
Semantics of Higher-Order
Probabilistic Programs with
Continuous Distributions

Hongseok Yang
University of Oxford

Based on work with or by Chris Heunen, Ohad Kammar, Sam Staton, and
Frank Wood

Learning outcome

• Can explain what one can do with higher-
order probabilistic programming language.

• Can use measure theory to interpret prob.
prog. with continuous distributions.

• Can use quasi-Borel space to interpret
higher-order prob. prog. with conditioning.

References

1. A convenient category for higher-order
probability theory. Heunen et a. LICS’17.

2. Commutative semantics for probabilistic
programs. Staton. ESOP’17.

What is probabilistic
programming?

(Bayesian) probabilistic
modelling of data

1. Develop a new probabilistic (generative) model.

2. Design an inference algorithm for the model.

3. Using the algo., fit the model to the data.

(Bayesian) probabilistic
modelling of data

1. Develop a new probabilistic (generative) model.

2. Design an inference algorithm for the model.

3. Using the algo., fit the model to the data.

in a prob. prog. language

(Bayesian) probabilistic
modelling of data

1. Develop a new probabilistic (generative) model.

2. Design an inference algorithm for the model.

3. Using the algo., fit the model to the data.

as a program

in a prob. prog. language

(Bayesian) probabilistic
modelling of data

1. Develop a new probabilistic (generative) model.

2. Design an inference algorithm for the model.

3. Using the algo., fit the model to the data.

a generic inference algo.
of the language

as a program

in a prob. prog. language

Line fitting

Line fitting

f(x) = s*x + b

Bayesian generative model
s

b
yi

i=0..6

Bayesian generative model
s

b
yi

i=0..6

s ~ normal(0, 2)
b ~ normal(0, 6)
f(x) = s*x + b
yi ~ normal(f(i), 1)
 where i = 1 .. 5

Q: posterior of (s,b) gi
ven y1 .. y5?

Bayesian generative model

s ~ normal(0, 2)
b ~ normal(0, 6)
f(x) = s*x + b
yi ~ normal(f(i), 0.5)
 where i = 0 .. 6

Q: posterior of (s,b)
given y1 .. y5?

s

b
yi

i=0..6

Bayesian generative model
s

b
yi

i=0..6

s ~ normal(0, 2)
b ~ normal(0, 6)
f(x) = s*x + b
yi ~ normal(f(i), 0.5)
 where i = 0 .. 6

Q: posterior of (s,b) given y0=0.6,
…, y6=8.4?

Posterior of s and b given yi's

P(y0, .., y6 | s,b) × P(s,b)

 P(y0, .., y6)
P(s, b | y0, .., y6) =

Posterior of s and b given yi's

P(y0, .., y6 | s,b) × P(s,b)

 P(y0, .., y6)
P(s, b | y0, .., y6) =

Posterior of s and b given yi's

P(y0, .., y6 | s,b) × P(s,b)

 P(y0, .., y6)
P(s, b | y0, .., y6) =

Posterior of s and b given yi's

P(y0, .., y6 | s,b) × P(s,b)

 P(y0, .., y6)
P(s, b | y0, .., y6) =

Posterior of s and b given yi's

P(y0, .., y6 | s,b) × P(s,b)

 P(y0, .., y6)
P(s, b | y0, .., y6) =

Posterior of s and b given yi's

P(y0, .., y6 | s,b) × P(s,b)

 P(y0, .., y6)
P(s, b | y0, .., y6) =

(almost) Anglican program
(let [s (sample (normal 0 2))
 b (sample (normal 0 6))
 f (fn [x] (+ (* s x) b))]

 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 (predict :sb [s b]))

(almost) Anglican program
(let [s (sample (normal 0 2))
 b (sample (normal 0 6))
 f (fn [x] (+ (* s x) b))]

 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 (predict :sb [s b]))

(almost) Anglican program
(let [s (sample (normal 0 2))
 b (sample (normal 0 6))
 f (fn [x] (+ (* s x) b))]

 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])

NB: (predict :sb [s b]) should be used instead of [s b] in Anglican

Samples from prior

Samples from posterior

Semantic challenges

(let [s (sample (normal 0 2))
 b (sample (normal 0 6))
 f (fn [x] (+ (* s x) b))]

 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

1. Continuous distributions.
2. Higher-order functions.
3. Observe and commutativity.

(let [s (sample (normal 0 2))
 b (sample (normal 0 6))
 f (fn [x] (+ (* s x) b))]

 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

1. Continuous distributions.
2. Higher-order functions.
3. Observe and commutativity.

Challenge 1:
Continuous distributions

• Need care for handling continuous
distributions on ℝ, to avoid paradoxes.

• Something like measure theory needed.

• Complex math.

