
Verification of the Schorr-Waite Graph Marking
Algorithm by Refinement

Hongseok Yang

ROPAS, KAIST

Email: hyang@ropas.kaist.ac.kr

August 2002

The Schorr-Waite Graph Marking Algorithm

The Schorr-Waite Graph Marking Algorithm

Given the root of a graph, the algorithm marks all the reachable
nodes from the root by doing the depth-first traversal; the most
creative part of the algorithm lies in implementing a stack without
additional memory by reversing the link fields of nodes.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 1

The Schorr-Waite Graph Marking Algorithm

α

nilnil

nil

nil

nil

NIL

p

c

p’
nilnil

nil

nil

nil

SWMarking Algorithm StackMarking Algorithm

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 2

Two Specifications of the Schorr-Waite Algorithm

Two Specifications of the Schorr-Waite Algorithm

The full specification:

Given a graph of unmarked nodes and its root, the
algorithm marks all the nodes reachable from the root;
moreover, when it terminates, the algorithm restores the
link fields of the nodes to their initial values.

A partial specification:

The algorithm does the same thing as the depth-first
traversal with an explicit stack.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 3

Question

Question

Can we formulate a program logic to show that the
Schorr-Waite algorithm does the same thing as the
depth-first traversal?

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 4

Main Idea: Hoare Quadruple

Main Idea: Hoare Quadruple

{Same ∧ p = p′ ∧ NoDangling(p, p′)} SWMarking(p)

StackMarking(p′)
{Same ∧ NoDangling(p, p′)}

• With relations, it is easy to compare the heaps of the two
programs; consequently, simple relations are often enough.

• The proof rules for showing quadruples can easily be obtained
from those of the Separation Logic.

• This extends the methods of Reynolds, Hoare and Morgan to
handle heaps.a

aFor a more complete list of references, see de Roever and Engelhart’s book.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 5

Semantic Domains

Semantic Domains

Locs ∪ {nil} ⊆ Vals

Stacks ∆= Vars ⇀fin Vals

Heaps ∆= Locs ⇀fin Vals×Vals×Vals×Vals

States ∆= Stacks×Heaps

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 6

Relations

Relations

Assertions P, Q := (E 7→ E, E, E,E) | E = E′ | emp | P ∗Q | P ⇒ Q | ∀x. P

Relations R,S :=

P1

P2

 | E = E′ | Emp | R ∗ S | R ⇒ S | ∀x.R

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 7

Review: Semantics of Assertions

Review: Semantics of Assertions

For s ∈ Stacks and h ∈ Heaps,a

s, h |= (E 7→ E1, E2, E3, E4) iff dom(h) = {[[E]]s}
∧ h([[E]]s) = ([[E1]]s, [[E2]]s, [[E3]]s, [[E4]]s)

s, h |= P ∗Q iff ∃h′, h′′.
h = h′ ∗ h′′ ∧ s, h′ |= P ∧ s, h′′ |= Q

s, h |= emp iff h = []

s, h |= E = E′ iff [[E]]s = [[E′]]s

s, h |= P ⇒ Q iff s, h |= P =⇒ s, h |= Q

ah1#h2 holds iff dom(h1) ∩ dom(h2) = ∅. When h1#h2, h1 ∗ h2 is the union

of h1 and h2.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 8

Semantics of Relations

Semantics of Relations

For s ∈ Stacks and h1, h2 ∈ Heaps,

s, h1, h2 |=

P1

P2

 iff s, h1 |= P1 and s, h2 |= P2

s, h1, h2 |= R ∗ S iff ∃h′1, h′′1 , h′2, h
′′
2 .

h1 = h′1 ∗ h′′1 ∧ h2 = h′2 ∗ h′′2
∧ s, h′1, h

′
2 |= R ∧ s, h′′1 , h′′2 |= S

s, h1, h2 |= Emp iff h1 = h2 = []

s, h1, h2 |= E = E′ iff [[E]]s = [[E′]]s

s, h1, h2 |= R ⇒ S iff s, h1, h2 |= R =⇒ s, h1, h2 |= S

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 9

Example Relations

Example Relations

1. ∃x, l, r,m, d.

