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Abstract. Consider a finite set of targets, with each target assigned a
relative deadline, and each pair of targets assigned a fixed transit flight
time. Given a flock of identical UAVs, can one ensure that every target
is repeatedly visited by some UAV at intervals of duration at most the
target’s relative deadline? The uav Problem is the question of whether
this task has a solution.
This problem can straightforwardly be solved in PSPACE by modelling
it as a network of timed automata. The special case of there being a
single UAV is claimed to be NP-complete in the literature. In this paper,
we show that the uav Problem is in fact PSPACE-complete even in the
single-UAV case.

1 Introduction

Unmanned aerial vehicles (UAVs) have many uses, ranging from civilian to mili-
tary operations. Like other autonomous systems, they are particularly well-suited
to ‘dull, dirty, and/or dangerous’ missions [1]. A common scenario in such mis-
sions is that a set of targets have to be visited by a limited number of UAVs. This
has given rise to a large body of research on path planning for UAVs.1 Depending
on the specific application at hand, paths of UAVs may be subject to various
complex constraints, e.g., related to kinematics or fuel (see, e.g., [2, 17,19,22]).

In this work, we consider the decision version of a simple recurrent UAV
path-planning problem in which each target must be visited not only once but
repeatedly, i.e., at intervals of prescribed maximal duration [8]. Problems of this
type have long been considered in many other fields such as transportation [16,21]
and robotics [7,12]. More recently, a number of game-theoretic frameworks have
been developed to study similar problems in the context of security [5, 11,20].

A special case of the problem (with a single UAV) is considered in [4, 5, 13],
and is claimed to be NP-complete in [5]. However, the proof of NP-membership
in [5] is not detailed.2 The main result of the present paper is that the uav
Problem is in fact PSPACE-complete, even in the single-UAV case.

We note that this problem can be seen as a recurrent variant of the deci-
sion version of the Travelling Salesman Problem with Time Windows (tsptw)
with upper bounds only. Its PSPACE-hardness hence stems from recurrence: the
decision version of (non-recurrent) tsptw is NP-complete [18].
1 http://scholar.google.com/ lists thousands of papers on the subject.
2 A counterexample to a crucial claim in [5] is given in Appendix A.
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PSPACE-membership of the (general) uav Problem follows straightforwardly
by encoding the problem as the existence of infinite paths in a network of timed
automata; we briefly sketch the argument in the next section. The bulk of the
paper is then devoted to establishing PSPACE-hardness of the single-UAV case.
This is accomplished by reduction from the periodic sat Problem, known to
be PSPACE-complete [15].

2 Preliminaries

2.1 Scenario

Let there be a set of targets and a number of identical UAVs. Each target has a
relative deadline : an upper bound requirement on the time between successive
visits by UAVs. The UAVs are allowed to fly freely between targets, with a flight
time given for each pair of targets: the amount of time required for a UAV to fly
from one of the targets to the other. We assume that flight times are symmetric,
that they obey the triangle inequality, and that the flight time from target v to
target v′ is zero iff v and v′ denote the same target. In other words, flight times
are a metric on the set of targets. The goal is to decide whether there is a way
to coordinate UAVs such that no relative deadline is ever violated. We make a
few further assumptions:

– Initially, each UAV starts at some target; there may be more than one UAV
at the same target.

– The first visit to each target must take place at the latest by the expiration
time of its relative deadline.

– The UAVs are allowed to ‘wait’ as long as they wish at any given target.
– Time units are chosen so that all relative deadlines and flight times are inte-

gers, and moreover all relative deadlines are interpreted as closed constraints
(i.e., using non-strict inequalities).

2.2 Modelling via Networks of Timed Automata

We briefly sketch how to model the uav Problem as the existence of infinite
non-Zeno paths in a network of Büchi timed automata, following the notation
and results of [3], from which PSPACE-membership immediately follows.

Intuitively, one ascribes a particular timed automaton to each UAV and to
each target. Each UAV-automaton keeps track of the location of its associated
UAV, and enforces flight times by means of a single clock, which is reset the in-
stant the UAV leaves a given target. Each target-automaton is likewise equipped
with a single clock, keeping track of time elapsed since the last visit by some
UAV. The action of a UAV visiting a target is modelled by synchronising on a
particular event; when this takes place, provided the target’s relative deadline
has not been violated, the target resets its internal clock and instantaneously
visits a Büchi location. Similarly, the action of a UAV leaving a target is mod-
elled by event synchronisation. Finally, since multiple UAVs may visit a given
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target simultaneously, each target is in addition equipped with a counter to keep
track at any time of whether or not it is currently being visited by some UAV.

The given instance of the uav Problem therefore has a solution iff there exists
a non-Zeno run of the resulting network of timed automata in which each Büchi
accepting location is visited infinitely often. By Thm. 7 of [3], this can be decided
in PSPACE.

It is worth noting that, since all timing constraints are closed by assump-
tion, standard digitisation results apply (cf. [10]) and it is sufficient to consider
integer (i.e., discrete) time. In the next section, we therefore present a discrete
graph-based (and timed-automaton independent) formulation of the problem
specialised to a single UAV, in order to establish PSPACE-hardness.

