session |

Vis

post.read() : photo

VIS
SO

v
access.read() : noboss

Session 2

System specification = set of valid executions

|. How do we resolve conflicts resulting from
concurrent updates at different replicas?

Data type specification

2. Does a user’s knowledge change in line with
the system evolution?

Consistency axioms

access.write(all)

access.write(noboss) post.read() : photo

post.write(pf"\oto) access.read() : noboss

Monday, 11 February 13

System specification = set

|. How do we resolve conflicts resul
concurrent updates at different re|

Data type specification

2. Does a user’s knowledge change ir
the system evolution?

Consistency axioms

access.write(all)

ar SO

———

access.write(noboss) post.read() : photo

VIS

SO SO

post.write(pl"'\oto) access.read() : noboss

Figure 1. Axioms of eventual consistency

WELL-FORMEDNESS AXIOMS
SOWF: so is the union of transitive, irreflexive and total orders
on actions by each session
VISWF: Ya,b.a — b = obj(a) = obj(b)
ARWE: Va,b.a = b = obj(a) = obj(b).
ar is transitive and irreflexive, and
ar|is—1(q) 1S a total order foralla € A

AUXILIARY RELATIONS
Per-object session order: soo = (so M sameobj)
Per-object causality order: hbo = (soo U vis)™
Causality order: hb = (so U vis)™

BASIC EVENTUAL CONSISTENCY AXIOMS
RvAL: Va € A. wval(a) = Fype(a)(cone(a))

EVENTUAL: _
Ya € A. (3 infinitely many b € A.sameobj(a,b) A ~(a =)
THINAIR: so U vis 1s acyclic

SESSION GUARANTEES
RYW (Read Your Writes): soo C vis
MR (Monotonic Reads): (vis; soo) C vis
WFRV (Writes Follow Reads in Visibility): (vis; soo®; vis) C vis
WFRA (Writes Follow Reads in Arbitration): (vis;soo”) C ar
MWYV (Monotonic Writes in Visibility): (soo;vis) C vis
MWA (Monotonic Writes in Arbitration): soo C ar

CAUSALITY AXIOMS
POCYV (Per-Object Causal Visibility): hbo C vis
POCA (Per-Object Causal Arbitration): hbo C ar
COCYV (Cross-Object Causal Visibility): (hb N sameobj) C vis
COCA (Cross-Object Causal Arbitration): hb U ar 1s acyclic

Monday, 11 February 13

System specification = set

|. How do we resolve conflicts resul
concurrent updates at different re|

Data type specification

2. Does a user’s knowledge change ir
the system evolution?

Consistency axioms

access.write(all)

ar SO

———

access.write(noboss) post.read() : photo

VIS

SO SO

post.write(pl"'\oto) access.read() : noboss

Figure 1. Axioms of eventual consistency

WELL-FORMEDNESS AXIOMS
SOWF: so is the union of transitive, irreflexive and total orders
on actions by each session
VISWE: Va,b.a = b = obj(a) = obj(b)
ARWE: Va,b.a = b = obj(a) = obj(b).

ar is transitive and irreflexive, and
ar| is a total order foralla € A

vis—1(a)

AUXILIARY RELATIONS
Per-object session order: soo = (so M sameobj)
Per-object causality order: hbo = (soo U vis)™
Causality order: hb = (so U vis)™

BASIC EVENTUAL CONSISTENCY AXIOMS
RvAL: Va € A. wval(a) = Fype(a)(cone(a))

EVENTUAL: _
Ya € A.~(3 infinitely many b € A.sameobj(a,b) A ~(a — b))
THINAIR: so U vis 1s acyclic

SESSION GUARANTEES
RYW (Read Your Writes): soo C vis
MR (Monotonic Reads): (vis: soo) C vis
WFRV (Writes Follow Reads in Visibility): (vis: soo®; vis) C vis
WFRA (Writes Follow Reads in Arbitration): (vis;soo”) C ar
MWYV (Monotonic Writes in Visibility): (soo;vis) C vis
MWA (Monotonic Writes in Arbitration): soo C ar

CAUSALITY AXIOMS
POCYV (Per-Object Causal Visibility): hbo C vis
POCA (Per-Object Causal Arbitration): hbo C ar
COCYV (Cross-Object Causal Visibility): (hb N sameobj) C vis
COCA (Cross-Object Causal Arbitration): hb U ar 1s acyclic

Monday, 11 February 13

Data type specification

® How do | compute the return value of an action a?

® Only actions visible to a are important: have been delivered
to the replica performing a

access.write(all)

ar SO

access.write(noboss) post.read() : photo

VIS

SO SO

Vis

post.write(pﬁoto) access.read () : noboss

Monday, 11 February 13

Data type specification

® How do | compute the return value of an action a?

