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What issues did we encounter in defining the 
denotational semantics of an idealised Anglican?



Continuous distribution 
and soft constraints



let x=sample(normal(0,1)) in 
obs(normal(x,1),2); return(x)
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Which monad M should we pick?

p(x) ⨉ p(y=2 | x)  =  p(y=2) ⨉ p(x | y=2)

1. Lazy semantics (importance sampling):

M(T) = Prob(R≥0⨉T)

2. Eager semantics:

M(T) = R≥0⨉Prob(T)
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let x=sample(exponential(1)) in 
obs(normal(0,exp(-x)),0); 
return(x)



Because p(y=0) = ∞ and p(x|y=0) undefined.

•  p(x) = exp(-x).

• p(y=0 | x) = 1 / (c ⨉ exp(-x)).

• p(y=0) = ∫p(y=0|x)p(x)dx = ∫1/c dx = ∞.

We tried (R≥0⨉Prob(R) + 1 + 1), but failed.

let x=sample(exponential(1)) in 
obs(normal(0,exp(-x)),0); 
return(x)

∉ R≥0⨉Prob(R)
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let x=sample(beta(1,1)) in 
obs(bern(x),true); return(x)

obs(bern(0.5),true); 
sample(beta(2,1))

⟦ ⟧L

⟦ ⟧L

In the lazy semantics, conjugate-prior equations fail.
But can be recovered with explicit normalisation 
(or nested query).

≠



norm( 
let x=sample(beta(1,1)) in   
obs(bern(x),true); return(x))

norm( 
obs(bern(0.5),true); 
sample(beta(2,1)))

⟦ ⟧L

⟦ ⟧L

In the lazy semantics, conjugate-prior equations fail.
But can be recovered with explicit normalisation 
(or nested query).

=

⟦norm⟧ :  Prob(R≥0⨉T) → (R≥0⨉Prob(T) + 1 + 1)



Continuous densities



Density  object

• Represents a probability density.

• Supports sample and obs methods.

• In Anglican, the densities of these objects 
are usually continuous functions.

let x=sample(exponential(1)) in 
obs(normal(0,exp(-x)),0); 
return(x)



⟦Dens[R]⟧ = { f : R→R≥0  |  f is continuous and 
∫f(x)dx = 1}

⟦sample⟧  :  ⟦Dens[R]⟧ → P(R≥0 x R)

⟦obs⟧ :  ⟦Dens[R]⟧ ⨉ ⟦R⟧ → P(R≥0 x ())
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[Q] Is ⟦obs⟧ measurable?



Non-measurability of ev

ev : (R→m R) x R → R,      ev(f,x) = f(x)

[Aumann 61 & Halmos] ev is not measurable 
no matter which σ-algebra is used for R→m R.

But: 

1. evr = ev(-,r) : (R →m R) → R is measurable.

2. ev : (R→c R) x R → R is measurable.
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⟦Dens[R]⟧ = { f : R→R≥0  |  f is continuous and 
∫f(x)dx = 1}

⟦sample⟧  :  ⟦Dens[R]⟧ → P(R≥0 x R)

⟦obs⟧ :  ⟦Dens[R]⟧ ⨉ ⟦R⟧ → P(R≥0 x ())

[Q] Is ⟦obs⟧ measurable? [A] Yes.



Higher-order function



Difficulty

ev : (R→m R) x R → R,      ev(f,x) = f(x)

[Aumann 61 & Halmos] ev is not measurable 
no matter which σ-algebra is used for R→m R.

[Lemma] The category of measurable spaces is 
not cartesian closed.
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Use category theory to extend measure theory.
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Meas

Monad 

[Measop, Set]∏

[Measop, Set]∏

Yoneda
Embedding 

Left Kan 
Extension

Meas
Yoneda

Embedding 

Use category theory to extend measure theory.
Enough structure 
for function types

Preserves nearly 
all the structures



[Question] Are all definable functions from R to 
R in a high-order probabilistic PL measurable?

Our semantics says that the answer is yes for a 
core call-by-value language. 



The monad M(⟦R→R⟧) at ⟦R→R⟧ consists of: 

equivalence classes of measurable functions 
f : Ω×R → R for probability spaces Ω.

The function f is what probabilists call a 
measurable stochastic process.



The extended monad M describes computations 
with dynamically allocated read-only variables.

M(F)(w) = 
{ [(a, f)]~  |  ∃v.  a∈F(v) ⋀  f : w →m Prob(R≥0⨉v) }
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F is the type of a value.
w represents a space of all random vars so far.
v extends w with new random variables according to f.
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Further details

• Can be found in our archive paper:

http://arxiv.org/pdf/1601.04943.pdf

http://arxiv.org/pdf/1601.04943.pdf