2.3 Weighted Graph Formulation

The solution to a single-UAV instance of the uav Problem consists of an infinite
path from target to target in which each target is visited infinitely often, at
time intervals never greater than the target’s relative deadline. One may clearly
assume that the UAV never ‘lingers’ at any given target, i.e., targets are visited
instantaneously. Formally, a single-UAV instance of the uav Problem can be
described as follows. Let V be a set of n ≥ 2 vertices, with each vertex v ∈ V
assigned a strictly positive integer weight RD(v) (intuitively, the relative dead-
line of target v). Consider a weighted undirected clique over V , i.e., to each
pair of vertices (v, v′) with v 6= v′, one assigns a strictly positive integer weight
FT (v, v′) (intuitively, the flight time from v to v′). In addition we require that
FT be symmetric and satisfy the triangle inequality.

Let G = 〈V,RD ,FT 〉 be an instance of the above data. Given a finite path
u in (the clique associated with) G, the duration dur(u) of u is defined to be
the sum of the weights of the edges in u. A solution to G is an infinite path s
through G with the following properties:

– s visits every vertex in V infinitely often;
– Any finite subpath of s that starts and ends at consecutive occurrences of a

given vertex v must have duration at most RD(v).

Definition 1 (The uav Problem with a Single UAV). Given G as de-
scribed above, does G have a solution?

As pointed out in [13], if a solution exists at all then a periodic solution can
be found, i.e., an infinite path in which the targets are visited repeatedly in the
same order.

2.4 The periodic sat Problem

periodic sat is one of the many PSPACE-complete problems introduced in [15].
In the following definition (and in the rest of this paper), let x be a finite set
of variables and let xj be the set of variables obtained from x by adding a
superscript j to each variable.
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Definition 2 (The periodic sat Problem [15]). Consider a CNF formula
ϕ(0) over x0 ∪ x1. Let ϕ(j) be the formula obtained from ϕ(0) by replacing all
variables x0

i ∈ x0 by xj
i and all variables x1

i ∈ x1 by xj+1
i . Is there an assignment

of
⋃

j≥0 x
j such that

∧
j≥0 ϕ(j) is satisfied?

3 PSPACE-Hardness

In this section, we give a reduction from the periodic sat Problem to the uav
Problem with a single UAV. Consider a CNF formula ϕ(0) = c1 ∧ · · · ∧ ch over
x0 = {x0

1, . . . , x
0
m} and x1 = {x1

1, . . . , x
1
m}. Without loss of generality, we assume

that each clause cj of ϕ(0) is non-trivial (i.e., cj does not contain both positive
and negative occurrences of a variable) and m > 2, h > 0. We can construct
an instance G of the uav Problem (with the largest constant having magnitude
O(m2h) and |V | = O(mh)) such that

∧
j≥0 ϕ(j) is satisfiable if and only if G

has a solution.
The general idea of the reduction can be described as follows. We construct

variable gadgets that can be traversed in two ‘directions’ (corresponding to as-
signments true and false to variables). A clause vertex is visited if the cor-
responding clause is satisfied by the assignment. Crucially, we use consistency
gadgets, in which we set the relative deadlines of the vertices carefully to ensure
that the directions of traversals of the variable gadgets for x1 (corresponding to
a particular assignment of variables) in a given iteration is consistent with the
directions of traversals of the variable gadgets for x0 in the next iteration.

3.1 The Construction

We describe and explain each part of G in detail (a concise yet complete spec-
ification of G is given in Appendix B). The reader is advised to glance ahead
to Figure 5 to form an impression of G. Note that for ease of presentation, we
temporarily relax the requirement that FT be a metric and describe G as an
incomplete graph.3 In what follows, let l = 24h+ 34 and

T = 2
(
m
(
2(3m+ 1)l + l

)
+m

(
2(3m+ 2)l + l

)
+ l + 2h

)
.

Variable Gadgets For each variable x0
i , we construct (as a subgraph of G) a

variable gadget. It consists of the following vertices (see Figure 1):

– Three vertices on the left side (LS i = {vt,Li , vm,L
i , vb,Li })

– Three vertices on the right side (RS i = {vt,Ri , vm,R
i , vb,Ri })

– A ‘clause box ’ (CB j
i = {v

a,j
i , vb,ji , vc,ji , vd,ji , ve,ji , vf,ji }) for each j ∈ {1, . . . , h}

– A ‘separator box ’ (SB j
i = {v

ā,j
i , vb̄,ji , vc̄,ji , vd̄,ji , vē,ji , vf̄ ,ji }) for each j ∈ {0, . . . , h}

– A vertex at the top (vtop if i = 0, vi−1 otherwise)
– A vertex at the bottom (vi).

3 In the single-UAV case, if the FT of some edge is greater than any value in RD ,
that edge can simply be seen as non-existent.
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· · ·

· · ·

· · ·

(3m + 1)l (3m + 1)l

(3m + 1)l (3m + 1)l
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vf,hi vā,hi

vb̄,hi

vc̄,hi
vd̄,hi

vē,hi

vf̄ ,hi vt,Ri

vm,R
i

vb,Ri

Fig. 1. The variable gadget for x0
i

The clause boxes for j ∈ {1, . . . , h} are aligned horizontally in the figure. A
separator box is laid between each adjacent pair of clause boxes and at both
ends. This row of boxes (Row i =

⋃
j∈{1,...,h} CB j

i ∪
⋃

j∈{0,...,h} SB j
i ) is then put

between LS i and RS i. The RD of all vertices v ∈ LS i ∪ RS i ∪ Row i are set to
T + l + 2h.

