Abstraction for Concurrent
Objects

Hongseok Yang (Queen Mary Univ. of London)

Joint work with
lvana Filipovic, Peter O’Hearn, Noam Rinetzky

Data Abstraction for Concurrency

® |s it OK to replace a sequential queue in my program
by Doug Lea’s ConcurrentLinkedQueue!?

e By OK, we mean: after the replacement,
® my program does not generate new outputs;
® its termination behavior does not change.

® Our aim is to develop a theory that answers such
questions.

Linearizability

® | ea’s ConcurrentLinkedQueue is proved to be
linearizable:

Simple, Fast, and Practical Non-Blocking and Blocking
Concurrent Queue Algorithms*

Maged M. Michael Michael L. Scott

3.2 Linearizability

The presented algorithms are linearizable because there
1s a specific point during each operation at which it is con-
sidered to “take effect” [S]. An enqueue takes effect when

Linearizability

® Widely used correctness condition for concurrent data
structures (or objects).

® Usually expresses a relationship between concurrent
object and sequential object.

® The goal of this talk is to show the connection between
linearizability and the “can-we-replace” question.

Review of Linearizability

Object System

® A set of finite traces (i.e., sequences of “actions”).
® Gives trace semantics of an object.
e Concurrent queue:
Cqueue = {
(a,enq(0))(a,ret),
(a,enq(0))(a,ret)(b,deq)(b,ret(0)),
(a,enqg(0))(b,deq)(a,ret)(b,ret(0)), ...}

® Each element h in an obj. system is called history.

History

® A history h is a finite sequence of calls/returns:

n = (a,enq(0))(b,c

n = (a,enq(0))(a,ret)(b,deq)(

eq)(a,ret)(

® “a,b”in (a,enq(0)) and (

o,ret(0))

o,ret(0))

b,deq) are thread ids.

® Fach method invocation is split into call and return.

History

A history h is a finite sequence of calls/returns:

n = (a,enq(0))(b,c

n = (a,enq(0))(a,ret)(b,deq)(

eq)(a,ret)(

“a,b” in (a,enq(0)) and (

o,ret(0))

o,ret(0))

b,deq) are thread ids.

Each method invocation is split into call and return.

We will consider only well-formed histories where:

History

A histl (a,ret)l a finite sequence of calls/returns:

n = (a,enq(0))(b,c

L ;Ufa,enc (0))(a,ret)(b,deq)(

eq)(a,ret)(

“a,b” in (a,enq(0)) and (

b,deq) are thread ids.

Each method invocation is split into call and return.

We will consider only well-formed histories where:

® calls have matching returns and vice versa;

History

A history h is a finite sequence of calls/returns:

n = (a,enq(0))(a,ret)(b,deq)(

N = (3,eng (O))(b,deqNa,ret)(

“a,b” in (a,enq(0)) ancl(a’eone thread ids.

Each method invocation is split into call and return.

We will consider only well-formed histories where:

® calls have matching returns and vice versa;

® after a call, each thread waits until the call returns.

Linearizability

Binary relation on object systems.
OS| is linearizable wrt. OS2 iff
vhleOSI. 3h2€0OS2. hl[LinR]h2.

Usually, OS2 is a sequential object (sequential queue)
and OS| is a concurrent object (concurrent queue).

LinR is a relation on histories, and it is the key notion
behind linearizability.

Relation LinR

® h|[LinR]h2 holds iff h2 is a rearrangement of hl s.t.

|. proj(hl,a) = proj(h2,a) for a

| thread-ids a, and

2. the happen-before order of

® Example:

hl = (a,enq(0))(b,sayHi)(b,ret)
LinR]
h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(c,deq)(c,ret(0))

nl is preserved by h2.

(a,ret)(c,deq)(c,ret(0))

Relation LinR

® h|[LinR]h2 holds iff h2 is a rearrangement of hl s.t.

|. proj(hl,a) = proj(h2,a) for a

| thread-ids a, and

2. the happen-before order of

® Example:

hl = (a,enq(0))(b,sayHi)(b,ret)

[LinR]

nl is preserved by h2.

(a,ret)(c,deq)(c,ret(0)) \/

h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(c,deq)(c,ret(0))

Relation LinR

® h|[LinR]h2 holds iff h2 is a rearrangement of hl s.t.
|. proj(hl,a) = proj(h2,a) for all thread-ids a, and

2. the happen-before order of hl is preserved by h2.