x 7→ l, r,m, d

x 7→ l, r,m, d

2. Same
∆≡ Emp ∨ (∃x, l, r,m, d.

x 7→ l, r,m, d

x 7→ l, r,m, d

) ∗ Same

3. Twisted
∆≡ Emp ∨ (∃x, l, r,m, d.

x 7→ l, r,m, d

x 7→ r, l,m, d

) ∗ Twisted

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 10

Hoare Quadruple

Hoare Quadruple

When FV(C1) ∩ FV(C2) = ∅, the quadruple {R}C1

C2

{S} says that

for all s, h1, h2 such that s, h1, h2 |= R,

1. both s|FV(C1), h1, C1 and s|FV(C2), h2, C2 do not generate
memory faults;

2. s|FV(C1), h1, C1 may diverge iff s|FV(C2), h2, C2 may diverge;

3. for all s′, h′1, h
′
2 such that

• s|FV(C1), h1, C1 ;∗ s′|FV(C1), h
′
1,

• s|FV(C2), h2, C2 ;∗ s′|FV(C2), h
′
2 and

• s|Vars−FV(C1,C2) = s′|Vars−FV(C1,C2),

we have s′, h′1, h
′
2 |= S.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 11

Example Specifications by Hoare Quadruples

Example Specifications by Hoare Quadruples

{Same ∧ p = p′ ∧ NoDangling(p, p′)} SWMarking(p)

StackMarking(p′)
{Same ∧ NoDangling(p, p′)}

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 12

Proof Rule: Embedding from Hoare Triples

Proof Rule: Embedding from Hoare Triples

[P1] C1 [Q1] [P2] C2 [Q2]

{

P1

P2

} C1

C2

{

Q1

Q2

}

when Modifies(C1) ∩ FV(P2, Q2) = Modifies(C2) ∩ FV(P1, Q1) = ∅.

• Only total correctness triples can be embedded.

– Recall that a total correctness triple [P]C[Q] says that for
all s, h satisfying P , (s, h, C) always terminates without
memory faults, and all the final states satisfy Q.

• Many proof rules from the Separation Logic can be embedded.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 13

Instances

Instances

{

E 7→ E1, E2, E3, E4

P

} E.2 := F

skip
{

E 7→ E1, F, E3, E4

P

}

{

P

Q ∗ (E 7→ E1, E2, E3, E4)

} skip

dispose(E)
{

P

Q

}

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 14

Proof Rule: Sequencing

Proof Rule: Sequencing

{R}C1

C2

{R′} {R′}C
′
1

C ′2
{S}

{R}C1;C ′1
C2;C ′2

{S}

Whenever it is necessary, we use the fact that skip is the identity
for sequencing:

C ≡ skip; C ≡ C; skip

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 15

Proof Rule: Conditional

Proof Rule: Conditional

R ⇒ (B1 ⇔ B2) {R ∧B1 ∧B2}
C1

C2

{S} {R ∧ ¬B1 ∧ ¬B2}
C ′1
C ′2
{S}

{R} if B1 then C1 else C ′1
if B2 then C2 else C ′2

{S}

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 16

Proof Rule: Loop

Proof Rule: Loop

R ⇒ (B1 ⇔ B2) {R ∧B1 ∧B2}
C1

C2

{R}

{R} whileB1 doC1 od

whileB2 doC2 od
{R ∧ ¬B1 ∧ ¬B2}

The condition of the rule implies that the one while-loop may
diverge iff the other while-loop may diverge.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 17

Structural Rules

Structural Rules

Frame Rule

(Modifies(C1, C2) ∩ FV(R′) = ∅)