The vertices are connected as indicated by solid lines in the figure. The four
‘long’ edges in the figure have their FT set to (3m + 1)l while all other edges
have FT equal to 2, e.g., FT (vtop, v

t,L
1 ) = (3m + 1)l and FT (vb,11 , vc,11 ) = 2.

There is an exception though: FT (vb,Lm , vm) and FT (vb,Rm , vm) (in the variable
gadget for x0

m) are equal to (3m+ 2)l.
The variable gadgets for variables x1

i are constructed almost identically. The
three vertices on the left and right side are now LS i+m and RS i+m. The set of
vertices in the row is now Row i+m =

⋃
j∈{1,...,h} CB j

i+m ∪
⋃

j∈{0,...,h} SB j
i+m.

The vertex at the top is vi+m−1 and the vertex at the bottom is vi+m (i 6= m)
or vbot (i = m). The RD of vertices in LS i+m ∪ RS i+m ∪ Row i+m are set to
T + l + 2h, and the FT of the edges are set as before, except that all the ‘long’
edges now have FT equal to (3m+ 2)l.

Now consider the following ordering of variables:

x0
1, x

0
2, . . . , x

0
m, x1

1, x
1
2, . . . , x

1
m .

Observe that the variable gadgets for two ‘neighbouring’ variables (with respect
to this ordering) have a vertex in common. To be precise, the set of shared
vertices is S = {v1, . . . , v2m−1}. We set the RD of all vertices in S to T +2h and
the RD of vtop and vbot to T .

Clause Vertices For each clause cj in ϕ(0), there is a clause vertex vcj with
RD set to 3

2T . If x
0
i occurs in cj as a literal, we connect the j-th clause box in
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the variable gadget for x0
i to vcj as shown in Figure 2 and set the FT of these

new edges to 2 (e.g., FT (vcj , vc,ji ) = FT (vcj , vd,ji ) = 2). If instead ¬x0
i occurs

in cj , then vcj is connected to va,ji and vf,ji (with FT equal to 2). Likewise, the
variable gadget for x1

i may be connected to vcj via {vc,ji+m, vd,ji+m} (if x1
i occurs in

cj) or {va,ji+m, vf,ji+m} (if ¬x1
i occurs in cj).

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

vcj

2

2

2

2

2

2

2

2

2 2

2

2

Fig. 2. The variable occurs positively in cj

pvtLi

in↓,Li out↑,Li

in↑,Li out↓,Li

2

2

2

2

Fig. 3. A consistency gadget LCGi

Consistency Gadgets For each i ∈ {1, . . . ,m}, we construct two consistency
gadgets LCG i (see Figure 3) and RCG i. In LCG i, the vertex at the centre
(pvt t,Li ) has RD equal to 1

2T +m
(
2(3m+2)l+ l

)
− (2i−1)l+4h. The other four

vertices (in↓,Li , out↑,Li , in↑,Li and out↓,Li ) have RD equal to 3
2T . The FT from

pvt t,Li to any of the other four vertices is 2. RCG i is identical except that the
subscripts on the vertices change from L to R.

LCG i and RCG i are connected to the variable gadgets for x0
i and x1

i as in
Figure 4. The vertices in↓,Li , out↑,Li , in↓,Ri , out↑,Ri are connected to certain vertices
in the variable gadget for x0

i—this allows pvtLi and pvtRi to be traversed ‘from
above’. Similarly, the edges connected to in↑,Li , out↓,Li , in↑,Li , out↓,Li allow pvtLi
and pvtRi to be traversed ‘from below’. Formally, FT (v, v′) = 2 if

– v = in↓,Li , v′ ∈ {vb,Li , vc̄,0i } or v = in↓,Ri , v′ ∈ {vf̄ ,hi , vb,Ri }
– v = out↑,Li , v′ ∈ {vt,Li , vā,0i } or v = out↑,Ri , v′ ∈ {vd̄,hi , vt,Ri }
– v = in↑,Li , v′ ∈ {vb,L(i+m), v

c̄,0
(i+m)} or v = in↑,Ri , v′ ∈ {vf̄ ,h(i+m), v

b,R
(i+m)}

– v = out↓,Li , v′ ∈ {vt,L(i+m), v
ā,0
(i+m)} or v = out↓,Ri , v′ ∈ {vd̄,h(i+m), v

t,R
(i+m)}.

Two parts of an intended path, which we will explain in more detail later, is also
illustrated in Figure 4.

Finally, there is a vertex vmid with RD(vmid) = T connected to vbot and vtop
with two edges, both with FT equal to 1

4T . The FT of all the missing edges
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x0
i

x1
i

LCGi RCGi

Fig. 4. Connecting the variable gadgets for x0
i and x1

i to LCGi and RCGi

are 2T (note that the largest value in RD is less than 2T , so these edges can
never be taken). This completes the construction of G. An example with m = 3
is given in Figure 5, where vertices in S (shared by two variable gadgets) are
depicted as solid circles.

The rest of this section is devoted to the proof of the following proposition.

Proposition 3.
∧

j≥0 ϕ(j) is satisfiable iff G has a solution.

