
Lessons that I learned
about linearizability

Hongseok Yang (University of Oxford)
With many colleagues.

In particular, Alexey Gotsman (IMDEA, Spain)

Saturday, 13 October 12

Linearizability

• Widely used correctness condition for concurrent
libraries (i.e., data structures).

• Usually expresses a relationship between concurrent
library and sequential library.

Saturday, 13 October 12

Personal motivation

• Learned the definition of linearizability from Attiya’s
talk at Cambridge in 2008.

• Mystified.

• Motivated me to study linearizability using tools from
programming languages.

Saturday, 13 October 12

Tools from PL

• PL researchers like to define concepts from end
users’ perspective (aka observations).

• A concurrent object L0 observationally refines L1 iff
for every client program C, Obs(C[L0]) ⊆ Obs(C[L1]).

Saturday, 13 October 12

Lessons that I learned
• Defining linearizability for a new problem amounts to

defining histories and happen-before order.

• The definition of histories captures how clients
communicate with concurrent libraries.

• Connection between happen-before and dependency.

• Sanity checks.

• Gotsman’s composition/decomposition --- histories.

• Rearrangement lemma --- happen-before order.

• Importance of well-formed definable traces.
Saturday, 13 October 12

Lessons that I learned
• Defining linearizability for a new problem amounts to

defining histories and happen-before order.

• The definition of histories captures how clients
communicate with concurrent libraries.

• Connection between happen-before and dependency.

• Sanity checks.

• Gotsman’s composition/decomposition --- histories.

• Rearrangement lemma --- happen-before order.

• Importance of well-formed definable traces.
Saturday, 13 October 12

Expected outcome

• Understand some aspect of linearizability from PL-
researchers’ perspective.

• In particular, the connection between happen-
before and dependency.

• Be able to propose an appropriate modification of
linearizability, when attacking a new problem.

Saturday, 13 October 12

Review of linearizability

Saturday, 13 October 12

• Atomic reads and writes to two memory locations.

• Every new value will have a new version number c.

Seqlock

x1 x2c

Saturday, 13 October 12

Implementation of Seqlock

init() { c = x1 = x2 = 0; }

write(in word d1, in word d2) {
 c++;
 x1 = d1; x2 = d2;
 c++;
}

read(out word d1, out word d2) {
 word c0;
 do {
 do { c0 = c; } while (c0%2);
 d1 = x1; d2 = x2;
 } while (c != c0);
}

Saturday, 13 October 12

Implementation of Seqlock

init() { c = x1 = x2 = 0; }

write(in word d1, in word d2) {
 c++;
 x1 = d1; x2 = d2;
 c++;
}

read(out word d1, out word d2) {
 word c0;
 do {
 do { c0 = c; } while (c0%2);
 d1 = x1; d2 = x2;
 } while (c != c0);
}

Odd c: writing in progress

Saturday, 13 October 12

Implementation of Seqlock

init() { c = x1 = x2 = 0; }

write(in word d1, in word d2) {
 c++;
 x1 = d1; x2 = d2;
 c++;
}

read(out word d1, out word d2) {
 word c0;
 do {
 do { c0 = c; } while (c0%2);
 d1 = x1; d2 = x2;
 } while (c != c0);
}

Odd c: writing in progress

Even c: valid values

Saturday, 13 October 12

Implementation of Seqlock

init() { c = x1 = x2 = 0; }

write(in word d1, in word d2) {
 c++;
 x1 = d1; x2 = d2;
 c++;
}

read(out word d1, out word d2) {
 word c0;
 do {
 do { c0 = c; } while (c0%2);
 d1 = x1; d2 = x2;
 } while (c != c0);
}

Odd c: writing in progress

Even c: valid values

Wait until c is even: no writing
in progress

Saturday, 13 October 12

Implementation of Seqlock

init() { c = x1 = x2 = 0; }

write(in word d1, in word d2) {
 c++;
 x1 = d1; x2 = d2;
 c++;
}

read(out word d1, out word d2) {
 word c0;
 do {
 do { c0 = c; } while (c0%2);
 d1 = x1; d2 = x2;
 } while (c != c0);
}

Odd c: writing in progress

Even c: valid values

Wait until c is even: no writing
in progress

Read the data

Saturday, 13 October 12

Implementation of Seqlock

init() { c = x1 = x2 = 0; }

write(in word d1, in word d2) {
 c++;
 x1 = d1; x2 = d2;
 c++;
}

read(out word d1, out word d2) {
 word c0;
 do {
 do { c0 = c; } while (c0%2);
 d1 = x1; d2 = x2;
 } while (c != c0);
}

