Abstraction for Concurrent Objects

Hongseok Yang (Queen Mary Univ. of London)

Joint work with Ivana Filipovic, Peter O'Hearn, Noam Rinetzky

Data Abstraction for Concurrency

- Is it OK to replace a sequential queue in my program by Doug Lea's ConcurrentLinkedQueue?
- By OK, we mean: after the replacement,
 - my program does not generate new outputs;
 - its termination behavior does not change.
- Our aim is to develop a theory that answers such questions.

Linearizability

• Lea's ConcurrentLinkedQueue is proved to be linearizable:

Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms*

Maged M. Michael Michael L. Scott

3.2 Linearizability

The presented algorithms are linearizable because there is a specific point during each operation at which it is considered to "take effect" [5]. An enqueue takes effect when

Linearizability

- Widely used correctness condition for concurrent data structures (or objects).
- Usually expresses a relationship between concurrent object and sequential object.
- The goal of this talk is to show the connection between linearizability and the "can-we-replace" question.

Review of Linearizability

Object System

- A set of finite traces (i.e., sequences of "actions").
- Gives trace semantics of an object.
- Concurrent queue:

```
Cqueue = {
    (a,enq(0))(a,ret),
    (a,enq(0))(a,ret)(b,deq)(b,ret(0)),
    (a,enq(0))(b,deq)(a,ret)(b,ret(0)), ... }
```

• Each element h in an obj. system is called history.

A history h is a finite sequence of calls/returns:

```
h = (a,enq(0))(a,ret)(b,deq)(b,ret(0))

h = (a,enq(0))(b,deq)(a,ret)(b,ret(0))
```

- "a,b" in (a,enq(0)) and (b,deq) are thread ids.
- Each method invocation is split into call and return.

A history h is a finite sequence of calls/returns:

```
h = (a,enq(0))(a,ret)(b,deq)(b,ret(0))

h = (a,enq(0))(b,deq)(a,ret)(b,ret(0))
```

- "a,b" in (a,enq(0)) and (b,deq) are thread ids.
- Each method invocation is split into call and return.
- We will consider only well-formed histories where:

- A hist (a,ret) a finite sequence of calls/returns:
 - h = (a,enq(0))(a,ret)(b,deq)(b,ret(0))
 - h = (a,enq(0))(b,deq)(a,ret)(b,ret(0))
- "a,b" in (a,enq(0)) and (b,deq) are thread ids.
- Each method invocation is split into call and return.
- We will consider only well-formed histories where:
 - calls have matching returns and vice versa;

A history h is a finite sequence of calls/returns:

```
h = (a,enq(0))(a,ret)(b,deq)(b,ret(0))

h = (a,enq(0))(b,deq)(a,ret)(b,ret(0))
```

- "a,b" in (a,enq(0)) and (a,enq(1)) e thread ids.
- Each method invocation is split into call and return.
- We will consider only well-formed histories where:
 - calls have matching returns and vice versa;
 - after a call, each thread waits until the call returns.

Linearizability

- Binary relation on object systems.
- OSI is linearizable wrt. OS2 iff

 $\forall h \in OSI. \exists h \in OS2. h \in LinR h = 1.$

- Usually, OS2 is a sequential object (sequential queue) and OSI is a concurrent object (concurrent queue).
- LinR is a relation on histories, and it is the key notion behind linearizability.

- h I [LinR]h2 holds iff h2 is a rearrangement of h I s.t.
 - I. $proj(h \mid a) = proj(h \mid a)$ for all thread-ids a, and
 - 2. the happen-before order of h1 is preserved by h2.
- Example:

- h I [LinR]h2 holds iff h2 is a rearrangement of h I s.t.
 - I. proj(hl,a) = proj(h2,a) for all thread-ids a, and
 - 2. the happen-before order of h1 is preserved by h2.
- Example:

```
hI = (a,enq(0))(b,sayHi)(b,ret)(a,ret)(c,deq)(c,ret(0)) \bigvee
[LinR]
h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(c,deq)(c,ret(0))
```

- h I [LinR]h2 holds iff h2 is a rearrangement of h I s.t.
 - I. $proj(h \mid a) = proj(h \mid a)$ for all thread-ids a, and
 - 2. the happen-before order of h1 is preserved by h2.
- Example:

$$hI' = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(c,deq)(c,ret(4)) \times \\ hI = (a,enq(0))(b,sayHi)(b,ret)(a,ret)(c,deq)(c,ret(0)) \times \\ \left[LinR\right]$$

h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(c,deq)(c,ret(0))

