Verification of the Schorr-Waite Graph Marking
Algorithm by Refinement

Hongseok Yang

ROPAS, KAIST

Email: hyang@ropas.kaist.ac.kr

August 2002

The Schorr-Waite Graph Marking Algorithm

The Schorr-Waite Graph Marking Algorithm'

Given the root of a graph, the algorithm marks all the reachable
nodes from the root by doing the depth-first traversal; the most
creative part of the algorithm lies in implementing a stack without

additional memory by reversing the link fields of nodes.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 1

The Schorr-Waite Graph Marking Algorithm

f0 e E
\ /- \ /!
B P

SWMarking Algorithm StackMarking Algorithm

\

\
AN

~

A

Verification of the Schorr-Waite Graph Marking Algorithm by Refinemen t 2

Two Specifications of the Schorr-Waite Algorithm

Two Specifications of the Schorr-Waite Algorithm'

The full specification:

Given a graph of unmarked nodes and its root, the
algorithm marks all the nodes reachable from the root;
moreover, when it terminates, the algorithm restores the

link fields of the nodes to their initial values.
A partial specification:

The algorithm does the same thing as the depth-first

traversal with an explicit stack.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 3

Question

Question I

Can we formulate a program logic to show that the
Schorr-Waite algorithm does the same thing as the
depth-first traversal?

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 4

Main Idea: Hoare Quadruple

Main Idea: Hoare Quadruple'

SWMarking(p)
StackMarking(p’)

{Same A p = p’ A NoDangling(p,p’)} {Same A NoDangling(p, p")}

e With relations, it is easy to compare the heaps of the two

programs; consequently, simple relations are often enough.

e The proof rules for showing quadruples can easily be obtained

from those of the Separation Logic.

e This extends the methods of Reynolds, Hoare and Morgan to
handle heaps.?

@For a more complete list of references, see de Roever and Engelhart’s book.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 5

Semantic Domains

Semantic Domains .

Locs U {nil} C Vals
Stacks = Vars — fin Vals
Heaps 2 TLocs —n Vals X Vals x Vals x Vals
States = Stacks x Heaps

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 6

Relations

Relations I

Assertions P,QQ .= (E— E,EE.E) |E=F|emp | PxQ | P=Q |Vz.P

P
Relations R, S := ' |E=F' |Emp|R*xS|R=S5|Vz.R

Py

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 7

Review: Semantics of Assertions

Review: Semantics of Assertions'

For s € Stacks and h € Heaps,?

S,h |: (E — El,EQ,E3,E4) iff dom(h) = {[[E]]S}
AR([E]s) = ([Ea]s, [E2]s, [Es]s, [E4]s)

s,h = PxQ@ iff 3n’, h".
h=h"«h"Ns,h =PAsh =Q
s,h =emp iff h =]
s,h = E=F iff [F]s=[F']s
s,hiEP=(Q iff s,hi=EP=s,hEQ

2h1#hs holds iff dom(hy) Ndom(hy) = 0. When hi#ha, h1 * hg is the union
of h1 and hs.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 8

Semantics of Relations

Semantics of Relations.

For s € Stacks and hy, hy € Heaps,

Py

S, h17 hQ ‘:

Py

S,hl,hz ‘:R*S

87h17h2
87h17h2
S,hl,hg

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement

— Emp
— F = F'
— R= 5

i ff

-

iff

iff
iff
iff

S,hl):Pl and S,hg l:PQ

3hy, s hy, by,
hi = hi xh{ N ho = hi x h]
ANs,hi,h ERAs A R =S
hy = hy =]
[E]s = [E']s
s,hi,has ER= s,h1,ho =S

Example Relations

Example Relations I

1. dx,l,r,m,d
x—l,r,m,d
A x—l,r,m,d
2. Same = EmpV (3,1, r,m,d.) * Same
x—l,r,m,d
: A L= l,r,m,d .
3. Twisted = Emp V (3x, 1,7, m,d.) * Twisted

x—nrlm,d

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 10

Hoare Quadruple

Hoare Quadruple I

C
When FV(C;) NFV(Cy) = 0, the quadruple {R} {S} says that
2
for all s, hy, ho such that s, hy, he E R,

1. both s|pv(c,), hi,C1 and s|gy(c,), he, C2 do not generate

memory faults;
2. s|lpv(cy), h1,C1 may diverge iff s|py(cy), ho, Co may diverge;
3. for all s, h}, h5 such that