Odd c: writing in progress

Even c: valid values

Wait until c is even: no writing
in progress

Check c didn’t change: got a
consistent snapshot

Read the data

Saturday, 13 October 12

Specification of Seqlock

init() { c = x1 = x2 = 0; }

write(in word d1, in word d2) {
 c++;
 x1 = d1; x2 = d2;
 c++;
}

read(out word d1, out word d2) {
 word c0;
 do {
 do { c0 = c; } while (c0%2);
 d1 = x1; d2 = x2;
 } while (c != c0);
}

init() { x1 = x2 = 0; }

write(in word d1, in word d2) {
 atomic { x1 = d1; x2 = d2; }
}

read(out word d1, out word d2) {
 atomic { d1 = x1; d2 = x2; }
}

Saturday, 13 October 12

Linearizability of Seqlock

• Every execution of Seqlock corresponds to
some execution of Spec.

• Every history h1 ∈ [Seqlock] is related to
some history h2 ∈ [Spec] by LinH.

Saturday, 13 October 12

Linearizability of Seqlock
• Execution of Seqlock.

• Get the history: Keep call & return actions only.

• Find a LinH-related history in [Spec]: Permute actions,
while keeping thread & happen-before order.

[a, wr(1,2)] [a,ret] [a,rd]
a:

[b, wr(3,4)] [b,ret] [b,rd] [b,ret(1,2)]
b:

[a, ret(1,2)]

[a,wr(1,2)][b,wr(3,4)][a,ret][b,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]

[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]
[a,wr(1,2)][a,ret] [b,rd][b,ret(1,2)][a,rd][a,ret(1,2)][b,wr(3,4)][b,ret]
[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][a,rd][a,ret(1,2)][b,rd][b,ret(1,2)]

Saturday, 13 October 12

Linearizability of Seqlock
• Execution of Seqlock.

• Get the history: Keep call & return actions only.

• Find a LinH-related history in [Spec]: Permute actions,
while keeping thread & happen-before order.

[a, wr(1,2)] [a,ret] [a,rd]
a:

[b, wr(3,4)] [b,ret] [b,rd] [b,ret(1,2)]
b:

[a, ret(1,2)]

[a,wr(1,2)][b,wr(3,4)][a,ret][b,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]

[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]
[a,wr(1,2)][a,ret] [b,rd][b,ret(1,2)][a,rd][a,ret(1,2)][b,wr(3,4)][b,ret]
[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][a,rd][a,ret(1,2)][b,rd][b,ret(1,2)]

Saturday, 13 October 12

Linearizability of Seqlock
• Execution of Seqlock.

• Get the history: Keep call & return actions only.

• Find a LinH-related history in [Spec]: Permute actions,
while keeping thread & happen-before order.

[a, wr(1,2)] [a,ret] [a,rd]
a:

[b, wr(3,4)] [b,ret] [b,rd] [b,ret(1,2)]
b:

[a, ret(1,2)]

[a,wr(1,2)][b,wr(3,4)][a,ret][b,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]

[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]
[a,wr(1,2)][a,ret] [b,rd][b,ret(1,2)][a,rd][a,ret(1,2)][b,wr(3,4)][b,ret]
[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][a,rd][a,ret(1,2)][b,rd][b,ret(1,2)]

Saturday, 13 October 12

Linearizability of Seqlock
• Execution of Seqlock.

• Get the history: Keep call & return actions only.

• Find a LinH-related history in [Spec]: Permute actions,
while keeping thread & happen-before order.

[a, wr(1,2)] [a,ret] [a,rd]
a:

[b, wr(3,4)] [b,ret] [b,rd] [b,ret(1,2)]
b:

[a, ret(1,2)]

[a,wr(1,2)][b,wr(3,4)][a,ret][b,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]

[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]
[a,wr(1,2)][a,ret] [b,rd][b,ret(1,2)][a,rd][a,ret(1,2)][b,wr(3,4)][b,ret]
[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][a,rd][a,ret(1,2)][b,rd][b,ret(1,2)]

Saturday, 13 October 12

Linearizability of Seqlock
• Execution of Seqlock.

• Get the history: Keep call & return actions only.

• Find a LinH-related history in [Spec]: Permute actions,
while keeping thread & happen-before order.