(let [s (sample (normal 0 2))
 b (sample (normal 0 6))
 f (fn [x] (+ (* s x) b))]

 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

1. Continuous distributions.
2. Higher-order functions.
3. Observe and commutativity.

(let [s (sample (normal 0 2))
 b (sample (normal 0 6))
 f (fn [x] (+ (* s x) b))]

 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

1. Continuous distributions.
2. Higher-order functions.
3. Observe and commutativity.

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (F)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

1. Continuous distributions.
2. Higher-order functions.
3. Observe and commutativity.

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (add-change-points F 0 6)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

1. Continuous distributions.
2. Higher-order functions.
3. Observe and commutativity.

Samples from posterior

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (add-change-points F 0 6)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

1. Continuous distributions.
2. Higher-order functions.
3. Observe and commutativity.

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (add-change-points F 0 6)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

1. Continuous distributions.
2. Higher-order functions.
3. Observe and commutativity.

Samples from posterior

Challenge 2:
Higher-order functions

Measure theory doesn’t support HO fns well.

ev : (ℝ→mℝ) x ℝ → ℝ, ev(f,x) = f(x).

[Aumann 61] ev is not measurable no matter
which σ-algebra is used for ℝ→mℝ.

[Cor] The category of measurable spaces is not
cartesian closed.

1. Continuous distributions.
2. Higher-order functions.
3. Observe and commutativity.

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (add-change-points F 0 6)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

1. Continuous distributions.
2. Higher-order functions.
3. Conditioning and prog. eqs.

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (add-change-points F 0 6)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

Challenge 3:
Conditioning and prog. eqs

• M should model prob. computations.

• M should validate equations from statistics.

• M should be commutative.

• Difficult to find such M due to conditioning.

e:real⟦ ⟧ ∈ M(ℝ)

Challenge 3:
Conditioning and prog. eqs

• M should model prob. computations.

• M should validate equations from statistics.

• M should be commutative.

• Difficult to find such M due to conditioning.

only certain measures
nonfinite measurese:real⟦ ⟧ ∈ M(ℝ)

Challenge 3:
Conditioning and prog. eqs

• M should model prob. computations.

• M should validate equations from statistics.

• M should be commutative.

• Difficult to find such M due to conditioning.

nearly-finite measures
nonfinite measurese:real⟦ ⟧ ∈ M(ℝ)

1. Continuous distributions.
2. Higher-order functions.
3. Conditioning and prog. eqs.

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (add-change-points F 0 6)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

1. Continuous distributions.
2. Higher-order functions.
3. Conditioning and prog. eqs.

(let [F (fn []
 (let [s (sample (normal 0 2))
 b (sample (normal 0 6))]
 (fn [x] (+ (* s x) b))))
 f (add-change-points F 0 6)]
 (observe (normal (f 0) .5) .6)
 (observe (normal (f 1) .5) .7)
 (observe (normal (f 2) .5) 1.2)
 (observe (normal (f 3) .5) 3.2)
 (observe (normal (f 4) .5) 6.8)
 (observe (normal (f 5) .5) 8.2)
 (observe (normal (f 6) .5) 8.4)

 [s b])
 f)

Quasi-Borel space
(QBS)

Big picture 1:
Extend measure theory
using category theory.

1. Continuous distr.
2. Higher-order fns.
3. Conditioning, prog. eqs.

MeasB

1. Continuous distr.
2. Higher-order fns.
3. Conditioning, prog. eqs.

MeasB

[MeasBop, Set]∏

Yoneda
embedding

1. Continuous distr.
2. Higher-order fns.
3. Conditioning, prog. eqs.

MeasB

[MeasBop, Set]∏

Yoneda
embedding

1. Continuous distr.
2. Higher-order fns.
3. Conditioning, prog. eqs.

Preserves nearly
all the structures

MeasB

[MeasBop, Set]∏

Yoneda
embedding

1. Continuous distr.
2. Higher-order fns.
3. Conditioning, prog. eqs.

Enough structure
for function types

MeasB

[MeasBop, Set]∏

Yoneda
embedding

1. Continuous distr.
2. Higher-order fns.
3. Conditioning, prog. eqs.

MeasB

[MeasBop, Set]∏

Yoneda
embedding

1. Continuous distr.
2. Higher-order fns.
3. Conditioning, prog. eqs.

QBS

Full subcat. of
separated functors

MeasB

[MeasBop, Set]∏

Yoneda
embedding

1. Continuous distr.
2. Higher-order fns.
3. Conditioning, prog. eqs.

QBS

Function spaces (CCC).
Concrete (extensional).

Full subcat. of
separated functors

MeasB

[MeasBop, Set]∏

Yoneda
embedding

1. Continuous distr.
2. Higher-order fns.
3. Conditioning, prog. eqs.

QBS

SFinKer

Strong monad of
s-finite kernels

Full subcat. of
separated functors

MeasB

[MeasBop, Set]∏

Yoneda
embedding

1. Continuous distr.
2. Higher-order fns.
3. Conditioning, prog. eqs.

QBS

Full subcat. of
separated functors

SFinKer

Big picture 2:
Random element first.