{R}C1

C2

{S}

{R ∗R′}C1

C2

{S ∗R′}

Consequence

R′ ⇒ R {R}C1

C2

{S} S ⇒ S′

{R′}C1

C2

{S′}

Conjunction

{R}C1

C2

{S} {R′}C1

C2

{S′}

{R ∧R′}C1

C2

{S ∧ S′}

Auxiliary Variable Elimination

(x 6∈ FV(C1, C2))

{R}C1

C2

{S}

{∃x. R}C1

C2

{∃x. S}

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 18

Specification of Schorr-Waite Marking Algorithm

Specification of Schorr-Waite Marking Algorithm

{Same ∧ p=p′ ∧ NoDangling(p, p′)} SWMarking(p)

StackMarking(p′)
{Same ∧ NoDangling(p, p′)}

where

Same
∆≡

emp

emp

 ∨ (∃x, l, r,m, d.

x 7→ l, r,m, d

x 7→ l, r,m, d

) ∗ Same

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 19

Programs

Programs

c := p; a := [(p’,left)];

if p!=nil then p:=p.1; if p’!=nil then p’:=p’.1;

while (c!=nil) while (a != [])

do if (p!=nil) then m := p.3 do if (p’!=nil) then m’:=p’.3

else m := marked; else m’:=marked;

if (p!=nil /\ m!=marked) if (p’!=nil /\ m’!=marked)

then then

t := p.1; a := (p’,left):a;

p.1 := c; p’.3 := marked;

c := p; p’.4 := left;

p := t; p’ := p’.1

c.3 := marked;

c.4 := left

else r := c.4; else if (#2(hd a)=left)

if (r=left) then

then #1(hd a).4 := right;

t := c.1; p’ := #1(hd a).2;

c.1 := p; a := (#1(hd a),right):(tl a)

p := c.2;

c.2 := t;

c.4 := right

else else

t := p; p’ := #1(hd a);

p := c; a := tl a

c := c.2;

p.2 := t

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 20

Programs

α

nilnil

nil

nil

nil

NIL

p

c

p’
nilnil

nil

nil

nil

SWMarking Algorithm StackMarking Algorithm

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 21

Invariant Relation

Invariant Relation

The invariant relation is:

Same ∗ (Stack p c α) ∗ p
◦=p′ ∧

NoDanglingSW(p, c)

NoDanglingStack(p′, α)

where

E
◦=E′ ∆≡ E=E′ ∧ Emp

Stack p c []
∆≡ (c ◦=nil)

Stack p c (x, left):α
∆≡ ∃n, r. c

◦=x ∗

c 7→ n, r, marked, left

x 7→ p, r,marked, left

 ∗ Stack c n α

Stack p c (x, right):α
∆≡ ∃n, l. c

◦=x ∗

c 7→ l, n, marked, right

x 7→ l, p, marked, right

 ∗ Stack c n α

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 22

Verification of Pop

Verification of Pop

We like to show:

{Same ∗ Stack p c α ∗ p
◦
=p′ ∗ α

◦
=(c, right):α0 ∧

0@NoDanglingSW(p, c) ∧ c 6=nil

NoDanglingStack(p′, α) ∧ α 6=[]

1A}
SWPop(p, c) StackPop(p′, α)

{Same ∗ Stack p c α ∗ p
◦
=p′ ∧

0@NoDanglingSW(p, c)

NoDanglingStack(p′, α)

1A}

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 23

Verification of Pop

Assuming:

{Stack p c α ∗ p
◦
=p′ ∗ α

◦
=(c, right):α0}

SWPop(p, c)

StackPop(p′, α)
{Stack p c α ∗ p

◦
=p′ ∗ Same}

we can write the following proof outline:

{Stack p c α ∗ p
◦
=p′ ∗ α

◦
=(c, right):α0 ∗ Same}2664 {Stack p c α ∗ p

◦
=p′ ∗ α

◦
=(c, right):α0}

SWPop(p, c) StackPop(p′, α)