[a, wr(1,2)] [a,ret] [a,rd]
a:

[b, wr(3,4)] [b,ret] [b,rd] [b,ret(1,2)]
b:

[a, ret(1,2)]

[a,wr(1,2)][b,wr(3,4)][a,ret][b,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]

[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]
[a,wr(1,2)][a,ret] [b,rd][b,ret(1,2)][a,rd][a,ret(1,2)][b,wr(3,4)][b,ret]
[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][a,rd][a,ret(1,2)][b,rd][b,ret(1,2)]

Saturday, 13 October 12

Linearizability of Seqlock
• Execution of Seqlock.

• Get the history: Keep call & return actions only.

• Find a LinH-related history in [Spec]: Permute actions,
while keeping thread & happen-before order.

[a, wr(1,2)] [a,ret] [a,rd]
a:

[b, wr(3,4)] [b,ret] [b,rd] [b,ret(1,2)]
b:

[a, ret(1,2)]

[a,wr(1,2)][b,wr(3,4)][a,ret][b,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]

[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]
[a,wr(1,2)][a,ret] [b,rd][b,ret(1,2)][a,rd][a,ret(1,2)][b,wr(3,4)][b,ret]
[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][a,rd][a,ret(1,2)][b,rd][b,ret(1,2)]

Saturday, 13 October 12

Linearizability of Seqlock
• Execution of Seqlock.

• Get the history: Keep call & return actions only.

• Find a LinH-related history in [Spec]: Permute actions,
while keeping thread & happen-before order.

[a, wr(1,2)] [a,ret] [a,rd]
a:

[b, wr(3,4)] [b,ret] [b,rd] [b,ret(1,2)]
b:

[a, ret(1,2)]

[a,wr(1,2)][b,wr(3,4)][a,ret][b,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]

[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]
[a,wr(1,2)][a,ret] [b,rd][b,ret(1,2)][a,rd][a,ret(1,2)][b,wr(3,4)][b,ret]
[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][a,rd][a,ret(1,2)][b,rd][b,ret(1,2)]

Saturday, 13 October 12

Linearizability of Seqlock
• Execution of Seqlock.

• Get the history: Keep call & return actions only.

• Find a LinH-related history in [Spec]: Permute actions,
while keeping thread & happen-before order.

[a, wr(1,2)] [a,ret] [a,rd]
a:

[b, wr(3,4)] [b,ret] [b,rd] [b,ret(1,2)]
b:

[a, ret(1,2)]

[a,wr(1,2)][b,wr(3,4)][a,ret][b,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]

[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]
[a,wr(1,2)][a,ret] [b,rd][b,ret(1,2)][a,rd][a,ret(1,2)][b,wr(3,4)][b,ret]
[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][a,rd][a,ret(1,2)][b,rd][b,ret(1,2)]

Saturday, 13 October 12

Linearizability of Seqlock
• Execution of Seqlock.

• Get the history: Keep call & return actions only.

• Find a LinH-related history in [Spec]: Permute actions,
while keeping thread & happen-before order.

[a, wr(1,2)] [a,ret] [a,rd]
a:

[b, wr(3,4)] [b,ret] [b,rd] [b,ret(1,2)]
b:

[a, ret(1,2)]

[a,wr(1,2)][b,wr(3,4)][a,ret][b,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]

[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]
[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][a,rd][a,ret(1,2)][b,rd][b,ret(1,2)]X

Saturday, 13 October 12

Linearizability of Seqlock
• Execution of Seqlock.

• Get the history: Keep call & return actions only.

• Find a LinH-related history in [Spec]: Permute actions,
while keeping thread & happen-before order.

[a, wr(1,2)] [a,ret] [a,rd]
a:

[b, wr(3,4)] [b,ret] [b,rd] [b,ret(1,2)]
b:

[a, ret(1,2)]

[a,wr(1,2)][b,wr(3,4)][a,ret][b,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]

[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][b,rd][b,ret(1,2)][a,rd][a,ret(1,2)]
[b,wr(3,4)][b,ret][a,wr(1,2)][a,ret][a,rd][a,ret(1,2)][b,rd][b,ret(1,2)]X

Saturday, 13 October 12

Linearizability

• Binary relation on concurrent libraries, usually from a
highly-concurrent one to a spec.

• L1 is linearizable wrt. L2 (denoted L1⊑ L2) iff

∀h1∈[L1]. ∃h2∈[L2]. h1[LinR]h2.

