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Data Abstraction for Concurrency

® |s it OK to replace a sequential queue in my program
by Doug Lea’s ConcurrentLinkedQueue!?

e By OK, we mean: after the replacement,
® my program does not generate new outputs;
® its termination behavior does not change.

® Our aim is to develop a theory that answers such
questions.




Linearizability

® | ea’s ConcurrentLinkedQueue is proved to be
linearizable:

Simple, Fast, and Practical Non-Blocking and Blocking
Concurrent Queue Algorithms*

Maged M. Michael Michael L. Scott

3.2 Linearizability

The presented algorithms are linearizable because there
1s a specific point during each operation at which it is con-
sidered to “take effect” [S]. An enqueue takes effect when




Linearizability

® Widely used correctness condition for concurrent data
structures (or objects).

® Usually expresses a relationship between concurrent
object and sequential object.

® The goal of this talk is to show the connection between
linearizability and the “can-we-replace” question.




Review of Linearizability




Object System

® A set of finite traces (i.e., sequences of “actions”).
® Gives trace semantics of an object.
e Concurrent queue:
Cqueue = {
(a,enq(0))(a,ret),
(a,enq(0))(a,ret)(b,deq)(b,ret(0)),
(a,enqg(0))(b,deq)(a,ret)(b,ret(0)), ...}

® Each element h in an obj. system is called history.




History

® A history h is a finite sequence of calls/returns:

n = (a,enq(0))(b,c
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® “a,b”in (a,enq(0)) and (
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b,deq) are thread ids.

® Fach method invocation is split into call and return.
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History

A history h is a finite sequence of calls/returns:

n = (a,enq(0))(a,ret)(b,deq)(

N = (3,eng (O))(b,deqNa,ret)(

“a,b” in (a,enq(0)) ancl(a’eone thread ids.

Each method invocation is split into call and return.

We will consider only well-formed histories where:

® calls have matching returns and vice versa;

® after a call, each thread waits until the call returns.




Linearizability

Binary relation on object systems.
OS| is linearizable wrt. OS2 iff
vhleOSI. 3h2€0OS2. hl[LinR]h2.

Usually, OS2 is a sequential object (sequential queue)
and OS| is a concurrent object (concurrent queue).

LinR is a relation on histories, and it is the key notion
behind linearizability.




Relation LinR

® h|[LinR]h2 holds iff h2 is a rearrangement of hl s.t.
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Relation LinR

® h|[LinR]h2 holds iff h2 is a rearrangement of hl s.t.
|. proj(hl,a) = proj(h2,a) for all thread-ids a, and

2. the happen-before order of hl is preserved by h2.
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Our Results
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History viewed as Abstraction

® mean(h) ={ t | ProjectObjectActions(t) = h }.
® Says all traces whose interactions with the object are h.
mean( (a,enq(0))(a,ret)(b,sayHi)(b,ret) ) = {
(a,enq(0))(a,ret)(b,sayHi)(a,x:=8)(b,ret),
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® (a,enq(0))(a,x:=0)(a,ret)(b,sayHi)(b,ret) is not in the set.
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Trace Equivalence

® tl ~ t2 iff t2 can be obtained from tl by swapping
independent actions.

® (a,x:=4)(b,y:=11) ~ (by:=11)(a,x:=4)
® (a,x:=4)(b,x:=11) 2 (byx:=11)(a,x:=4)
® (a3,x:=4)(a,y:=11) £ (a,y:=11)(a,x:=4)
® (a,enq(0))(a,ret)(b,sayHi) ~ (a,enq(0))(b,sayHi)(a,ret)
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[Theorem 2]
hl[LinR]h2 iff vtlemean(hl).3t2emean(h2). tl~t2.

[Corollary]

If we ignore the termination issue, the answer to the
following question is yes:

® |s it OK to replace a sequential queue in my program
by Doug Lea’s ConcurrentLinkedQueue!

[Theorem 3] Linearizability is the same as obs. refinement.