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

1. σ-algebras Σ⊆2Ω, Θ⊆2Χ

2. measure μ : Σ→[0,∞]
3. α-1(B)∈Σ for all B∈Θ

in measure theory

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

in measure theory

1. Σ⊆2Ω, Θ⊆2Χ

2. μ : Σ→[0,∞]

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

in measure theory

1. Σ⊆2Ω, Θ⊆2Χ

2. μ : Σ→[0,1]

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

1. Σ⊆2Ω, Θ⊆2Χ

2. μ : Σ→[0,1]

in measure theory

is a random element
if α-1(A)∈Σ for all A∈Θ

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

Random element α in X

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

in quasi-Borel spaces

Random element α in X

α : ℝ → X

• X - set of values.

• ℝ - set of random seeds.

• Random seed generator.

in quasi-Borel spaces

1. ℝ as random source
2. Borel subsets 𝕭⊆2ℝ

2. M ⊆ [ℝ→X]

Random element α in X

α : ℝ → X

• X - set of values.

• ℝ - set of random seeds.

• Random seed generator.

in quasi-Borel spaces

1. ℝ as random source
2. Borel subsets 𝕭⊆2ℝ

2. M ⊆ [ℝ→X]

Random element α in X

α : ℝ → X

• X - set of values.

• ℝ - set of random seeds.

• Random seed generator.

in quasi-Borel spaces

1. ℝ as random source
2. Borel subsets 𝕭⊆2ℝ

3. M ⊆ [ℝ→X]

Random element α in X

α : ℝ → X

• X - set of values.

• ℝ - set of random seeds.

• Random seed generator.

in quasi-Borel spaces

1. ℝ as random source
2. Borel subsets 𝕭⊆2ℝ

3. M ⊆ [ℝ→X]

is a random variable
if α∈M

• Measure theory:

• Measurable space (X, Θ⊆2Χ).

• Random element is an induced concept.

• QBS:

• Quasi-Borel space (X, M⊆[ℝ→X]).

• M is the set of random elements.

Rest of this tutorial

1. Baby measure theory.
PL with cont. distribution.

2. Quasi-Borel space (QBS).
PL with cont. distr. & HO fns.

3. SFinKer monad on QBS.
PL with cont. distr., HO fns & conditioning.

Rest of this tutorial

1. Baby measure theory.
PL with cont. distribution.

2. Quasi-Borel space (QBS).
PL with cont. distr. & HO fns.

3. SFinKer monad on QBS.
PL with cont. distr., HO fns & conditioning.

Programming language

• Will be sloppy about its syntax.

• Higher-order call-by-value probabilistic PL.

t ::= bool | real | t x t | t → t

e ::= …

Baby measure theory

How to specify prob. μ?

X = {0, 1, 2}.

Define μ : X→[0,∞]. E.g., μ = [0.4, 1.2, 0.2].

Lifted μ : 2X→[0,∞] by μ(A) = ∑x∈A μ(x).

How to specify prob. μ?

X = {0, 1, 2}.

Define μ : X→[0,1]. E.g., μ = [0.4, 0.4, 0.2].

Lifted μ : 2X→[0,1] by μ(A) = ∑x∈A μ(x).

How to specify prob. μ?

X = ℝ.

Define μ : X→[0,1].

Lifted μ : 2X→[0,1] by μ(A) = ∑x∈A μ(x).

How to specify prob. μ?

X = ℝ.

Define μ : X→[0,1].

Lifted μ : 2X→[0,1] by μ(A) = ∑x∈A μ(x).

Uncountable sum.
Typically ∞.

How to specify prob. μ?

X = ℝ.

Define μ : X→[0,1].

Lifted μ : 2X→[0,1] by μ(A) = ∑x∈A μ(x).
Define

How to specify prob. μ?

X = ℝ.

Define μ : X→[0,1].

Lifted μ : 2X→[0,1] by μ(A) = ∑x∈A μ(x).
Define

Pick a good collection ∑ ⊆ 2X.
Define μ : ∑→[0,1] with some care.

How to specify prob. μ?

X = ℝ.

Define μ : X→[0,1].

Lifted μ : 2X→[0,1] by μ(A) = ∑x∈A μ(x).
Define

Pick a good collection ∑ ⊆ 2X.
Define μ : ∑→[0,1] with some care.

σ-algebra

probability measure

Let Σ ⊆ 2X.

Σ is a σ-algebra if it contains X, and is closed
under countable union and set subtraction.

(X, Σ) is a measurable space if Σ is a σ-algebra.

μ : Σ→[0,1] is a probability measure if μ(X)=1
and μ(⨄n∈ℕAn) = ∑n∈ℕμ(An) for all disjoint An’s.

(X,Σ,μ) is a probability space if …

Let Σ ⊆ 2X.

Σ is a σ-algebra if it contains X, and is closed
under countable union and set subtraction.

(X, Σ) is a measurable space if Σ is a σ-algebra.

μ : Σ→[0,1] is a probability measure if μ(X)=1
and μ(⨄n∈ℕAn) = ∑n∈ℕμ(An) for all disjoint An’s.

(X,Σ,μ) is a probability space if …

[Q] What are not
measurable spaces?

1. (𝔹, 2𝔹).

2. (𝔹x𝔹, { AxB | A∈2𝔹 and B∈2𝔹 }).

3. (ℝ, { A⊆ℝ | A or (ℝ-A) countable }).

4. (ℝ, { (r,s] | r<s }).