• h1[LinR]h2 holds iff h2 is a permutation of h1 s.t.

1. proj(h1,a) = proj(h2,a) for all thread-ids a, and

2. the happen-before order of h1 is preserved by h2.

Saturday, 13 October 12

PL perspective

Saturday, 13 October 12

History viewed as abstraction

• mean(h) = { t | ProjectLibraryActions(t) = h }.

• Says all traces whose interactions with the object are h.

 mean([a,wr(1,2)][a,ret][b,rd][b,ret(1,2)]) = {

 [a,wr(1,2)][a,ret][b,rd][a,x:=8][b,ret(1,2)],

 [a,wr(1,2)][b,y:=0][a,ret][b,rd][a,x:=8][b,ret(1,2)],

 [a,wr(1,2)][a,ret][a,x:=8][b,assume(x=8)][b,rd][b,ret(1,2)],

 ...}

• [a,wr(1,2)][a,x:=0][a,ret][b,rd][b,ret(1,2)] is not in the set.

Saturday, 13 October 12

Happen-before in terms of dependency

[Theorem] For all actions i,j of h,

HappenBefore(i,j,h) iff ∃t∈mean(h). Depend(i,j,t).

• Says “HappenBefore” is an abstraction of dependency.

• only-if by example: h = [a,rd(0,0)][a,ret][b,rd(0,0)][b,ret]

[a,rd(0,0)][a,ret](a,x:=1)(b,assume(x=1))[b,rd(0,0)][b,ret]

• if by example: h = [a,rd(0,0)][b,rd(0,0)][a,ret][b,ret]

[a,rd(0,0)][b,rd(0,0][a,ret](a,x:=1)(b,assume(x=1))[b,ret]

Saturday, 13 October 12

Happen-before in terms of dependency

[Theorem] For all actions i,j of h,

HappenBefore(i,j,h) iff ∃t∈mean(h). Depend(i,j,t).

• Says “HappenBefore” is an abstraction of dependency.

• only-if by example: h = [a,rd][a,ret(0,0)][b,rd][b,ret(0,0)]

[a,rd][a,ret(0,0)][a,x:=1][b,assume(x=1)][b,rd][b,ret(0,0)]

• if by example: h = [a,rd(0,0)][b,rd(0,0)][a,ret][b,ret]

[a,rd(0,0)][b,rd(0,0][a,ret][a,x:=1][b,assume(x=1)][b,ret]

Saturday, 13 October 12

Happen-before in terms of dependency

[Theorem] For all actions i,j of h,

HappenBefore(i,j,h) iff ∃t∈mean(h). Depend(i,j,t).

• Says “HappenBefore” is an abstraction of dependency.

• only-if by example: h = [a,rd][a,ret(0,0)][b,rd][b,ret(0,0)]

[a,rd][a,ret(0,0)][a,x:=1][b,assume(x=1)][b,rd][b,ret(0,0)]

• if by example: h = [a,rd][b,rd][a,ret(0,0)][b,ret(0,0)]

[a,rd][b,rd][a,ret(0,0)][a,x:=1][b,assume(x=1)][b,ret(0,0)]

Saturday, 13 October 12

Trace equivalence

• t1 ∼ t2 iff t2 can be obtained from t1 by swapping
independent actions from the client perspective.

• [a,x:=4][b,y:=11] ∼ [b,y:=11][a,x:=4]

• [a,x:=4][b,x:=11] ≁ [b,x:=11][a,x:=4]

• [a,x:=4][a,y:=11] ≁ [a,y:=11][a,x:=4]

• [a,wr(1,2)][a,ret][b,wr(3,4)] ∼ [a,wr(1,2)][b,wr(3,4)][a,ret]

Saturday, 13 October 12

[Lemma]

 h1[LinR]h2 iff ∀t1∈mean(h1). ∃t2∈mean(h2). t1∼t2.

• Says 1) mean(h1) is a subset of mean(h2) in a sense, and 2)
we can always replace h2 by h1.

• only-if by example:

 h1 = [a,rd][b,rd][b,ret(0,0)][a,ret(0,0)]

 t1 = [a,rd][b,rd][b,ret(0,0)][b,x:=1][a,ret(0,0)]

 h2 = [a,rd][a,ret(0,0)][b,rd][b,ret(0,0)]

 t2 = [a,rd][a,ret(0,0)][b,rd][b,ret(0,0)][b,x:=1]

Strong rearrangement lemma

Saturday, 13 October 12

[Lemma]

 h1[LinR]h2 iff ∀t1∈mean(h1). ∃t2∈mean(h2). t1∼t2.

