
Semantics of Higher-order
Probabilistic Programs

Hongseok Yang
University of Oxford

Joint work with Chris Heunen, Ohad Kammar, Sam Staton, Frank Wood

What issues did we encounter in defining the
denotational semantics of an idealised Anglican?

Continuous distribution
and soft constraints

let x=sample(normal(0,1)) in
obs(normal(x,1),2); return(x)

let x=sample(normal(0,1)) in
obs(normal(x,1),2); return(x)

let x=sample(normal(0,1)) in
obs(normal(x,1),2); return(x)

Which monad M should we pick?

p(x) ⨉ p(y=2 | x) = p(y=2) ⨉ p(x | y=2)

1. Lazy semantics (importance sampling):

M(T) = Prob(R≥0⨉T)

2. Eager semantics:

M(T) = R≥0⨉Prob(T)

let x=sample(normal(0,1)) in
obs(normal(x,1),2); return(x)⟦ ⟧ ∈ M(R)

Which monad M should we pick?

p(x) ⨉ p(y=2 | x) = p(y=2) ⨉ p(x | y=2)

1. Lazy semantics (importance sampling):

M(T) = Prob(R≥0⨉T)

2. Eager semantics:

M(T) = R≥0⨉Prob(T)

let x=sample(normal(0,1)) in
obs(normal(x,1),2); return(x)⟦ ⟧ ∈ M(R)

Which monad M should we pick?

p(x) ⨉ p(y=2 | x) = p(y=2) ⨉ p(x | y=2)

1. Lazy semantics (importance sampling):

M(T) = Prob(R≥0⨉T)

2. Eager semantics:

M(T) = R≥0⨉Prob(T)

let x=sample(normal(0,1)) in
obs(normal(x,1),2); return(x)⟦ ⟧ ∈ M(R)

Which monad M should we pick?

p(x) ⨉ p(y=2 | x) = p(y=2) ⨉ p(x | y=2)

1. Lazy semantics (importance sampling):

M(T) = Prob(R≥0⨉T)

2. Eager semantics:

M(T) = R≥0⨉Prob(T)

let x=sample(normal(0,1)) in
obs(normal(x,1),2); return(x)⟦ ⟧ ∈ M(R)

let x=sample(exponential(1)) in
obs(normal(0,exp(-x)),0);
return(x)

Because p(y=0) = ∞ and p(x|y=0) undefined.

• p(x) = exp(-x).

• p(y=0 | x) = 1 / (c ⨉ exp(-x)).

• p(y=0) = ∫p(y=0|x)p(x)dx = ∫1/c dx = ∞.

We tried (R≥0⨉Prob(R) + 1 + 1), but failed.

let x=sample(exponential(1)) in
obs(normal(0,exp(-x)),0);
return(x)

∉ R≥0⨉Prob(R)

⟦ ⟧E

Because p(y=0) = ∞ and p(x|y=0) undefined.

• p(x) = exp(-x).

• p(y=0 | x) = 1 / (c ⨉ exp(-x)).

• p(y=0) = ∫p(y=0|x)p(x)dx = ∫1/c dx = ∞.

We tried (R≥0⨉Prob(R) + 1 + 1), but failed.

let x=sample(exponential(1)) in
obs(normal(0,exp(-x)),0);
return(x)

∉ R≥0⨉Prob(R)

⟦ ⟧E

Because p(y=0) = ∞ and p(x|y=0) undefined.

• p(x) = exp(-x).

• p(y=0 | x) = 1 / (c ⨉ exp(-x)).

• p(y=0) = ∫p(y=0|x)p(x)dx = ∫1/c dx = ∞.

We tried (R≥0⨉Prob(R) + 1 + 1), but failed.

let x=sample(exponential(1)) in
obs(normal(0,exp(-x)),0);
return(x)

∉ R≥0⨉Prob(R)

⟦ ⟧E

let x=sample(beta(1,1)) in
obs(bern(x),true); return(x)

obs(bern(0.5),true);
sample(beta(2,1))

⟦ ⟧L

⟦ ⟧L

In the lazy semantics, conjugate-prior equations fail.
But can be recovered with explicit normalisation
(or nested query).

≠

norm(
let x=sample(beta(1,1)) in
obs(bern(x),true); return(x))

norm(
obs(bern(0.5),true);
sample(beta(2,1)))

⟦ ⟧L

⟦ ⟧L

In the lazy semantics, conjugate-prior equations fail.
But can be recovered with explicit normalisation
(or nested query).

=

⟦norm⟧ : Prob(R≥0⨉T) → (R≥0⨉Prob(T) + 1 + 1)

Continuous densities

Density object

• Represents a probability density.

• Supports sample and obs methods.