[Q] What are not
measurable spaces?

1. (𝔹, 2𝔹).

2. (𝔹x𝔹, { AxB | A∈2𝔹 and B∈2𝔹 }).

3. (ℝ, { A⊆ℝ | A or (ℝ-A) countable }).

4. (ℝ, { (r,s] | r<s }).

[Q] Convert them to
measurable spaces.

1. (𝔹, 2𝔹).

2. (𝔹x𝔹, { AxB | A∈2𝔹 and B∈2𝔹 }).

3. (ℝ, { A⊆ℝ | A or (ℝ-A) countable }).

4. (ℝ, { (r,s] | r<s }).

[Q] Convert them to
measurable spaces.

1. (𝔹, 2𝔹).

2. (𝔹x𝔹, { AxB | A∈2𝔹 and B∈2𝔹 }).

3. (ℝ, { A⊆ℝ | A or (ℝ-A) countable }).

4. (ℝ, { (r,s] | r<s }).
σ

σ

Closure exists.
σ(Π) smallest σ-algebra containing Π.

(X, Σ), (Y, Θ) - mBle spaces.

Product σ-algebra: Σ⊗Θ = σ{AxB | A∈Σ, B∈Θ}.

Product space: (X,Σ)xm(Y, Θ) = (XxY, Σ⊗Θ).

Borel σ-algebra on ℝ: 𝕭=σ{(r,s] | r<s}.

Borel space: (ℝ, 𝕭).

Types mean mBle spaces

⟦bool⟧ = (𝔹, 2𝔹)

⟦real⟧ = (ℝ, 𝕭)

 ⟦t x t’⟧ = ⟦t⟧ xm ⟦t’⟧

 ⟦x1:t1, …, xn:tn⟧ = ⟦t1⟧ xm … xm ⟦tn⟧

Types mean mBle spaces

⟦bool⟧ = (𝔹, 2𝔹)

⟦real⟧ = (ℝ, 𝕭)

 ⟦t x t’⟧ = ⟦t⟧ xm ⟦t’⟧

 ⟦x1:t1, …, xn:tn⟧ = ⟦t1⟧ xm … xm ⟦tn⟧

Types mean mBle spaces

⟦bool⟧ = (𝔹, 2𝔹)

⟦real⟧ = (ℝ, 𝕭)

 ⟦t x t’⟧ = ⟦t⟧ xm ⟦t’⟧

 ⟦x1:t1, …, xn:tn⟧ = ⟦t1⟧ xm … xm ⟦tn⟧

(X, Σ), (Y, Θ) - mBle spaces.

f:X→Y is measurable (denoted f:X→mY) if
f-1(A)∈Σ for all A∈Θ.

k:XxΘ→[0,∞] is a kernel if k(x,-) is a measure
and k(-,A) is measurable for all xand A.

(X, Σ), (Y, Θ) - mBle spaces.

f:X→Y is measurable (denoted f:X→mY) if
f-1(A)∈Σ for all A∈Θ.

k:XxΘ→[0,1] is a prob. kernel if k(x,-) is a prob.
measure and k(-,A) is measurable for all x, A.

Terms mean prob. kernels

 ⟦Γ ⊦ e : t⟧ is a prob. kernel from ⟦Γ⟧ to ⟦t⟧.

⟦y : real ⊦ y+sample(norm(0,1)) : real⟧(r, A)

= ∫A pdf_norm(s | r,1) ds

Terms mean prob. kernels

 ⟦Γ ⊦ e : t⟧ is a prob. kernel from ⟦Γ⟧ to ⟦t⟧.

⟦y : real ⊦ y + sample(norm(0,1)) : real⟧(r, A)

= ∫A density-norm(s | r,1) ds.

Terms mean prob. kernels

 ⟦Γ ⊦ e : t⟧ is a prob. kernel from ⟦Γ⟧ to ⟦t⟧.

⟦y : real ⊦ y + sample(norm(0,1)) : real⟧(r, A)

= ∫A density-norm(s | r,1) ds.

Terms mean prob. kernels

 ⟦Γ ⊦ e : t⟧ is a prob. kernel from ⟦Γ⟧ to ⟦t⟧.

⟦y : real ⊦ y + sample(norm(0,1)) : real⟧(r, A)

= ∫A density-norm(s | r,1) ds.

Rest of this tutorial

1. Baby measure theory.
PL with cont. distribution.

2. Quasi-Borel space (QBS).
PL with cont. distr. & HO fns.

3. SFinKer monad on QBS.
PL with cont. distr., HO fns & conditioning.

Quasi-Borel space

Quasi-Borel space - set with random elements.

(X, M⊆[ℝ→X])

s. t. M has enough random elements, that is,

1. M contains all constant functions;

2. (αof)∈M for all α∈M and mBle f on (ℝ,𝕭);

3. If ℝ=⨄i∈ℕRi with Ri∈𝕭 and α1,α2, … ∈ M,
then (αi when Ri)i∈ℕ∈M.

Quasi-Borel space - set with random elements.

(X, M⊆[ℝ→X])

such that M has enough random elements.