• Says 1) mean(h1) is a subset of mean(h2) in a sense, and 2)
we can always replace h2 by h1.

• only-if by example:

 h1 = [a,rd][b,rd][b,ret(0,0)][a,ret(0,0)]

 t1 = [a,rd][b,rd][b,ret(0,0)][b,x:=1][a,ret(0,0)]

 h2 = [a,rd][a,ret(0,0)][b,rd][b,ret(0,0)]

 t2 = [a,rd][a,ret(0,0)][b,rd][b,ret(0,0)][b,x:=1]

Strong rearrangement lemma

Saturday, 13 October 12

[Lemma]

 h1[LinR]h2 iff ∀t1∈mean(h1). ∃t2∈mean(h2). t1∼t2.

• Says 1) mean(h1) is a subset of mean(h2) in a sense, and 2)
we can always replace h2 by h1.

• only-if by example:

 h1 = (a,enq(0))(b,sayHi)(b,ret)(a,ret)

 t1 = (a,enq(0))(b,sayHi)(b,ret)(b,x:=1)(a,ret)

 h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)

 t2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(b,x:=1)

• if by example:

 h1=[b,rd][b,ret(0,0)][a,rd][a,ret(0,0)]

 t1=[b,rd][b,ret(0,0)][b,x:=1][a,assume(x=1)][a,rd][a,ret(0,0)]

 h2=[a,rd][a,ret(0,0)][b,rd][b,ret(0,0)]

 t2=[a,assume(x=1)][a,rd][a,ret(0,0)][b,rd][b,ret(0,0)][b,x:=1]

Strong rearrangement lemma

Saturday, 13 October 12

[Lemma]

 h1[LinR]h2 iff ∀t1∈mean(h1). ∃t2∈mean(h2). t1∼t2.

• Says 1) mean(h1) is a subset of mean(h2) in a sense, and 2)
we can always replace h2 by h1.

• only-if by example:

 h1 = (a,enq(0))(b,sayHi)(b,ret)(a,ret)

 t1 = (a,enq(0))(b,sayHi)(b,ret)(b,x:=1)(a,ret)

 h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)

 t2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(b,x:=1)

• if by example:

 h1=[b,rd][b,ret(0,0)][a,rd][a,ret(0,0)]

 t1=[b,rd][b,ret(0,0)][b,x:=1][a,assume(x=1)][a,rd][a,ret(0,0)]

 h2=[a,rd][a,ret(0,0)][b,rd][b,ret(0,0)]

 t2=[a,assume(x=1)][a,rd][a,ret(0,0)][b,rd][b,ret(0,0)][b,x:=1]

Strong rearrangement lemma

Saturday, 13 October 12

[Lemma]

 h1[LinR]h2 iff ∀t1∈mean(h1). ∃t2∈mean(h2). t1∼t2.

[Corollary]

If we ignore the termination issue, linearizability is
equivalent to observational refinement.

Strong rearrangement lemma

Saturday, 13 October 12

[Lemma]

 h1[LinR]h2 implies ∀t1∈mean(h1). ∃t2∈mean(h2). t1∼t2.

[Corollaries]

1. If we ignore the termination issue, linearizability implies
observational refinement.

2. We can show that L1[L2] ⊑ S1[S2] holds, by proving that
L2 ⊑ S2 and L1[S2] ⊑ S1[S2].

(Weak) rearrangement lemma

Saturday, 13 October 12

Something to remember

1. Histories record client-relevant actions.

2. Happen-before is an abstraction of the dependency of
possible client actions.

3. LinR implies trace inclusion modulo trace equivalence.

Saturday, 13 October 12

Exercise 1: liveness

Saturday, 13 October 12

Histories

• So far, I assumed finite histories.

• Embrace infinite histories.

• Histories can include [a,starve], which means that
thread a is not scheduled forever.

[a,wr(1,2)][b,rd][b,ret(0,0)][a,starve]

[a,wr(1,2)][b,rd][b,ret(0,0)]

[a,wr(1,2)][b,rd][b,ret(0,0)][b,rd][b,ret(1,2)]...

Saturday, 13 October 12

Happen-before order
 h1[LinR]h2 holds iff h2 is a permutation of h1 s.t.