3.2 The Proof of Proposition 3

We first prove the forward direction. Given a satisfying assignment of
∧

j≥0 ϕ(j),
we construct a solution s as follows: s starts from vtop and goes through the
variable gadgets for x0

1, x
0
2, . . . , x

0
m, x1

1, x
1
2, . . . , x

1
m in order, eventually reaching

vbot. Each variable gadget is traversed according to the truth value assigned to
its corresponding variable. In such a traversal, both pvtLi and pvtRi are visited
once (see the thick arrows in Figure 4 for the situation when x0

i is assigned
true and x1

i is assigned false). Along the way from vtop to vbot, s detours at
certain times and ‘hits’ each clause vertex exactly once as illustrated by the thick
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vmid

vtop

vbot

v1

v2

v3

v4

v5

x0
1

x0
2

x0
3

x1
1

x1
2

x1
3

1
4
T

1
4
T

(3m+ 1)l (3m+ 1)l

(3m+ 1)l(3m+ 1)l

(3m+ 1)l (3m+ 1)l

(3m+ 1)l(3m+ 1)l

(3m+ 1)l (3m+ 1)l

(3m+ 2)l(3m+ 2)l

(3m+ 2)l (3m+ 2)l

(3m+ 2)l(3m+ 2)l

(3m+ 2)l (3m+ 2)l

(3m+ 2)l(3m+ 2)l

(3m+ 2)l (3m+ 2)l

(3m+ 2)l(3m+ 2)l

Fig. 5. An example with m = 3. Solid circles denote shared vertices S = {v1, . . . , v5}.

arrows in Figure 2 (this can be done as ϕ(0) is satisfied by the assignment). Then
s goes back to vtop through vmid and starts over again, this time following the
truth values assigned to variables in x1 ∪x2, and so on. One can verify that this
describes a solution to G.

Now consider the other direction. Let

s = (vmids1vmid . . . vmidsp)
ω

be a periodic solution to G where each segment sj , j ∈ {1, . . . , p} is a finite
subpath visiting only vertices in V \ {vmid}. We further assume that s satisfies
the first case of the following proposition (this is sound as a periodic solution
can be ‘reversed’ while remaining a valid solution). Let sj−1 = sp if j = 1 and
sj+1 = s1 if j = p.

Proposition 4. In s = (vmids1vmid . . . vmidsp)
ω, either of the following holds:

– All sj, j ∈ {1, . . . , p} starts with vtop and ends with vbot

8



– All sj, j ∈ {1, . . . , p} starts with vbot and ends with vtop.

Proof. See Appendix C. ut

We argue that s ‘witnesses’ a satisfying assignment of
∧

j≥0 ϕ(j).

Lemma 5. In each segment sj, each vertex in
⋃

i∈{1,...,m}{pvtLi , pvtRi } appears
twice whereas other vertices in V \ {vmid} appear once.

Proof. See Appendix D. ut

Based on this lemma, we show that s cannot ‘jump’ between variable gadgets
via clause vertices. It follows that the traversal of each Row i must be done in a
single pass.

Proposition 6. In each segment sj, if vck is entered from a clause box (in
some variable gadget), the edge that immediately follows must go back to the
same clause box.

Proof. Consider a 3× 3 ‘box’ formed by a separator box and (the left- or right-)
half of a clause box. Note that except for the four vertices at the corners, no
vertex in this 3× 3 box is connected to the rest of the graph. Recall that if each
vertex in this 3× 3 box is to be visited only once (as enforced by Lemma 5), it
must be traversed in the patterns illustrated in Figures 6 and 7.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Fig. 6. Pattern ‘tu’

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Fig. 7. Pattern ‘ut’

Now consider the situation in Figure 8 where sj goes from vz to vck . The 3×3
box with vz at its lower-right must be traversed in Pattern ‘tu’ (as otherwise vz
will be visited twice). Assume that sj does not visit vx immediately after vck . As
vx cannot be entered or left via vz and vck , the 3×3 box with vx at its lower-left
must also be traversed in Pattern ‘tu’. However, there is then no way to enter
or leave vy. This is a contradiction. ut

Note that in Figure 8, the three clause boxes (framed by dotted lines) are all
traversed in Pattern ‘u’ or they are all traversed in Pattern ‘t’. More generally,
we have the following proposition.

Proposition 7. In each segment sj, clause boxes in a given variable gadget are
all traversed in Pattern ‘u’ or they are all traversed in Pattern ‘t’ (with possible
detours via clause vertices).
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· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

vck

vy

vxvz

Fig. 8. x0
i occurs positively in ck

Write v → v′ for the edge from v to v′ and v  v′ for a finite path that starts
with v and ends with v′. By Lemma 5, each segment sj can be written as vtop  
vb1  · · · vb2m−1  vbot where b1, . . . , b2m−1 is a permutation of 1, . . . , 2m−1.
We show that each subpath v  v′ of sj with distinct v, v′ ∈ S ∪ {vtop, vbot}
and no v′′ ∈ S ∪ {vtop, vbot} in between must be of a very restricted form. For
convenience, we call such a subpath v  v′ a fragment.

Proposition 8. In each segment sj = vtop  vb1  · · ·  vb2m−1  vbot, a
fragment v  v′ visits pvtLi and pvtRi (once for each) for some i ∈ {1, . . . ,m}.
Moreover, each fragment v  v′ in vtop  vb1  · · · vbm visits a different set
{pvtLi , pvtRi }. The same holds for vbm  vbm+1

 · · · vbot.