1. M contains all constant functions.

2. (αof)∈M for all α∈M and mBle f on (ℝ,𝕭).

3. If ℝ=⨄i∈ℕRi with Ri∈𝕭 and α1,α2, … ∈ M,
then (αi when Ri)i∈ℕ∈M.

Quasi-Borel space - set with random elements.

(X, M⊆[ℝ→X])

such that M has enough random elements.

1. M contains all constant functions.

2. (αof)∈M for all α∈M and mBle f on (ℝ,𝕭).

3. If ℝ=⨄i∈ℕRi with Ri∈𝕭 and α1,α2, … ∈ M,
then (αi when Ri)i∈ℕ∈M.

Quasi-Borel space - set with random elements.

(X, M⊆[ℝ→X])

such that M has enough random elements.

1. M contains all constant functions.

2. (αof)∈M for all α∈M and mBle f on (ℝ,𝕭).

3. If ℝ=⨄i∈ℕRi with Ri∈𝕭 and α1,α2, … ∈ M,
then (αi when Ri)i∈ℕ∈M.

Quasi-Borel space - set with random elements.

(X, M⊆[ℝ→X])

such that M has enough random elements.

1. M contains all constant functions.

2. (αof)∈M for all α∈M and mBle f on (ℝ,𝕭).

3. If ℝ=⨄i∈ℕRi with Ri∈𝕭 and α1,α2, … ∈ M,
then (αi when Ri)i∈ℕ∈M.

Quasi-Borel space - set with random elements.

(X, M⊆[ℝ→X])

such that M has enough random elements.

1. M contains all constant functions.

2. (αoβ)∈M for all α∈M and mBle β:ℝ→ℝ.

3. If ℝ=⨄i∈ℕRi with Ri∈𝕭 and α1,α2, … ∈ M,
then (αi when Ri)i∈ℕ∈M.

Quasi-Borel space - set with random elements.

(X, M⊆[ℝ→X])

such that M has enough random elements.

1. M contains all constant functions.

2. (αoβ)∈M for all α∈M and mBle β:ℝ→ℝ.

3. If ℝ=⨄i∈ℕRi with Ri∈𝕭 and α1,α2, … ∈ M,
then (αi when Ri)i∈ℕ∈M.

Here (αi when Ri)i∈ℕ(r) = αi(r) for all r∈Ri.

[Q] Pick a non-QBS.

1. (ℝ, {α:ℝ→ℝ | α is a constant function}).

2. (ℝ, [ℝ→ℝ]).

3. (ℝ, {α:ℝ→ℝ | α measurable wrt. 𝕭}).

[Q] Pick a non-QBS.

1. (ℝ, {α:ℝ→ℝ | α is a constant function}).

2. (ℝ, [ℝ→ℝ]).

3. (ℝ, {α:ℝ→ℝ | α measurable wrt. 𝕭}).

[Q] Turn it into a QBS.

1. (ℝ, {α:ℝ→ℝ | α is a constant function}).

2. (ℝ, [ℝ→ℝ]).

3. (ℝ, {α:ℝ→ℝ | α measurable wrt. 𝕭}).

[Q] Turn it to a QBS.

1. (ℝ, {α:ℝ→ℝ | α is a constant function}).

2. (ℝ, [ℝ→ℝ]).

3. (ℝ, {α:ℝ→ℝ | α measurable wrt. 𝕭}).

{(αi when Ri)i∈ℕ | αi constant fn and Ri∈𝕭}

[Q] Turn it to a QBS.

1. (ℝ, {α:ℝ→ℝ | α is a constant function}).

2. (ℝ, [ℝ→ℝ]).

3. (ℝ, {α:ℝ→ℝ | α measurable wrt. 𝕭}).

{(αi when Ri)i∈ℕ | αi constant fn and Ri∈𝕭}

Standard way of converting a set to a QBS.

[Q] Turn it to a QBS.

1. (ℝ, {α:ℝ→ℝ | α is a constant function}).

2. (ℝ, [ℝ→ℝ]).

3. (ℝ, {α:ℝ→ℝ | α measurable wrt. 𝕭}).

{(αi when Ri)i∈ℕ | αi constant fn and Ri∈𝕭}

Standard way of converting a set to a QBS.

Standard way of converting a mBle space to a QBS.

(QBS) morphism

(X,M), (Y,N) - QBSes.

f : X→Y is a morphism if (foα)∈N for all α∈M.

Maps random elements to random elements.

We will write f : X→qY.

[Th] QBSes form a cartesian closed category. So,
they provide good product and function spaces.

[Q] What are the sets of random elements?

1. Product: (X,M) xq (Y,N) = (Z,O).

• Z = X x Y, π1(x,y) = x, π2(x,y) = y.

• O = ???

2. Fn space: [(X,M)→q(Y,N)] = (Z,O)

• Z = { f | f : X→qY }, ev(f,x) = f(x)

• O = ???

[Q] What are the sets of random elements?

1. Product: (X,M) xq (Y,N) = (Z,O).

• Z = X x Y, π1(x,y) = x, π2(x,y) = y.

• O = ???