1. proj(h1,a) = proj(h2,a) for all thread-ids a, and

2. the happen-before order of h1 is preserved by h2.

 [Q] What should we include in the happen-before order?

1. h1 = ...[a,starve][b,wr(1,2)]...

2. h1 = ...[a,starve][b,ret]...

3. h1 = ...[a,starve][b,starve]...

4. h1 = ...[a,wr(1,2)][b,starve]...

5. h1 = ...[a,ret][b,starve]...
Saturday, 13 October 12

Consequences

• We have the weak rearrangement lemma (after
slightly adjustment).

• Linearizability implies observational refinement.

• We can prove that L1[L2] is lock-free by showing the
following properties:

1. L2 is linearizable wrt. S2.

2. L1[S2] is lock-free when all methods of S2
terminates.

Saturday, 13 October 12

Exercise 2: TSO weak
memory model

Saturday, 13 October 12

The TSO memory model (x86)

...

RAM

Saturday, 13 October 12

RAM

The TSO memory model (x86)

Saturday, 13 October 12

f() {
 *x = a;
 *y = b;
 *z = c;
}

Writes stored into
the write buffer in
the order of issue

RAM

The TSO memory model (x86)

Saturday, 13 October 12

f() {
 *x = a;
 *y = b;
 *z = c;
}

x : a

Writes stored into
the write buffer in
the order of issue

RAM

The TSO memory model (x86)

Saturday, 13 October 12

f() {
 *x = a;
 *y = b;
 *z = c;
}

x : a

y : b Writes stored into
the write buffer in
the order of issue

RAM

The TSO memory model (x86)

Saturday, 13 October 12

f() {
 *x = a;
 *y = b;
 *z = c;
}

x : a

y : b Writes stored into
the write buffer in
the order of issue

RAM

z : c

The TSO memory model (x86)

Saturday, 13 October 12

x : a

y : b

z : c

Writes flushed in
FIFO order

RAM

f() {
 *x = a;
 *y = b;
 *z = c;
}

The TSO memory model (x86)

Saturday, 13 October 12

y : b

z : c Writes flushed in
FIFO order

x : a

RAM

f() {
 *x = a;
 *y = b;
 *z = c;
}

The TSO memory model (x86)

Saturday, 13 October 12

y : b

z : c Writes flushed in
FIFO order

x : a

RAM

f() {
 *x = a;
 *y = b;
 *z = c;
}

• Can be flushed after f returns

• Library behaviour depends on the
time of the flush

• Just parameters and return values not
enough

The TSO memory model (x86)

Saturday, 13 October 12

Histories

• Include [a,flushS] and [a,flushE].

• They mark the beginning and end of flushing writes
issued during method calls.

[a,wr(1,2)][a,ret][a,flushS][b,rd][a,flushE][b,ret(1,2)]

[a,wr(1,2)][b,rd][b,ret(0,0)][a,ret][a,flushS][a,flushE]

[a,wr(1,2)][b,rd][b,ret(1,2)][a,ret][a,flushS][a,flushE]

Saturday, 13 October 12

Histories

• Include [a,flushS] and [a,flushE].

• They mark the beginning and end of flushing writes
issued during method calls.

[a,wr(1,2)][a,ret][a,flushS][b,rd][a,flushE][b,ret(1,2)]

[a,wr(1,2)][b,rd][b,ret(0,0)][a,ret][a,flushS][a,flushE]

[a,wr(1,2)][b,rd][b,ret(1,2)][a,ret][a,flushS][a,flushE]

Saturday, 13 October 12

Happen-before order
 [Q] What should we include in the happen-before order?

1. h1 = ...[a,flushE][b,wr(1,2)]...

2. h1 = ...[a,flushE][b,ret]...

3. h1 = ...[a,flushE][b,flushS]...

4. h1 = ...[a,flushE][b,flushE]...

5. h1 = ...[a,flushS][b,wr(1,2)]...

6. h1 = ...[a,flushS][b,ret], and 2 other possibilities.

Saturday, 13 October 12

Consequences

• Again, we get a version of the weak
rearrangement lemma.

• Linearizability implies observational refinement.

Saturday, 13 October 12

Tips for obtaining a sensible
correctness condition

• Identify the type of client programs that you have in
mind.

• Define histories, which keep information of library
executions relevant to client programs.

• Identify properties of histories that client programs
observe about histories.

• Such properties can be expressed by HB order,
which capture client-side dependency.

Saturday, 13 October 12