• In Anglican, the densities of these objects
are usually continuous functions.

let x=sample(exponential(1)) in
obs(normal(0,exp(-x)),0);
return(x)

⟦Dens[R]⟧ = { f : R→R≥0 | f is continuous and
∫f(x)dx = 1}

⟦sample⟧ : ⟦Dens[R]⟧ → P(R≥0 x R)

⟦obs⟧ : ⟦Dens[R]⟧ ⨉ ⟦R⟧ → P(R≥0 x ())

⟦Dens[R]⟧ = { f : R→R≥0 | f is continuous and
∫f(x)dx = 1}

⟦sample⟧ : ⟦Dens[R]⟧ → P(R≥0 x R)

⟦obs⟧ : ⟦Dens[R]⟧ ⨉ ⟦R⟧ → P(R≥0 x ())

[Q] Is ⟦obs⟧ measurable?

Non-measurability of ev

ev : (R→m R) x R → R, ev(f,x) = f(x)

[Aumann 61 & Halmos] ev is not measurable
no matter which σ-algebra is used for R→m R.

But:

1. evr = ev(-,r) : (R →m R) → R is measurable.

2. ev : (R→c R) x R → R is measurable.

Non-measurability of ev

ev : (R→m R) x R → R, ev(f,x) = f(x)

[Aumann 61 & Halmos] ev is not measurable
no matter which σ-algebra is used for R→m R.

But:

1. evr = ev(-,r) : (R →m R) → R is measurable.

2. ev : (R→c R) x R → R is measurable.

Non-measurability of ev

ev : (R→m R) x R → R, ev(f,x) = f(x)

[Aumann 61 & Halmos] ev is not measurable
no matter which σ-algebra is used for R→m R.

But:

1. evr = ev(-,r) : (R →m R) → R is measurable.

2. ev : (R→c R) x R → R is measurable.

⟦Dens[R]⟧ = { f : R→R≥0 | f is continuous and
∫f(x)dx = 1}

⟦sample⟧ : ⟦Dens[R]⟧ → P(R≥0 x R)

⟦obs⟧ : ⟦Dens[R]⟧ ⨉ ⟦R⟧ → P(R≥0 x ())

[Q] Is ⟦obs⟧ measurable? [A] Yes.

Higher-order function

Difficulty

ev : (R→m R) x R → R, ev(f,x) = f(x)

[Aumann 61 & Halmos] ev is not measurable
no matter which σ-algebra is used for R→m R.

[Lemma] The category of measurable spaces is
not cartesian closed.

Meas

Monad

Meas

Use category theory to extend measure theory.

Meas

Monad

[Measop, Set]∏

[Measop, Set]∏

Yoneda
Embedding

Meas
Yoneda

Embedding

Use category theory to extend measure theory.

Meas

Monad

[Measop, Set]∏

[Measop, Set]∏

Yoneda
Embedding

Left Kan
Extension

Meas
Yoneda

Embedding

Use category theory to extend measure theory.

Meas

Monad

[Measop, Set]∏

[Measop, Set]∏

Yoneda
Embedding

Left Kan
Extension

Meas
Yoneda

Embedding

Use category theory to extend measure theory.

Meas

Monad

[Measop, Set]∏

[Measop, Set]∏

Yoneda
Embedding

Left Kan
Extension

Meas
Yoneda

Embedding

Use category theory to extend measure theory.
Enough structure
for function types

Meas

Monad

[Measop, Set]∏

[Measop, Set]∏

Yoneda
Embedding

Left Kan
Extension

Meas
Yoneda

Embedding

Use category theory to extend measure theory.
Enough structure
for function types

Preserves nearly
all the structures

[Question] Are all definable functions from R to
R in a high-order probabilistic PL measurable?

Our semantics says that the answer is yes for a
core call-by-value language.

The monad M(⟦R→R⟧) at ⟦R→R⟧ consists of:

equivalence classes of measurable functions
f : Ω×R → R for probability spaces Ω.

The function f is what probabilists call a
measurable stochastic process.

The extended monad M describes computations
with dynamically allocated read-only variables.

M(F)(w) =
{ [(a, f)]~ | ∃v. a∈F(v) ⋀ f : w →m Prob(R≥0⨉v) }

M(F)(w) =
{ [(a, f)]~ | ∃v. a∈F(v) ⋀ f : w →m Prob(R≥0⨉v) }

The extended monad M describes computations
with dynamically allocated read-only variables.

F is the type of a value.
w represents a space of all random vars so far.
v extends w with new random variables according to f.

M(F)(w) =
{ [(a, f)]~ | ∃v. a∈F(v) ⋀ f : w →m Prob(R≥0⨉v) }

The extended monad M describes computations
with dynamically allocated read-only variables.

F is the type of a value.
w represents a space of all random vars so far.
v extends w with new random variables according to f.

M(F)(w) =
{ [(a, f)]~ | ∃v. a∈F(v) ⋀ f : w →m Prob(R≥0⨉v) }

The extended monad M describes computations
with dynamically allocated read-only variables.

F is the type of a value.
w represents a space of all random vars so far.
v extends w with new random variables according to f.

Further details

• Can be found in our archive paper:

http://arxiv.org/pdf/1601.04943.pdf

http://arxiv.org/pdf/1601.04943.pdf