2. Fn space: [(X,M)→q(Y,N)] = (Z,O)

• Z = { f | f : X→qY }, ev(f,x) = f(x).

• O = ???

[Q] What are the sets of random elements?

1. Product: (X,M) xq (Y,N) = (Z,O).

• Z = X x Y, π1(x,y) = x, π2(x,y) = y.

• O = { <α,β> | α∈M and β∈N }.

2. Fn space: [(X,M)→q(Y,N)] = (Z,O)

• Z = { f | f : X→qY }, ev(f,x) = f(x)

• O = { curry(g) | g : ℝ xq X→qY }.

Why works?

[NO] ev : (ℝ→mℝ) xm ℝ →m ℝ

vs

[YES] ev : (ℝ→qℝ) xq ℝ →q ℝ

Because the QBS product is more permissive.

Why works?

[NO] ev : (ℝ→mℝ) xm ℝ →m ℝ

vs

[YES] ev : (ℝ→qℝ) xq ℝ →q ℝ

Because the QBS product is more permissive.

Types mean QBSes

 ⟦bool⟧ = MStoQBS(𝔹, 2𝔹)

 ⟦real⟧ = MStoQBS(ℝ, 𝕭)

 ⟦t x t’⟧ = ⟦t⟧ xq ⟦t’⟧

 ⟦t → t’⟧ = ⟦t⟧ →q Monad(⟦t’⟧)

⟦x1:t1, …, xn:tn⟧ = ⟦t1⟧ xq … xq ⟦tn⟧

Types mean QBSes

 ⟦bool⟧ = MStoQBS(𝔹, 2𝔹)

 ⟦real⟧ = MStoQBS(ℝ, 𝕭)

 ⟦t x t’⟧ = ⟦t⟧ xq ⟦t’⟧

 ⟦t → t’⟧ = ⟦t⟧ →q Monad(⟦t’⟧)

⟦x1:t1, …, xn:tn⟧ = ⟦t1⟧ xq … xq ⟦tn⟧

Types mean QBSes

 ⟦bool⟧ = MStoQBS(𝔹, 2𝔹)

 ⟦real⟧ = MStoQBS(ℝ, 𝕭)

 ⟦t x t’⟧ = ⟦t⟧ xq ⟦t’⟧

 ⟦t → t’⟧ = [⟦t⟧ →q Monad(⟦t’⟧)]

⟦x1:t1, …, xn:tn⟧ = ⟦t1⟧ xq … xq ⟦tn⟧

Terms mean morphisms almost

 ⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q Monad⟦t⟧.

Probability measure on
Quasi-Borel space

A probability measure on a QBS (X,M) is a pair
(α,μ) of α∈M and a prob. measure μ on (ℝ,𝕭).

E.g.

(X,M) = MStoQBS(𝔹, 2𝔹)

μ = uniform(0,1], α(r) = if (r < 0.5) true false

μ’ = uniform(0,2], α’(r) = if (r < 1) true false

A probability measure on a QBS (X,M) is a pair
(α,μ) of α∈M and a prob. measure μ on (ℝ,𝕭).

E.g.

(X,M) = MStoQBS(𝔹, 2𝔹)

μ = uniform(0,1], α(r) = if (r < 0.5) true false

μ’ = uniform(0,2], α’(r) = if (r < 1) true false

random seed generator

A probability measure on a QBS (X,M) is a pair
(α,μ) of α∈M and a prob. measure μ on (ℝ,𝕭).

E.g.

(X,M) = MStoQBS(𝔹, 2𝔹)

μ = uniform(0,1], α(r) = if (r < 0.5) true false

μ’ = uniform(0,2], α’(r) = if (r < 1) true false

seed convertor

A probability measure on a QBS (X,M) is a pair
(α,μ) of α∈M and a prob. measure μ on (ℝ,𝕭).

(α,μ) is a probability measure if so is μ.

E.g.

(X,M) = MStoQBS(𝔹, 2𝔹)

μ = uniform(0,1], α(r) = if (r < 0.5) true false

μ’ = uniform(0,2], α’(r) = if (r < 1) true false

A probability measure on a QBS (X,M) is a pair
(α,μ) of α∈M and a prob. measure μ on (ℝ,𝕭).

E.g.

(X,M) = MStoQBS(𝔹, 2𝔹)

μ = uniform(0,1], α(r) = if (r < 0.5) true false

μ’ = uniform(0,2], α’(r) = if (r < 1) true false

A probability measure on a QBS (X,M) is a pair
(α,μ) of α∈M and a prob. measure μ on (ℝ,𝕭).

E.g.

(X,M) = MStoQBS(𝔹, 2𝔹)

μ = uniform(0,1], α(r) = if (r < 0.5) true false

μ’ = uniform(0,2]/2, α’(r) = if (r < 1) true false

A probability measure on a QBS (X,M) is a pair
(α,μ) of α∈M and a prob. measure μ on (ℝ,𝕭).

Quotient prob. measures by the smallest ~ s.t.

(α,μ) ~ (β,ν)

if α o f = β and ν o f-1 = μ for some f:ℝ→mℝ.