{Stack p c α ∗ p
◦
=p′ ∗ Same}

3775Frame Rule

{Stack p c α ∗ p
◦
=p′ ∗ Same ∗ Same}

{Stack p c α ∗ p
◦
=p′ ∗ Same}

The last step uses the fact that Same ∗ Same ⇒ Same.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 24

Verification of Pop

Since the following triples hold:

[NoDanglingSW(p, c) ∧ c 6=nil]SWPop(p, c) [NoDanglingSW(p, c)]

[NoDanglingStack(p′, α) ∧ α 6=[]] StackPop(p′, α) [NoDanglingStack(p′, α)]

we have:

{
0@ NoDanglingSW(p, c) ∧ c 6=nil

NoDanglingStack(p′, α) ∧ α 6=[]

1A} SWPop(p, c)

StackPop(p′, α)
{
0@ NoDanglingSW(p, c)

NoDanglingStack(p′, α)

1A}
By combining the two quadruples, we obtain the conclusion:

{Same ∗ Stack p c α ∗ p
◦
=p′ ∗ α

◦
=(c, right):α0 ∧

0@NoDanglingSW(p, c) ∧ c 6=nil

NoDanglingStack(p′, α) ∧ α 6=[]

1A}
SWPop(p, c) StackPop(p′, α)

{Same ∗ Stack p c α ∗ p
◦
=p′ ∧

0@NoDanglingSW(p, c)

NoDanglingStack(p′, α)

1A}
Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 25

Discharging the Assumption

Discharging the Assumption

Still need to show:

{Stack p c α ∗ p
◦
=p′ ∗ α

◦
=(c, right):α0}

SWPop(p, c)

StackPop(p′, α)
{Stack p c α ∗ p

◦
=p′ ∗ Same}

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 26

Proof Outline

Proof Outline

{Stack p c α ∗ p
◦
=p′ ∗ α

◦
=(c, right):α0}

{Stack p c (c, right):α0 ∗ p
◦
=p′ ∗ α

◦
=(c, right):α0}

{∃l0, n0.

0@c 7→ l0, n0, marked, right

c 7→ l0, p, marked, right

1A ∗ Stack c n0 α0 ∗ α
◦
=(c, right):α0}

{
0@c 7→ l0, n0, marked, right

c 7→ l0, p, marked, right

1A ∗ Stack c n0 α0 ∗ α
◦
=(c, right):α0}

t := p; skip;

{
0@c 7→ l0, n0, marked, right

c 7→ l0, t, marked, right

1A ∗ Stack c n0 α0 ∗ α
◦
=(c, right):α0}

p := c; skip;

{
0@p 7→ l0, n0, marked, right

p 7→ l0, t, marked, right

1A ∗ Stack p n0 α0 ∗ α
◦
=(p, right):α0}

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 27

Proof Outline

{
0@p 7→ l0, n0, marked, right

p 7→ l0, t, marked, right

1A ∗ Stack p n0 α0 ∗ α
◦
=(p, right):α0}

c := p.2; skip;

{
0@p 7→ l0, c, marked, right

p 7→ l0, t, marked, right

1A ∗ Stack p c α0 ∗ α
◦
=(p, right):α0}

p.2 := t; skip;

{
0@p 7→ l0, t, marked, right

p 7→ l0, t, marked, right

1A ∗ Stack p c α0 ∗ α
◦
=(p, right):α0}

{Same ∗ Stack p c (tl α) ∗ α
◦
=(p, right):α0}

skip p′ := #1(hd α);

{p ◦=p′ ∗ Same ∗ Stack p c (tl α) ∗ α
◦
=(p, right):α0}

skip α := tl α;

{p ◦=p′ ∗ Same ∗ Stack p c α}

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 28

Conclusion

Conclusion

• When the two programs have similar structures, the proof rules
for the quadruples are useful.

• The proof rules for Hoare quadruples are incomplete.

• It is still necessary to prove the correctness of the “more
abstract program.”

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 29