Proof. It is clear that dur(v  v′) ≥ 2(3m + 1)l, and hence dur(vtop  vb1  
· · · vbm) ≥ m

(
2(3m+1)l

)
. Let there be a vertex v ∈

⋃
i∈{1,...,m}{pvtLi , pvtRi }miss-

ing in vtop  vb1  · · · vbm . Since the time needed from vbm to v is greater than
(3m+1)l, even if sj visits v as soon as possible after vbm , the duration from vbot in
sj−1 to v in sj will still be greater than 1

2T+m
(
2(3m+1)l

)
+(3m+1)l > RD(v),

which is a contradiction. Therefore, all vertices in
⋃

i∈{1,...,m}{pvtLi , pvtRi } must
appear in the subpath from vtop to vbm . The same holds for the subpath from
vbm to vbot by similar arguments. Now note that by Proposition 6, a fragment
v  v′ may visit at most two vertices—{pvtLi , pvtRi } for some i ∈ {1, . . . ,m}.
The proposition then follows from Lemma 5. ut

Proposition 9. In each segment sj, a fragment v  v′ visits all vertices in
either Row i or Row i+m for some i ∈ {1, . . . ,m} but not a single vertex in⋃

j 6=i
j∈{1,...,m}

(Row j ∪ Row j+m).

Now consider a fragment v  v′ that visits pvtLi and pvtRi (by Proposition 8).
By Lemma 5, v  v′ must also visit exactly two vertices other than pvtLi in LCG i

and exactly two vertices other than pvtRi in RCG i (once for each). It is not hard
to see that v  v′ must contain, in order, the following subpaths (together with
some obvious choices of edges connecting these subpaths):

(i). A long edge, e.g., vi → vb,Ri .
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(ii). A ‘side’, e.g., vb,Ri → vm,R
i → vt,Ri .

(iii). A subpath consisting of a pvt vertex and two other vertices in the relevant
consistency gadget, e.g., out↑,Ri → pvtRi → in↓,Ri .

(iv). A traversal of a row with detours.
(v). A subpath consisting of a pvt vertex and two other vertices in the relevant

consistency gadget.
(vi). A side.
(vii). A long edge.

The following proposition is then immediate. In particular, the exact value of
dur(v  v′) is decided by:

– FT of the long edges taken in (i) and (vii)
– detours to clause vertices in (iv).

Proposition 10. In each segment sj, the following holds for all fragments v  v′:

2(3m+ 1)l + l ≤ dur(v  v′) ≤ 2(3m+ 2)l + l + 2h.

Proposition 11. The order the sets {pvtLi , pvtRi } are visited (regardless of which
vertex in the set is first visited) in the first m fragments of each segment sj is
identical to the order they are visited in the last m fragments of sj−1.

Proof. By Proposition 10, if this does not hold then there must be a pvt vertex
having two occurrences in s separated by more than 1

2T +m
(
2(3m+ 1)l + l

)
+

2(3m+ 1)l. This is a contradiction. ut

For each segment sj , we denote by first(sj) the ‘first half’ of sj , i.e., the
subpath of sj that consists of the first m fragments of sj and by second(sj) the
‘second half’ of sj . Write ∃(v  v′) ⊆ u if u has a subpath of the form v  v′.

Proposition 12. In each segment sj = vtop  vb1  · · ·  vb2m−1  vbot, we
have bi = i for all i ∈ {1, . . . , 2m− 1}.

Proof. First note that by construction and Proposition 8, {pvtLm, pvtRm} must be
the last set of pvt vertices visited in second(sj−1). By Proposition 11, it must
also be the last set of pvt vertices visited in first(sj). Now assume that a long
edge of flight time (3m+2)l is taken before pvtLm and pvtRm are visited in first(sj).
Consider the following cases:

– ∃(pvtLm  pvtRm) ⊆ second(sj−1) and ∃(pvtRm  pvtLm) ⊆ first(sj): Note
that the last edge taken in sj−1 is a long edge of flight time (3m + 2)l,
and hence there are two occurrences of pvtLm in s separated by at least
1
2T +m

(
2(3m+1)l+ l

)
+2l > 1

2T +m
(
2(3m+1)l+ l

)
+ l+4h = RD(pvtLm).

– ∃(pvtRm  pvtLm) ⊆ second(sj−1) and ∃(pvtLm  pvtRm) ⊆ first(sj): The same
argument shows that pvtRm must miss its relative deadline.

– ∃(pvtLm  pvtRm) ⊆ second(sj−1) and ∃(pvtLm  pvtRm) ⊆ first(sj): The same
argument shows that both pvtLm and pvtRm must miss their relative deadlines.

11



– ∃(pvtRm  pvtLm) ⊆ second(sj−1) and ∃(pvtRm  pvtLm) ⊆ first(sj): The same
argument shows that both pvtLm and pvtRm must miss their relative deadlines.

We therefore conclude that in first(sj), all long edges taken before pvtLm and
pvtRm are visited must have FT equal to (3m + 1)l. Furthermore, all such long
edges must be traversed ‘downwards’ (by Lemma 5). It follows that bi = i for
i ∈ {1, . . . ,m − 1}. By Proposition 11, Lemma 5 and m > 2, we easily derive
that bm = m and then bi = i for i ∈ {m+ 1, . . . , 2m− 1}. ut

By Proposition 12, the long edges in each variable gadget must be traversed
in the ways shown in Figures 9 and 10.