® Example:

hl1’ = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(c,deq)(c,ret(4)) X
V

[LinR]
h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(c,deq)(c,ret(0))

Relation LinR

® h|[LinR]h2 holds iff h2 is a rearrangement of hl s.t.
|. proj(hl,a) = proj(h2,a) for all thread-ids a, and

2. the happen-before order of hl is preserved by h2.

® Example:
h1” = (b,sayHi)(b,ret)(a,enq(0))(a,ret)(c,deq)(c,ret(0)) X

X
\Y

[LinR]
h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(c,deq)(c,ret(0))

Relation LinR

® h|[LinR]h2 holds iff h2 is a rearrangement of hl s.t.
|. proj(hl,a) = proj(h2,a) for all thread-ids a, and

2. the happen-before order of hl is preserved by h2.

® Example:

h1” = (b,sayHi)(b,ret)(a,enq(0))(a,ret)(c,deq)(c,ret(0)) X

h1’ = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(c,deq)(c,ret(4)) X

hl = (a,enq(0))(b,sayHi)(b,ret)(a,ret)(c,deq)(c,ret(0)) \/
[LinR]

h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(c,deq)(c,ret(0))

Our Results

History viewed as Abstraction

® mean(h) ={ t | ProjectObjectActions(t) = h }.

® Says all traces whose interactions with the object are h.

History viewed as Abstraction

® mean(h) ={ t | ProjectObjectActions(t) = h }.
® Says all traces whose interactions with the object are h.

mean((a,enq(0))(a,ret)(b,sayHi)(b,ret)) = {

History viewed as Abstraction

® mean(h) ={ t | ProjectObjectActions(t) = h }.
® Says all traces whose interactions with the object are h.
mean((a,enq(0))(a,ret)(b,sayHi)(b,ret)) = {
(a,enq(0))(a,ret)(b,sayHi)(a,x:=8)(b,ret),

History viewed as Abstraction

® mean(h) ={ t | ProjectObjectActions(t) = h }.
® Says all traces whose interactions with the object are h.
mean((a,enq(0))(a,ret)(b,sayHi)(b,ret)) = {
(a,enq(0))(a,ret)(b,sayHi)(a,x:=8)(b,ret),
(a,enq(0))(b,y:=0)(a,ret)(b,sayHi)(a,x:=8)(b,ret),

History viewed as Abstraction

® mean(h) ={ t | ProjectObjectActions(t) = h }.
® Says all traces whose interactions with the object are h.
mean((a,enq(0))(a,ret)(b,sayHi)(b,ret)) = {
(a,enq(0))(a,ret)(b,sayHi)(a,x:=8)(b,ret),
(a,enq(0))(b,y:=0)(a,ret)(b,sayHi)(a,x:=8)(b,ret),
(a,enq(0))(a,ret)(a,x:=8)(b,assume(x=8))(b,sayHi)(b,ret),

)

History viewed as Abstraction

® mean(h) ={ t | ProjectObjectActions(t) = h }.
® Says all traces whose interactions with the object are h.
mean((a,enq(0))(a,ret)(b,sayHi)(b,ret)) = {
(a,enq(0))(a,ret)(b,sayHi)(a,x:=8)(b,ret),
(a,enq(0))(b,y:=0)(a,ret)(b,sayHi)(a,x:=8)(b,ret),
(a,enq(0))(a,ret)(a,x:=8)(b,assume(x=8))(b,sayHi)(b,ret),

® (a,enq(0))(a,x:=0)(a,ret)(b,sayHi)(b,ret) is not in the set.

Main Result |

[Theorem] For all actions i,j of h,

HappenBefore(i,j,h) iff 3Jtemean(h). Depend(i,j,t).

® Says ‘HappenBefore” is an abstraction of dependency.

® only-if by example: h = (a,enq(0))(a,ret)(b,sayHi)(b,ret)

Main Result |

[Theorem|] For all actions i,j of h,

HappenBefore(i,j,h) iff 3Jtemean(h). Depend(i,j,t).

® Says ‘HappenBefore” is an abstraction of dependency.
® only-if by example: h = (a,enq(0))(a,ret)(b,sayHi)(b,ret)
\/(a,enq(O))(a,ret) (a,x:=I)(b,assume(x=1))(b,sayHi)(b,ret)

Main Result |

[Theorem|] For all actions i,j of h,

HappenBefore(i,j,h) iff 3Jtemean(h). Depend(i,j,t).