® Only actions visible to a are important: have been delivered
to the replica performing a

e Context of a - projection of the execution onto such actions

access.write(all)

ar SO

access.write(noboss) post.read() : photo

VIS

SO SO

Vis

post.write(pr\oto) access.read () : noboss

Monday, 11 February 13

Data type specification

F: context of a — return value of a

QUERY. Va € A.retval(a) = F;

type(a) (CtXt(a))

access.write(all)

ar SO

access.write(noboss) post.read() : photo

VIS

SO SO

Vis

post.write(pr\oto) access.read () : noboss

Data type specification

F: context of a — return value of a

QUERY. Va € A.retval(a) = F;

type(a) (CtXt(a))

access.write(all) F for read-write registers: sort

all actions according to ar and
return the last value written

ar SO

access.write(noboss) post.read() : photo

VIS

SO SO

Vis

post.write(pr\oto) access.read () : noboss

Monday, 11 February 13

Counter data type

F: context of a — return value of a

ar

— -

counter.inc() counter.inc() «—— counter.inc()

Vis Vis Vis

v

counter.read() : 3

F: apply standard counter operations in any order
Commutative =¥ ar is not used

Monday, 11 February 13

A set data type

A

s.remove(x) ‘*‘

v

Q)

ol

D- ccecocoe
~~

X

N—"

N

A set data type

- s = {x} -

A

s.add(x) ? s.reﬁove(x) o

&

Remove wins: s.add(x); s.remove(x) =¥ s = {}

Add wins: s.remove(x); s.add(x) =¥ s = {x}

A set data type

= IR S
< = -
& - A
s.add(x) ? s.remove(x)

Remove wins: s.add(x); s.remove(x) =¥ s = {}
Add wins: s.remove(x); s.add(x) =¥ s = {x}

® Time-stamping is not always the best solution

® Application semantics might prefer a given outcome:
add wins for a shopping cart

Monday, 11 February 13

Add-wins set

F: context of a — return value of a

s.add(x) s.add(x) ——— s.remove(x)

Vis Vis Vis

s.get(; . {x}

F: remove cancels out only vis-preceding adds
If you saw it, it'’s not a conflict

Add-wins set

F: context of a — return value of a

Vis

— L~
s.add(x) s.add(x) —— s.remove(x)

Vis Vis Vis

s.get() : {

F: remove cancels out only vis-preceding adds
If you saw it, it'’s not a conflict

System specification = set

|. How do we resolve conflicts resul
concurrent updates at different re|

Data type specification

2. Does a user’s knowledge change ir
the system evolution?

Consistency axioms

access.write(all)

ar SO

———

access.write(noboss) post.read() : photo

VIS

SO SO

post.write(pl"'\oto) access.read() : noboss

Figure 1. Axioms of eventual consistency

WELL-FORMEDNESS AXIOMS
SOWF: so is the union of transitive, irreflexive and total orders
on actions by each session
VISWE: Va,b.a = b = obj(a) = obj(b)
ARWE: Va,b.a = b = obj(a) = obj(b).

ar is transitive and irreflexive, and
ar| is a total order foralla € A

vis—1(a)

AUXILIARY RELATIONS
Per-object session order: soo = (so M sameobj)
Per-object causality order: hbo = (soo U vis)™
Causality order: hb = (so U vis)™

BASIC EVENTUAL CONSISTENCY AXIOMS
RvAL: Va € A. wval(a) = Fype(a)(cone(a))

EVENTUAL: _
Ya € A.~(3 infinitely many b € A.sameobj(a,b) A ~(a — b))
THINAIR: so U vis 1s acyclic

SESSION GUARANTEES
RYW (Read Your Writes): soo C vis
MR (Monotonic Reads): (vis: soo) C vis
WFRV (Writes Follow Reads in Visibility): (vis: soo®; vis) C vis
WFRA (Writes Follow Reads in Arbitration): (vis;soo”) C ar
MWYV (Monotonic Writes in Visibility): (soo;vis) C vis
MWA (Monotonic Writes in Arbitration): soo C ar

CAUSALITY AXIOMS
POCYV (Per-Object Causal Visibility): hbo C vis
POCA (Per-Object Causal Arbitration): hbo C ar
COCYV (Cross-Object Causal Visibility): (hb N sameobj) C vis
COCA (Cross-Object Causal Arbitration): hb U ar 1s acyclic

Monday, 11 February 13

AXxioms

Basic eventual consistency
Session guarantees
Per-object causal consistency
Causal consistency

Strong consistency

Figure 1. Axioms of eventual consistency

WELL-FORMEDNESS AXIOMS

SOWF: so is the union of transitive, irreflexive and total orders
on actions by each session

VISWE: Va,b.a 2 b = obj(a) = obj(b)

ARWE: Va,b.a =3 b = obj(a) = obj(b).
ar is transitive and irreflexive. and
ar|is—1(q) 1S @ total order foralla € A

AUXILIARY RELATIONS
Per-object session order: soo = (so M sameobj)
Per-object causality order: hbo = (soo U vis)™
Causality order: hb = (so U vis)™