Fig. 9. The variable is assigned to true Fig. 10. The variable is assigned to false

Proposition 13. For each segment sj, the ways in which the long edges are
traversed in the last m fragments of sj are consistent with the ways in which the
long edges are traversed in the first m fragments of sj+1.

Proof. Without loss of generality, consider the case that ∃(pvtLi  pvtRi ) ⊆
second(sj) and ∃(pvtRi  pvtLi ) ⊆ first(sj+1). By Proposition 12, these two
occurrences of pvtLi in s are separated by, at least, the sum of 1

2T +m
(
2(3m+

2)l + l
)
− (2i − 1)l and the duration of the actual subpath pvtRi  pvtLi in

first(sj+1). It is clear that pvtLi must miss its relative deadline. ut

Proposition 14. In each segment sj, if a variable gadget is traversed as in
Figure 9 (Figure 10), then all of its clause boxes are traversed in Pattern ‘t’
(Pattern ‘u’).

Consider a segment sj . As each clause vertex is visited once in sj (by Lemma 5),
the ways in which the long edges are traversed in all fragments v  v′ of sj (i.e.,
as in Figure 9 or Figure 10) can be seen as a satisfying assignment of ϕ(0) (by
construction and Proposition 14). By the same argument, the ways in which
the long edges are traversed in all fragments of sj+1 can be seen as a satisfying
assignment of ϕ(1). Now by Proposition 13, the assignment of variables x1 is con-
sistent in both segments. By IH, s witnesses a (periodic) satisfying assignment
of
∧

j≥0 ϕ(j). Proposition 3 is hence proved.
Finally, note that FT can easily be modified into a metric over V by replacing

each entry of value 2T with the ‘shortest distance’ between the two relevant
vertices. It is easy to see that Proposition 3 still holds. Our main result, which
holds for the metric case, follows immediately from Section 2.2.
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Theorem 15. The uav Problem is PSPACE-complete.4

4 Conclusion

We have proved that the uav Problem is PSPACE-complete even in the single-
UAV case. The proof reveals a connection between a periodically specified prob-
lem and a recurrent path-planning problem (which is not succinctly specified in
the sense of [14]). We list below some possible directions for future work:

1. A number of crucial problems in other domains, e.g., the generalised pin-
wheel scheduling problem [9] and the message ferrying problem [23], share
similarities with the uav Problem—namely, they have relative deadlines and
therefore ‘contexts’. Most of these problems are only known to be NP-hard. It
would be interesting to investigate whether our construction can be adapted
to establish PSPACE-hardness of these problems.

2. It is claimed in [13] that the restricted case in which vertices can be realised as
points in a two-dimensional plane (with discretised distances between points)
is NP-complete (with a single UAV). A natural question is the relationship
with the problem studied in the present paper.

3. Current approaches to solving the uav Problem often formulate it as a
Mixed-Integer Linear Program (MILP) and then invoke an off-the-shelf solver
(see, e.g., [5]). Yet as implied by Proposition 3, the length of a solution can
however be exponential in the size of the problem instance. We are cur-
rently investigating alternative implementations which would overcome such
difficulties.
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A A Counterexample

In [5] it is claimed that the special case of the uav Problem with a single UAV is
in NP. This claim is based on the following bound on the ‘period’ of a solution
to the problem:

Claim ([5], Theorem 4.5). Consider an instance G of the uav Problem with a
single UAV. If there is a solution, then there is one in the form uω where u is a

finite path through G whose length is bounded by
maxv∈V RD(v)

minv,v′∈V
v 6=v′

FT (v, v′)
.

Note that if numbers are encoded in unary then the above bound would imply
the existence of a periodic solution whose period is bounded by a polynomial in
the size of the instance. Since such a solution can easily be checked in polynomial
time, membership in NP would follow.

However we provide below a counterexample to the above claim. Consider
the problem instance G where G is depicted in Figure 11. A periodic solution
with the shortest period has period 115 whereas the theorem implies a bound of
at most 10.

v1

5

v2

6

v3

9

v4

10

2

1
2

1

2

2

Fig. 11. A periodic solution with the shortest period: (v3v2v1v4v1v2v3v1v2v4v1)
ω

The above counterexample suggests that one can devise instances of the uav
problem, even in the case of a single UAV, for which any solution requires that
the UAV maintain a polynomial amount of memory to record previously visited
targets. This intuition forms the basis of our PSPACE-hardness proof.

5 This is verified with NuSMV [6].
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B The Constructed Graph G

For convenience we write, e.g., ¬x0
1 ∈ c1 if ¬x0

1 is a conjunct of c1. For each
i ∈ {1, . . . , 2m}, let

LS i = {vt,Li , vm,L
i , vb,Li }

RS i = {vt,Ri , vm,R
i , vb,Ri }

CB j
i = {v

a,j
i , vb,ji , vc,ji , vd,ji , ve,ji , vf,ji }

SB j
i = {v

ā,j
i , vb̄,ji , vc̄,ji , vd̄,ji , vē,ji , vf̄ ,ji }

Row i =
⋃

j∈{1,...,h}

CB j
i ∪

⋃
j∈{0,...,h}

SB j
i .