® Says ‘HappenBefore” is an abstraction of dependency.
® only-if by example: h = (a,enq(0))(a,ret)(b,sayHi)(b,ret)
\/(a,enq(O))(a,ret) (a,x:=I)(b,assume(x=1))(b,sayHi)(b,ret)
® if by example: h = (a,enq(0))(b,sayHi)(a,ret)(b,ret)

Main Result |

[Theorem|] For all actions i,j of h,

HappenBefore(i,j,h) iff 3Jtemean(h). Depend(i,j,t).

® Says ‘HappenBefore” is an abstraction of dependency.
® only-if by example: h = (a,enq(0))(a,ret)(b,sayHi)(b,ret)
\/(a,enq(O))(a,ret) (a,x:=I)(b,assume(x=1))(b,sayHi)(b,ret)
® if by example: h = (a,enq(0))(b,sayHi)(a,ret)(b,ret)

X (a,enq(0))(b,sayHi)(a,ret)(a,x:=)(b,assume(x=1))(b,ret)

Trace Equivalence

® tl ~ t2 iff t2 can be obtained from tl by swapping
independent actions.

® (a,x:=4)(b,y:=11) ~ (by:=11)(a,x:=4)
® (a,x:=4)(b,x:=11) 2 (byx:=11)(a,x:=4)
® (a3,x:=4)(a,y:=11) £ (a,y:=11)(a,x:=4)
® (a,enq(0))(a,ret)(b,sayHi) ~ (a,enq(0))(b,sayHi)(a,ret)

Main Result 2

[Theorem 2]
hl[LinR]h2 iff vtlemean(hl).3t2emean(h2). tl~t2.

® Says |) mean(hl) is a subset of mean(h2) in a sense, and
2) we can always replace h2 by hl.

® only-if by example:

hl = (a,enq(0))(b,sayHi)(b,ret)(a,ret)

tl = (a,enq(0))(b,sayHi)(b,ret)(b,x:=1)(a,ret)
h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)

Main Result 2

[Theorem 2]
hl[LinR]h2 iff vtlemean(hl).3t2emean(h2). tl~t2.

® Says |) mean(hl) is a subset of mean(h2) in a sense, and
2) we can always replace h2 by hl.

® only-if by example:

hl = (a,enq(0))(b,sayHi)(b,ret)(a,ret)

tl = (a,enq(0))(b,sayHi)(b,ret)(b,x:=1)(a,ret)
h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)

t2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)(b,x:=1)

Main Result 2

[Theorem 2]
hl[LinR]h2 iff vtlemean(hl).3t2emean(h2). tl~t2.

® Says |) mean(hl) is a subset of mean(h2) in a sense, and
2) we can always replace h2 by hl.

o if by example:

hl = (b,sayHi)(b,ret)(a,enq(0))(a,ret)

tl = (b,sayHi)(b,ret)(b,x:=1)(a,assume(x=1))(a,enq(0))(a,ret)
h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)

Main Result 2

[Theorem 2]
hl[LinR]h2 iff vtlemean(hl).3t2emean(h2). tl~t2.

® Says |) mean(hl) is a subset of mean(h2) in a sense, and
2) we can always replace h2 by hl.

o if by example:

hl = (b,sayHi)(b,ret)(a,enq(0))(a,ret)

tl = (b,sayHi)(b,ret)(b,x:=1)(a,assume(x=1))(a,enq(0))(a,ret)
h2 = (a,enq(0))(a,ret)(b,sayHi)(b,ret)

t2 = (a,assume(x=1))(a,enq(0))(a,ret)(b,sayHi)(b,ret)(b,x:=1)

Main Result 2

[Theorem 2]
hl[LinR]h2 iff vtlemean(hl).3t2emean(h2). tl~t2.

[Corollary]

If we ignore the termination issue, the answer to the
following question is yes:

® |s it OK to replace a sequential queue in my program
by Doug Lea’s ConcurrentLinkedQueue!

Main Result 2

[Theorem 2]
hl[LinR]h2 iff vtlemean(hl).3t2emean(h2). tl~t2.

[Corollary]

If we ignore the termination issue, the answer to the
following question is yes:

® |s it OK to replace a sequential queue in my program
by Doug Lea’s ConcurrentLinkedQueue!

[Theorem 3] Linearizability is the same as obs. refinement.