- h l [LinR]h2 holds iff h2 is a rearrangement of h l s.t.
 - I. proj(hl,a) = proj(h2,a) for all thread-ids a, and
 - 2. the happen-before order of h1 is preserved by h2.
- Example:

```
hI'' = (b,sayHi)(b,ret)(a,enq(0))(a,ret)(c,deq)(c,ret(0)) X
hI' = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(c,deq)(c,ret(4)) X
hI = (a,enq(0))(b,sayHi)(b,ret)(a,ret)(c,deq)(c,ret(0)) V
[LinR]
```

h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(c,deq)(c,ret(0))

- h I [LinR]h2 holds iff h2 is a rearrangement of h I s.t.
 - I. $proj(h \mid a) = proj(h \mid a)$ for all thread-ids a, and
 - 2. the happen-before order of h1 is preserved by h2.
- Example:

```
hI'' = (b,sayHi)(b,ret)(a,enq(0))(a,ret)(c,deq)(c,ret(0)) X
hI' = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(c,deq)(c,ret(4)) X
hI = (a,enq(0))(b,sayHi)(b,ret)(a,ret)(c,deq)(c,ret(0)) V
[LinR]
```

h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(c,deq)(c,ret(0))

Our Results

- mean(h) = { t | ProjectObjectActions(t) = h }.
- Says all traces whose interactions with the object are h.

- mean(h) = { t | ProjectObjectActions(t) = h }.
- Says all traces whose interactions with the object are h.
 mean((a,enq(0))(a,ret)(b,sayHi)(b,ret)) = {

- mean(h) = { t | ProjectObjectActions(t) = h }.
- Says all traces whose interactions with the object are h.

```
mean( (a,enq(0))(a,ret)(b,sayHi)(b,ret) ) = { (a,enq(0))(a,ret)(b,sayHi)(a,x:=8)(b,ret),
```

- mean(h) = { t | ProjectObjectActions(t) = h }.
- Says all traces whose interactions with the object are h.

```
mean( (a,enq(0))(a,ret)(b,sayHi)(b,ret) ) = {
(a,enq(0))(a,ret)(b,sayHi)(a,x:=8)(b,ret),
(a,enq(0))(b,y:=0)(a,ret)(b,sayHi)(a,x:=8)(b,ret),
```

- mean(h) = { t | ProjectObjectActions(t) = h }.
- Says all traces whose interactions with the object are h.

```
mean( (a,enq(0))(a,ret)(b,sayHi)(b,ret) ) = \{
(a,enq(0))(a,ret)(b,sayHi)(a,x:=8)(b,ret),
(a,enq(0))(b,y:=0)(a,ret)(b,sayHi)(a,x:=8)(b,ret),
(a,enq(0))(a,ret)(a,x:=8)(b,assume(x=8))(b,sayHi)(b,ret),
...\}
```

- mean(h) = { t | ProjectObjectActions(t) = h }.
- Says all traces whose interactions with the object are h.

```
mean( (a,enq(0))(a,ret)(b,sayHi)(b,ret) ) = {
  (a,enq(0))(a,ret)(b,sayHi)(a,x:=8)(b,ret),
  (a,enq(0))(b,y:=0)(a,ret)(b,sayHi)(a,x:=8)(b,ret),
  (a,enq(0))(a,ret)(a,x:=8)(b,assume(x=8))(b,sayHi)(b,ret),
  ...}
```

• (a,enq(0))(a,x=0)(a,ret)(b,sayHi)(b,ret) is not in the set.

```
[Theorem I] For all actions i,j of h,

HappenBefore(i,j,h) iff ∃t∈mean(h). Depend(i,j,t).
```

- Says "HappenBefore" is an abstraction of dependency.
- only-if by example: h = (a,enq(0))(a,ret)(b,sayHi)(b,ret)

```
[Theorem I] For all actions i,j of h,

HappenBefore(i,j,h) iff ∃t∈mean(h). Depend(i,j,t).
```

- Says "HappenBefore" is an abstraction of dependency.
- only-if by example: h = (a,enq(0))(a,ret)(b,sayHi)(b,ret)
- V(a,enq(0))(a,ret)(a,x=1)(b,assume(x=1))(b,sayHi)(b,ret)

```
[Theorem I] For all actions i,j of h,

HappenBefore(i,j,h) iff ∃t∈mean(h). Depend(i,j,t).
```