For each i ∈ {1, . . . ,m}, let

LCG i = {in↓,Li , out↑,Li , pvtLi , in
↑,L
i , out↓,Li }

RCG i = {in↓,Ri , out↑,Ri , pvtRi , in
↑,R
i , out↓,Ri } .

Let C = {vc1 , . . . , vch} where for each j ∈ {1, . . . h}, cj is a clause of ϕ(0).
Additionally, let S = {v1, . . . , v2m−1}. The set of vertices V is defined as the
following union:

{vtop, vmid, vbot}∪S∪C∪
⋃

i∈{1,...,m}

(LCG i∪RCG i)∪
⋃

i∈{1,...,2m}

(LS i∪RS i∪Row i) .

The array RD is defined as follows:

RD(v) =



T + l + 2h if v ∈
⋃

i∈{1,...,2m}(LS i ∪ RS i ∪ Row i)
1
2T +m

(
2(3m+ 2)l + l

)
− (2i− 1)l + 4h if v ∈ {pvtLi , pvtRi }

3
2T if v ∈

⋃
i∈{1,...,m}

(
(LCG i \ {pvtLi }) ∪ (RCG i \ {pvtRi })

)
3
2T if v ∈ C

T + 2h if v ∈ S

T if v ∈ {vtop, vmid, vbot} .
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The matrix FT is defined as follows (undefined entries are set to 2T ):

FT (v, v′) =



0 if v = v′

(3m+ 1)l if v = vtop, v
′ ∈ {vt,L1 , vt,R1 }

(3m+ 1)l if v = vi, v
′ ∈ {vb,Li , vb,Ri , vt,Li+1, v

t,R
i+1}

for some i ∈ {1, . . . ,m− 1}
(3m+ 2)l if v = vm, v′ ∈ {vb,Lm , vb,Rm , vt,Lm+1, v

t,R
m+1}

(3m+ 2)l if v = vi, v
′ ∈ {vb,Li , vb,Ri , vt,Li+1, v

t,R
i+1}

for some i ∈ {m+ 1, . . . , 2m− 1}
(3m+ 2)l if v = vbot, v

′ ∈ {vb,L2m , vb,R2m }
2 if v = vm,L

i , v′ ∈ {vt,Li , vb,Li } or v = vm,R
i , v′ ∈ {vt,Ri , vb,Ri }

2 if v = vb,ji , v′ ∈ {va,ji , vc,ji } or v = ve,ji , v′ ∈ {vd,ji , vf,ji }
2 if v = vb̄,ji , v′ ∈ {vā,ji , vc̄,ji } or v = vē,ji , v′ ∈ {vd̄,ji , vf̄ ,ji }
2 if v = vd̄,ji , v′ ∈ {vc̄,ji , v

c,(j+1)
i } or v = vf̄ ,ji , v′ ∈ {vā,ji , v

a,(j+1)
i }

2 if v = vd,ji , v′ ∈ {vc,ji , vc̄,ji } or v = vf,ji , v′ ∈ {va,ji , vā,ji }
2 if v = vcj , v

′ ∈ {vc,ji , vd,ji } and x0
i ∈ cj for some i ∈ {1, . . . ,m}

2 if v = vcj , v
′ ∈ {va,ji , vf,ji } and ¬x0

i ∈ cj for some i ∈ {1, . . . ,m}
2 if v = vcj , v

′ ∈ {vc,ji , vd,ji } and x1
(i−m) ∈ cj for some i ∈ {m+ 1, . . . , 2m}

2 if v = vcj , v
′ ∈ {va,ji , vf,ji } and ¬x1

(i−m) ∈ cj for some i ∈ {m+ 1, . . . , 2m}
2 if v = pvtLi , v

′ ∈ LCG i \ {pvtLi } or v = pvtRi , v
′ ∈ RCG i \ {pvtRi }

2 if v = in↓,Li , v′ ∈ {vb,Li , vc̄,0i } or v = in↓,Ri , v′ ∈ {vf̄ ,hi , vb,Ri }
2 if v = out↑,Li , v′ ∈ {vt,Li , vā,0i } or v = out↑,Ri , v′ ∈ {vd̄,hi , vt,Ri }
2 if v = in↑,Li , v′ ∈ {vb,L(i+m), v

c̄,0
(i+m)} or v = in↑,Ri , v′ ∈ {vf̄ ,h(i+m), v

b,R
(i+m)}

2 if v = out↓,Li , v′ ∈ {vt,L(i+m), v
ā,0
(i+m)} or v = out↓,Ri , v′ ∈ {vd̄,h(i+m), v

t,R
(i+m)}

1
4T if v = vmid, v

′ ∈ {vtop, vbot} .

C Proof of Proposition 4

Lemma 16. Each segment sj must start with and end with vtop or vbot.

Lemma 17. The time needed from vtop or vbot to any other vertex is at least
(3m+ 1)l.

Lemma 18. The time needed from vmid to any other vertex is at least 1
4T .

Lemma 19. Each segment sj must contain more than one vertex.