/ /
® S FV(Cl)7h1,C1 ~" s |FV(C’1)>h17

® SIFV(C2); ha, Ca ~* S/|FV(CQ)7 hlz and

o
® S|vVars—FV(Cy,C3) — S ’Vars—FV(C’l,C’g)a

we have s’, hl, hs = S.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 11

Example Specifications by Hoare Quadruples

Example Specifications by Hoare Quadruples'

SWMarking(p)

{Same A NoDangling(p, p’)}
StackMarking(p')

{Same A p = p’ A NoDangling(p, p')}

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 12

Proof Rule: Embedding from Hoare Triples

Proof Rule: Embedding from Hoare Triples'

[P C1 Q1] [P2] Co [Q2]

Py C1 Q1
{ Py }Cz{ Q2 }

when Modifies(Cy) N FV (P, Q2) = Modifies(Co) NFV (P, Q1) = 0.

e Only total correctness triples can be embedded.

— Recall that a total correctness triple [P|C|Q)] says that for
all s, h satisfying P, (s, h,C) always terminates without

memory faults, and all the final states satisty ().

e Many proof rules from the Separation Logic can be embedded.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 13

Instances

Instances I

EI—>E1,EQ,E3,E4 } E2.=F EI—>E1,F,E3,E4
P skip P

P skip P

{ Qx*(Ew— Ei,FEy, E3, Ey) }dispose(E){ Q }

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 14

Proof Rule: Sequencing

Proof Rule: Sequencing'

Ci, 1 C1
{R}C By R }Cé{S}

2

01;0/
Ry "8y

Whenever it is necessary, we use the fact that skip is the identity

for sequencing:

C' = skip; C = C; skip

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 15

Proof Rule: Conditional

Proof Rule: Conditional'

C C!
R= (Bi < By) {RADB;A BQ}C;{S} {RA-By A ﬂBg}C}{S}
2 2

if B1 then C else C"
(R} L)
if By then () else (5

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 16

Proof Rule: Loop'

C
R= (Bi< By) {RABiAB) {R}
2

while B; do C' od
(R P AR A B A =By
while By do C5 od

The condition of the rule implies that the one while-loop may
diverge iff the other while-loop may diverge.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement

Proof Rule: Loop

17

Structural Rules

Structural Rules '

FrRAME RULE CONSEQUENCE
Modifies(C1,C2) NFV(R') =0) C)
(Modifies(C1, C2) NEV(R) = 1) R =R {R} '{S} S=5

Ch C

{R} {S}
% / Cy /
{R'} {5}
/ Cl / 02
{R«R} {S*xR}
C's
CONJUNCTION AUXILIARY VARIABLE ELIMINATION

sy ey PEIVOR)
CQ 02

(R sy
Cs

(RA R’}Cl{S NS
e {Fx. R}Cl{ﬂx. S}

2

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 18

Specification of Schorr-Waite Marking Algorithm

Specification of Schorr-Waite Marking Algorithm'

SWMarking(p)

{Same A NoDangling(p, p')}
StackMarking(p')

{Same A p=p’ A NoDangling(p,p’)}

where

emp x—l,r,m,d
vV (Jz,l,r,m,d.) * Same
emp x—l,r,m,d

11>

Same

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 19

Programs

Programs
c = p; a := [(p’,left)];
if p!=nil then p:=p.1; if p’!=nil then p’:=p’.1;
while (c!=nil) while (a !'= [1)
do if (p!=nil) then m := p.3 do if (p’!=nil) then m’:=p’.3
else m := marked; else m’:=marked;
if (p!=nil /\ m!=marked) if (p’!=nil /\ m’!=marked)
then then
t :=p.1; a := (p’,left):a;
p.1 :=c; p’ .3 := marked;
c :=p; p’ .4 := left;
p :=t; p’ :=p’.1
c.3 := marked;
c.4 := left
else r := c.4; else if (#2(hd a)=left)
if (r=left) then
then #1(hd a).4 := right;
t 1= c.1; p’ := #1(hd a).2;
c.1 :=p; a := (#1(hd a),right):(tl a)
p := c.2;
c.2 := t;
c.4 := right
else else
t := p; p’ := #1(hd a);
P := C; a :=tl a
c := c.2;
p.2 :=

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 20

\

P [nn

nil

}

i

J
]
N
/

}

SWMarking Algorithm

Verification of the Schorr-Waite Graph Marking Algor

@

<\

.