[α,μ] - equivalence class.

QBS of prob. measures

Prob(X,M) = (Y,N)

Y = { [α,μ] | (α,μ) is a prob. meas. on (X,M) }.

N = { λr.[α,k(r)] | α∈M and k : ℝx𝕭→[0,1] is a
prob. kernel }.

[Lem] Prob is a strong monad.

Completing the definitions

⟦t → t’⟧ = [⟦t⟧ →q Prob(⟦t’⟧)]

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q Prob⟦t⟧

Rest of this tutorial

1. Baby measure theory.
PL with cont. distribution.

2. Quasi-Borel space (QBS).
PL with cont. distr. & HO fns.

3. SFinKer monad on QBS.
PL with cont. distr., HO fns & conditioning.

Conditioning and
SFinKer monad on QBS

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q Monad⟦t⟧

Bayes’s rule:

p(o | h) x p(h) = p(h | o) x p(o) = p(o, h)

1. Monad(_) = Prob(_). Sometimes undefined.

2. Monad(_) = Prob([0,∞) xq _). Failed eqs.

3. Monad(_) = Meas(_). No commutativity.

3. Monad(_) = SFinKer(_).

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q Monad⟦t⟧

Bayes’s rule:

p(o | h) x p(h) = p(h | o) x p(o) = p(o, h)

1. Monad(_) = Prob(_). Sometimes undefined.

2. Monad(_) = Prob([0,∞) xq _). Failed eqs.

3. Monad(_) = Meas(_). No commutativity.

3. Monad(_) = SFinKer(_).

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q Monad⟦t⟧

Bayes’s rule:

p(o | h) x p(h) = p(h | o) x p(o) = p(o, h)

1. Monad(_) = Prob(_). Sometimes undefined.

2. Monad(_) = Prob([0,∞) xq _). Failed eqs.

3. Monad(_) = Meas(_). No commutativity.

3. Monad(_) = SFinKer(_).

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q Monad⟦t⟧

Bayes’s rule:

p(o | h) x p(h) = p(h | o) x p(o) = p(o, h)

1. Monad(_) = Prob(_). Sometimes undefined.

2. Monad(_) = Prob([0,∞) xq _). Failed eqs.

3. Monad(_) = Meas(_). No commutativity.

3. Monad(_) = SFinKer(_).

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q Monad⟦t⟧

Bayes’s rule:

p(o | h) x p(h) = p(h | o) x p(o) = p(o, h)

1. Monad(_) = Prob(_). Sometimes undefined.

2. Monad(_) = Prob([0,∞) xq _). Failed eqs.

3. Monad(_) = Meas(_). No commutativity.

3. Monad(_) = SFinKer(_).

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q Monad⟦t⟧

Bayes’s rule:

p(o | h) x p(h) = p(h | o) x p(o) = p(o, h)

1. Monad(_) = Prob(_). Sometimes undefined.

2. Monad(_) = Prob([0,∞) xq _). Failed eqs.

3. Monad(_) = Meas(_). No commutativity.

3. Monad(_) = SFinKer(_).

Failed conjugate-prior
equation from statistics

let x=sample(beta(1,1)) in
observe(flip(x),true);
x

observe(flip(0.5),true);
sample(beta(2,1))

⟦ ⟧L

⟦ ⟧L

≠

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q Monad⟦t⟧

Bayes’s rule:

p(o | h) x p(h) = p(h | o) x p(o) = p(o, h)

1. Monad(_) = Prob(_). Sometimes undefined.

2. Monad(_) = Prob([0,∞) xq _). Failed eqs.

3. Monad(_) = Meas(_). No commutativity.

3. Monad(_) = SFinKer(_).

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q Monad⟦t⟧

Bayes’s rule:

p(o | h) x p(h) = p(h | o) x p(o) = p(o, h)

1. Monad(_) = Prob(_). Sometimes undefined.

2. Monad(_) = Prob([0,∞) xq _). Failed eqs.

3. Monad(_) = Meas(_). No commutativity.

3. Monad(_) = SFinKer(_).

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q Monad⟦t⟧

Bayes’s rule:

p(o | h) x p(h) = p(h | o) x p(o) = p(o, h)

1. Monad(_) = Prob(_). Sometimes undefined.

2. Monad(_) = Prob([0,∞) xq _). Failed eqs.

3. Monad(_) = Meas(_). No commutativity.

3. Monad(_) = SFinKer(_).

Failed commutativity

let x=e in
let y=e’ in
e’’

⟦ ⟧L
let y=e’ in
let x=e in
e’’

⟦ ⟧L≠

if x doesn’t occur in e’ and y doesn’t occur in e

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q Monad⟦t⟧

Bayes’s rule:

p(o | h) x p(h) = p(h | o) x p(o) = p(o, h)

1. Monad(_) = Prob(_). Sometimes undefined.

2. Monad(_) = Prob([0,∞) xq _). Failed eqs.

3. Monad(_) = Meas(_). No commutativity.

3. Monad(_) = SFinKer(_).

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q Monad⟦t⟧

Bayes’s rule:

p(o | h) x p(h) = p(h | o) x p(o) = p(o, h)

1. Monad(_) = Prob(_). Sometimes undefined.

2. Monad(_) = Prob([0,∞) xq _). Failed eqs.

3. Monad(_) = Meas(_). No commutativity.

4. Monad(_) = SFinKer(_).

QBS of prob. measures

Prob(X,M) = (Y,N)

Y = { [α,μ] | α∈M, μ prob. meas. on (ℝ,𝕭) }.