BASIC EVENTUAL CONSISTENCY AXIOMS
RvAL: Va € A. wval(a) = Fype(a)(cone(a))

EVENTUAL: _
Ya € A.~(3 infinitely many b € A.sameobj(a,b) A ~(a — b))
THINAIR: so U vis 1s acyclic

SESSION GUARANTEES
RYW (Read Your Writes): soo C vis
MR (Monotonic Reads): (vis; soo) C vis
WFRV (Writes Follow Reads in Visibility): (vis; soo®; vis) C vis
WFRA (Writes Follow Reads in Arbitration): (vis;soo®) C ar
MWYV (Monotonic Writes in Visibility): (soo;vis) C vis
MWA (Monotonic Writes in Arbitration): soo C ar

CAUSALITY AXIOMS
POCYV (Per-Object Causal Visibility): hbo C vis
POCA (Per-Object Causal Arbitration): hbo C ar
COCYV (Cross-Object Causal Visibility): (hb N sameobj) C vis
COCA (Cross-Object Causal Arbitration): hb U ar 1s acyclic

Monday, 11 February 13

Formalising “eventual”

EVENTUAL. |
Va € A.—(3 infinitely many b € A.sameobj(a,b) A —(a — b))

An action cannot be invisible to infinitely many
actions on the same object

Monday, 11 February 13

Formalising “eventual”

EVENTUAL. |
Va € A.—(3 infinitely many b € A.sameobj(a,b) A —(a — b))

An action cannot be invisible to infinitely many
actions on the same object

- -

8 c.inc() > LJJ L 5

cread() 10— A

Formalising “eventual”

EVENTUAL.
Va € A.—(3 infinitely many b € A. sameobj(a,b) A —(a vie, b))

An action cannot be invisible to infinitely many
actions on the same object

@ c.inc() rj “ne rj
cread():0—__ /
c.re;c.:l() : |

Strengthening consistency

General principle: mandate that certain actions be
visible by including additional edges into vis

READ YOUR WRITES: so N sameobj C vis

c.inc()
x@ c.inc() 3 ‘I‘l'vis
c.read() : 0 !

c.read() : |

How do we disallow this?

access.write(all)

ar SO

. Y
access.write(noboss)

SO

post.write(pﬁoto)

Vis

post.read() : photo

VIS
SO

accesg.read() : all

How do we disallow this?

access.write(all)

ar SO

access.write(noboss) post.read() : photo
post.write(photo) access.read() : all

write(noboss) happened-before the read,
but the read didn'’t see it

How do we disallow this?

access.write(all)

ar SO

. Y
access.write(hoboss

\
S
SO

post.write(photo)

post.read() : photo

VIS
SO

access.read() : noboss

Mandate that all actions that
happened before have to be visible

Causal consistency

a0 .
l Happens-before relation:
SO
a .
, hb = (so U vis)™

VIS

a2

o l
a3
Vis
CAUSAL CONSISTENCY:
dn- |

(hb M sameobj) C vis

an (hb N sameobj) C ar

Monday, 11 February 13

Causal consistency

, Happens-before relation:
access.write(noboss)

5 hb = (so U vis)™

\ 4
post.write(photo)

Vis

ost.read() : photo
P 0:p CAUSAL CONSISTENCY:

SO

v (hb M sameobj) C vis
access.read() : all

(hb M sameobj) C ar

Monday, 11 February 13

Causal consistency

, Happens-before relation:
access.write(noboss) --.._

SO \\\\ hb — (SO g VIS)‘I—
v vis s

post.write(photo)

Vis

ost.read() : photo
P 0:p CAUSAL CONSISTENCY:

SO

(hb M sameobj) C vis

4 'l
access.read() :all ”

x (hb M sameobj) C ar

Monday, 11 February 13

Technical take-aways

® Ways in which the database processes requests
specified declaratively by vis and ar

® Conflict resolution policies specified by functions
of vis and ar

s.add(x) s.add(x) —— s.remove(x)
s.get(g - {x}

® Consistency strengthened by including additional
edges into vis or ar

READ YOUR WRITES: CAUSAL CONSISTENCY:
so M sameobj C vis (hb N sameobj) C vis
(hb M sameobj) C ar

Monday, 11 February 13

What does this buy us!?

® Exploiting testing and verification technology developed
for weak memory models

Throw the axiomatic model at a SAT solver to do bounded
model checking

® | etting the programmer switch between different types
of eventual consistency within the same system
implementation

E.g., using fences, like in weak memory

® Compositional reasoning about eventually consistent
systems

Monday, 11 February 13

The End

Draft paper available at

http://www.cs.ox.ac.uk/people/
hongseok.yang/Public/Publications.html

http://software.imdea.org/~gotsman/
http://software.imdea.org/~gotsman/
http://software.imdea.org/~gotsman/
http://software.imdea.org/~gotsman/