\
AN

~

\
o

AN

Mt
/

p1 [nil nil

}

SackMarking Algorithm

ithm by Refinemen t

21

Invariant Relation

Invariant Relation '

The invariant relation is:

., [NoDanglingsW(p,
Same * (Stack p c a) x p=p’ A oDanglingSW(p,)
NoDanglingStack(p’, «)

where
° A
E=F" = E=FE"ANEmp
Stack p ¢ || 2 (c=nil)
c — n,r, marked, left

In, r. c=x * x Stackcn o
x — p,r, marked, left

Stack p ¢ (z, left):« 2

o c — [,m, marked, right
In, . c=x * x Stackecn o
x — [, p, marked, right

Stack p ¢ (x, right):« 2

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 22

Verification of Pop

Verification of Pop'

NoDanglingSW (p, ¢) A c#nil

NoDanglingStack(p’, a) A a#]]

SWPop(p, ¢) StackPop(p’, o)
NoDanglingSW(p, ¢)

{Same * Stack p ¢ a * p=p’ A }
NoDanglingStack(p’,)

We like to show:

{Same * Stack pca * p=p' * a=(c, right):a0 A

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 23

Verification of Pop

Assuming;:

SWPop(p, ¢)

. "){Stackpca « p=p’ * Same}
tackPop(p’, a

{Stack p c o x p=p’ * a=(c, right):ao}

we can write the following proof outline:

{Stack p c a * p=p’ * a=(c, right):ap * Same}
- {Stack p ¢ o * p=p’ x a=(c, right):a0} |
SWPop(p, ¢) StackPop(p’,) | Frame Rule

| {Stack p c a * p=p’ * Same}
{Stack p ¢ a * p=p’ * Same * Same}
{Stack p ¢ o * p=p’ * Same}

The last step uses the fact that Same x Same = Same.

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 24

Verification of Pop

Since the following triples hold:

[NoDanglingSW(p, ¢) A c#nil] SWPop(p, ¢) [NoDanglingSW (p, ¢)]
[NoDanglingStack(p’, @) A a##[]] StackPop(p’, o) [NoDanglingStack(p’, o]

we have:

NoDanglingSW(p, ¢) A c#nil SWPop(p, ¢) / NoDanglingSW (p, ¢))

NoDanglingStack(p’, a) A a#[] | “StackPop(p’, @) \ NoDanglingStack(p’,)
By combining the two quadruples, we obtain the conclusion:

NoDanglingSW(p, ¢) A c#nil

{Same * Stack p c a * p=p’ * a=(c, right):cxg A }
NoDanglingStack(p’, a) A a#]]
SWPop(p, ¢) StackPop(p’, a)
o NoDanglingSW (p, ¢
{Same * Stack p c a * p=p’ A glingSW(p, <) }

NoDanglingStack(p’,)

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 25

Discharging the Assumption

Discharging the Assumption'

Still need to show:

SWPop(p, ¢)

. "){Stackpca * p=p’ * Same}
tackPop(p’, a

{Stack p c o x p=p’ * a=(c, right):ao}

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 26

Proof Outline

Proof Outline '

{Stack p c a * p=p’ * a=(c, right):ap}
{Stack p c (c, right):ag * p=p’ * a=(c, right):ao}
c +— lp, no, marked, right o _
{3lo, no. * Stack ¢ no ao * a=(c, right):ap}
c — lo, p, marked, right
c — lo, no, marked, right o _
{ 0 s * Stack ¢ ng ap * a=(c, right):ap}
c — lo, p, marked, right
t:=p; skip;
c +— lo, no, marked, right o _
{ * Stack ¢ ng ap * a=(c, right):ao}
c — lo, t, marked, right
p = C; skip;
p — lg, no, marked, right

{ x Stack p no ap * a=(p, right):ao}
p — lo, t, marked, right

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 27

p — lo, ng, marked, right o _
{ * Stack p no ap * a=(p, right):ao}
p — lo, t, marked, right
c:=p.2; skip;
p — lo, c, marked, right o _
* Stack p ¢ ag * a=(p, right):a0 }
p — lo, t, marked, right
p.2 :=1; skip;
p — lo, t, marked, right o _
* Stack p ¢ ag * a=(p, right):ao }
p — lo, t, marked, right
{Same * Stack p c (tl @) x a=(p, right):ao}
skip p' = #1(hd a);
{p=p’ * Same * Stack p c (tl @) * a=(p, right):ao}
skip a = tl o

{p=p’ * Same * Stack p c a}

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement

Proof Outline

28

Conclusion

Conclusion .

e When the two programs have similar structures, the proof rules
for the quadruples are useful.

e The proof rules for Hoare quadruples are incomplete.

e It is still necessary to prove the correctness of the “more

abstract program.”

Verification of the Schorr-Waite Graph Marking Algorithm by Refinement 29