N = { λr.[α,k(r)] |
α∈M, k : ℝx𝕭→[0,1] prob. kernel }.

QBS of prob. measures
s-finite kernels

SFinKer(X,M)
Prob(X,M) = (Y,N)

Y = { [α,μ] | α∈M, μ prob. meas. on (ℝ,𝕭) }.

N = { λr.[α,k(r)] |
α∈M, k : ℝx𝕭→[0,1] prob. kernel }.

QBS of prob. measures
s-finite kernels

Prob(X,M) = (Y,N)

Y = { [α,μ] | α∈M, μ prob. meas. on (ℝ,𝕭) }.

N = { λr.[α,k(r)] |
α∈M, k : ℝx𝕭→[0,1] prob. kernel }.

SFinKer(X,M)

s-finite measure

μ finite if like prob. measure but just μ(ℝ)<∞.
μ s-finite if countable sum of finite measures.

QBS of prob. measures
s-finite kernels

Prob(X,M) = (Y,N)

Y = { [α,μ] | α∈M, μ prob. meas. on (ℝ,𝕭) }.

N = { λr.[α,k(r)] |
α∈M, k : ℝx𝕭→[0,1] prob. kernel }.

SFinKer(X,M)

s-finite measure

k : ℝx𝕭→[0,∞] s-finite kernel

μ finite if like prob. measure but just μ(ℝ)<∞.
μ s-finite if countable sum of finite measures.

k finite if like prob. kernel but suprk(r,ℝ) < ∞.
k s-finite if countable sum of finite kernels.

[Th] SFinKer can be used to define the semantics
of prob. PL with conditioning. (i.e., strong monad.)

[Th] It validates commutativity of programs and
prog. eqs from statistics.

 ⟦bool⟧ = MStoQBS(𝔹, 2𝔹)

 ⟦real⟧ = MStoQBS(ℝ, 𝕭)

 ⟦t x t’⟧ = ⟦t⟧ xq ⟦t’⟧

 ⟦t → t’⟧ = [⟦t⟧ →q SFinKer(⟦t’⟧)]

⟦x1:t1, …, xn:tn⟧ = ⟦t1⟧ xq … xq ⟦tn⟧

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q SFinKer⟦t⟧

 ⟦bool⟧ = MStoQBS(𝔹, 2𝔹)

 ⟦real⟧ = MStoQBS(ℝ, 𝕭)

 ⟦t x t’⟧ = ⟦t⟧ xq ⟦t’⟧

 ⟦t → t’⟧ = [⟦t⟧ →q SFinKer(⟦t’⟧)]

⟦x1:t1, …, xn:tn⟧ = ⟦t1⟧ xq … xq ⟦tn⟧

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q SFinKer⟦t⟧

 ⟦bool⟧ = MStoQBS(𝔹, 2𝔹)

 ⟦real⟧ = MStoQBS(ℝ, 𝕭)

 ⟦t x t’⟧ = ⟦t⟧ xq ⟦t’⟧

 ⟦t → t’⟧ = [⟦t⟧ →q SFinKer(⟦t’⟧)]

⟦x1:t1, …, xn:tn⟧ = ⟦t1⟧ xq … xq ⟦tn⟧

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q SFinKer⟦t⟧

 ⟦bool⟧ = MStoQBS(𝔹, 2𝔹)

 ⟦real⟧ = MStoQBS(ℝ, 𝕭)

 ⟦t x t’⟧ = ⟦t⟧ xq ⟦t’⟧

 ⟦t → t’⟧ = [⟦t⟧ →q SFinKer(⟦t’⟧)]

⟦x1:t1, …, xn:tn⟧ = ⟦t1⟧ xq … xq ⟦tn⟧

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q SFinKer⟦t⟧

 ⟦bool⟧ = MStoQBS(𝔹, 2𝔹)

 ⟦real⟧ = MStoQBS(ℝ, 𝕭)

 ⟦t x t’⟧ = ⟦t⟧ xq ⟦t’⟧

 ⟦t → t’⟧ = [⟦t⟧ →q SFinKer(⟦t’⟧)]

⟦x1:t1, …, xn:tn⟧ = ⟦t1⟧ xq … xq ⟦tn⟧

⟦Γ ⊦ e : t⟧ is a morphism ⟦Γ⟧→q SFinKer⟦t⟧

References

1. A convenient category for higher-order
probability theory. Heunen et a. LICS’17.

2. Commutative semantics for probabilistic
programs. Staton. ESOP’17.

References

1. A convenient category for higher-order
probability theory. Heunen et a. LICS’17.

2. Commutative semantics for probabilistic
programs. Staton. ESOP’17.