Proof. By Lemma 16, without loss of generality let sj = vbot, a single vertex.
It is easy to see that sj−1 must end with vtop and sj+1 must start with vtop,
otherwise the relative deadline of vtop will be violated. Now consider v1 (with
RD(v1) = T +2h). By Lemma 17 and the fact that dur(vtopvmidvbotvmidvtop) =
T , the relative deadline of v1 is violated for sure even if s visits v1 immediately
after vtop. This is a contradiction. ut
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Proposition 20. For each segment sj, 0 < dur(sj) ≤ 1
2T .

Proof. By Lemma 19 we have dur(sj) > 0. For the upper bound, note that
dur(vmidsjvmid) =

1
2T + dur(sj) and RD(vmid) = T . ut

Proposition 21. Each segment sj contains all vertices in V \ {vmid} with rel-
ative deadlines less or equal than T + l + 2h.

Proof. Let v ∈ V \ {vmid} be a vertex missing in sj with RD(v) ≤ T + l + 2h.
By Lemmas 16, 17 and 19, dur(sj) ≥ 2(3m + 1)l > l + l > l + 2h. We have
dur(vmidsjvmid) =

1
2T+dur(sj) >

1
2T+l+2h. By Lemma 18, dur(vvmidsjvmidv)

must be greater than T + l+2h for any v ∈ V \{vmid}, which is a contradiction.
ut

By Proposition 21, we first derive a (crude) lower bound on dur(sj). The sum
of the minimum times needed to enter and leave every v ∈ S and the minimum
times needed to enter and leave both ends of sj gives

dur(sj) ≥ (m− 1)
(
2(3m+ 1)l

)
+m

(
2(3m+ 2)l

)
+ 2(3m+ 1)l . (1)

Proposition 22. vtop, vbot and each v ∈ S appears once in each segment sj.

Proof. Without loss of generality, assume one of these vertices appears more
than once in sj . By a similar argument as above, we derive that dur(sj) is at
least (m − 1)

(
2(3m + 1)l

)
+ m

(
2(3m + 2)l

)
+ 2(3m + 1)l + 2(3m + 1)l > 1

2T .
This contradicts Proposition 20. ut

By the proposition above, we can revise our lower bound in Eq.(1) by noting
that sj must start and end with different vertices. This gives

dur(sj) ≥ (m− 1)
(
2(3m+ 1)l

)
+m

(
2(3m+ 2)l

)
+ (3m+ 1)l + (3m+ 2)l . (2)

Now without loss of generality let sj ends with vtop and sj+1 starts with vtop.
By Eq.(2), dur(sj)+dur(sj+1) ≥ 2

(
(m−1)

(
2(3m+1)l

)
+m

(
2(3m+2)l

)
+(3m+

1)l+(3m+2)l
)
> 1

2T , and hence dur(sjvmidsj+1) > T . By Proposition 22, vbot
can only appear at both ends of sjvmidsj+1, hence its relative deadline must be
violated. This is a contradiction. Proposition 4 is hence proved.

D Proof of Lemma 5

Now we refine our lower bound in Eq.(2) by taking into account other vertices in
variable gadgets and consistency gadgets with RD less or equal to T + l+2h (by
Proposition 21). As many of these vertices are adjacent, we only accumulate the
minimum times needed to enter them. This gives an extra time of m(24h+22)+
4m + m(24h + 22) (note that by Proposition 22, only one of the four vertices
connected to a shared vertex has been entered and cannot be included in the
calculation). In total, we have

dur(sj) ≥
1

2
T − 20m− 2h . (3)
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Proposition 23. Each segment sj contains all vertices with relative deadlines
equal to 3

2T , i.e., clause vertices and vertices in
⋃

i∈{1,...,m}
(
(LCG i \ {pvtLi }) ∪

(RCG i \ {pvtRi })
)
.

Proof. Assume that there is such a vertex v not appearing in sj . By Eq.(3),
we have dur(vbotvmidsjvmidvtop) ≥ 3

2T − 20m− 2h. By Lemma 17, the relative
deadline of v must be violated as dur(vvbotvmidsjvmidvtopv) ≥ 3

2T − 20m− 2h+
2(3m+ 1)l > 3

2T . This is a contradiction. ut

Based on the previous proposition, we can further refine our lower bound on
the duration of a segment. The minimum times needed to enter

– clause vertices vcj , j ∈ {1, . . . , h}
– vertices in

⋃
i∈{1,...,m}

(
(LCG i \ {pvtLi }) ∪ (RCG i \ {pvtRi })

)
can now be included in the calculation. We have

dur(sj) ≥
1

2
T − 4h . (4)

Proposition 24. In each segment sj, each vertex in
⋃

i∈{1,...,m}{pvtLi , pvtRi }
appears more than once.

Proof. Let there be such a vertex v appearing only once in a segment. By
Lemma 17, there are two occurrences of v in s separated by at least 1

2 ·
(

1
2T +

( 1
2T − 4h) + 1

2T
)
+ (3m+ 1)l. This exceeds all possible values of RD(v). ut

By the proposition above, we assume that each vertex in
⋃

i∈{1,...,m}{pvtLi , pvtRi }
appears twice in a segment. Counting each such vertex once again gives an extra
time of 4h. The sum of this with Eq.(4) matches the upper bound in Proposi-
tion 20. Any more visit to a vertex in V \ {vmid, vtop, vbot, v1, . . . , v2m−1} will
immediately contradict Proposition 20. Lemma 5 is hence proved.
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