- Says "HappenBefore" is an abstraction of dependency.
- only-if by example: h = (a,enq(0))(a,ret)(b,sayHi)(b,ret)
- V(a,enq(0))(a,ret)(a,x=1)(b,assume(x=1))(b,sayHi)(b,ret)
- if by example: h = (a,enq(0))(b,sayHi)(a,ret)(b,ret)

```
[Theorem I] For all actions i,j of h,

HappenBefore(i,j,h) iff ∃t∈mean(h). Depend(i,j,t).
```

- Says "HappenBefore" is an abstraction of dependency.
- only-if by example: h = (a,enq(0))(a,ret)(b,sayHi)(b,ret)
- V(a,enq(0))(a,ret)(a,x=1)(b,assume(x=1))(b,sayHi)(b,ret)
- if by example: h = (a,enq(0))(b,sayHi)(a,ret)(b,ret)
- χ (a,enq(0))(b,sayHi)(a,ret)(a,x:=1)(b,assume(x=1))(b,ret)

Trace Equivalence

- t1 ~ t2 iff t2 can be obtained from t1 by swapping independent actions.
- $(a,x:=4)(b,y:=11) \sim (b,y:=11)(a,x:=4)$
- $(a,x:=4)(b,x:=11) \neq (b,x:=11)(a,x:=4)$
- $(a,x:=4)(a,y:=11) \neq (a,y:=11)(a,x:=4)$
- $(a,enq(0))(a,ret)(b,sayHi) \sim (a,enq(0))(b,sayHi)(a,ret)$

```
[Theorem 2]
h I [LinR]h 2 iff ∀t I ∈ mean(h I). ∃t2∈mean(h 2). t I ~t2.
```

- Says I) mean(hI) is a subset of mean(h2) in a sense, and
 2) we can always replace h2 by hI.
- only-if by example:

```
hI = (a,enq(0))(b,sayHi)(b,ret)(a,ret)
tI = (a,enq(0))(b,sayHi)(b,ret)(b,x:=I)(a,ret)
h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)
```

```
[Theorem 2]
h [LinR]h2 iff ∀t | ∈ mean(h | 1). ∃t2∈mean(h2). t | ~t2.
```

- Says I) mean(hI) is a subset of mean(h2) in a sense, and
 2) we can always replace h2 by hI.
- only-if by example:

```
hI = (a,enq(0))(b,sayHi)(b,ret)(a,ret)

tI = (a,enq(0))(b,sayHi)(b,ret)(b,x:=I)(a,ret)

h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)

t2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(b,x:=I)
```

```
[Theorem 2]
h [LinR]h2 iff ∀t | ∈ mean(h | I). ∃t2∈mean(h2). t | ~t2.
```

- Says I) mean(hI) is a subset of mean(h2) in a sense, and
 2) we can always replace h2 by hI.
- if by example:

```
hI = (b,sayHi)(b,ret)(a,enq(0))(a,ret)
tI = (b,sayHi)(b,ret)(b,x:=I)(a,assume(x=I))(a,enq(0))(a,ret)
h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)
```

```
[Theorem 2]
   h[[LinR]h2 iff \forall t] \in mean(h]). \exists t2 \in mean(h2). t] \sim t2.

    Says I) mean(hI) is a subset of mean(h2) in a sense, and

2) we can always replace h2 by h1.
• if by example:
hI = (b,sayHi)(b,ret)(a,enq(0))(a,ret)
tI = (b,sayHi)(b,ret)(b,x:=I)(a,assume(x=I))(a,enq(0))(a,ret)
h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)
t2 = (a,assume(x=1))(a,enq(0))(a,ret)(b,sayHi)(b,ret)(b,x:=1)
```

```
[Theorem 2]
h I [LinR]h 2 iff ∀t I ∈ mean(h I). ∃t 2 ∈ mean(h 2). t I ~t 2.
```

[Corollary]

If we ignore the termination issue, the answer to the following question is yes:

 Is it OK to replace a sequential queue in my program by Doug Lea's ConcurrentLinkedQueue?

```
[Theorem 2] hl[LinR]h2 \text{ iff } \forall tl \in mean(hl). \exists t2 \in mean(h2). tl \sim t2.
```

[Corollary]

If we ignore the termination issue, the answer to the following question is yes:

 Is it OK to replace a sequential queue in my program by Doug Lea's ConcurrentLinkedQueue?

[Theorem 3] Linearizability is the same as obs. refinement.