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Abstract. It is known that Metric Temporal Logic (MTL) is strictly
less expressive than the Monadic First-Order Logic of Order and Met-
ric (FO[<,+1]) in the pointwise semantics over bounded time domains
(i.e., timed words of bounded duration) [20]. In this paper, we present
an extension of MTL which has the same expressive power as FO[<,+1]
in both the pointwise and continuous semantics over bounded time do-
mains.

1 Introduction

One of the most prominent specification formalisms used in verification is Lin-
ear Temporal Logic (LTL), which is typically interpreted over the non-negative
integers or reals. A celebrated result of Kamp [14] states that, in either case, LTL
has precisely the same expressive power as the Monadic First-Order Logic of Or-
der (FO[<]). These logics, however, are inadequate to express specifications for
systems whose correct behaviour depends on quantitative timing requirements.
Over the last three decades, much work has therefore gone into lifting classi-
cal verification formalisms and results to the real-time setting. Metric Temporal
Logic (MTL), which extends LTL by constraining the temporal operators by time
intervals, was introduced by Koymans [15] in 1990 and has emerged as a central
real-time specification formalism.

MTL enjoys two main semantics, depending intuitively on whether atomic
formulas are interpreted as state predicates or as (instantaneous) events. In the
former, the system is assumed to be under observation at every instant in time,
leading to a ‘continuous’ semantics based on flows or signals, whereas in the
latter, observations of the system are taken to be (finite or infinite) sequences of
timestamped snapshots, leading to a ‘pointwise’ semantics based on timed words.
Timed words are the leading interpretation, for example, for systems modelled
as timed automata [1]. In both cases, the time domain is usually taken to be the
non-negative real numbers. Both semantics have been extensively studied; see,
e.g., [17] for a historical account.

Alongside these developments, researchers proposed theMonadic First-Order
Logic of Order and Metric (FO[<,+1]) as a natural quantitative extension of
FO[<]. Unfortunately, Hirshfeld and Rabinovich [10] showed that no ‘finitary’
extension of MTL—and a fortiori MTL itself—could have the same expressive
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power as FO[<,+1] over the reals.1 Still, in the continuous semantics, MTL can
be made expressively complete for FO[<,+1] by extending the logic with an
infinite family of ‘counting modalities’ [12] or considering only bounded time do-
mains [16,18]. Nonetheless, and rather surprisingly, MTL with counting modali-
ties remains strictly less expressive than FO[<,+1] over bounded time domains
in the pointwise semantics, i.e., over timed words of bounded duration, as we
will see in Section 3.

The main result of this paper is to show that MTL, equipped with both
the forwards and backwards temporal modalities ‘generalised Until’ (U) and
‘generalised Since’ (S), has precisely the same expressive power as FO[<,+1]
over bounded time domains in the pointwise semantics (and also, trivially, in
the continuous semantics). This extended version of Metric Temporal Logic,
written MTL[U,S], therefore yields a definitive real-time analogue of Kamp’s
theorem over bounded domains.

It is worth noting that MTL[U,S] satisfiability and model checking (against
timed automata) are decidable over bounded time domains, thanks to the decid-
ability of FO[<,+1] over such domains as established in [16,18]. Unfortunately,
FO[<,+1] has non-elementary complexity, whereas the time-bounded satisfia-
bility and model-checking problems for MTL are EXPSPACE-complete [16, 18].
However, it can easily be seen by inspecting the relevant constructions that the
complexity bounds for MTL carry over to our new logic MTL[U,S].

2 Preliminaries

2.1 Timed Automata

2.2 Timed Words

Let the time domain T be a subinterval of R≥0 that contains 0. A time sequence
τ = τ0τ1 . . . is a non-empty finite or infinite sequence over T (called timestamps)
that satisfies the requirements below (we denote the length of τ by |τ |):

– Initialisation2: τ0 = 0
– Strict monotonicity : For all i, 0 ≤ i < |τ | − 1, we have τi < τi+1.

If τ is infinite we require it to be unbounded, i.e., we disallow so-called Zeno
sequences. A timed word over finite alphabet Σ is a pair ρ = (σ, τ), where
σ = σ0σ1 . . . is a non-empty finite or infinite word over Σ and τ is a time
sequence over T of the same length. We refer the pair (σi, τi) as the ith event in
1 Hirshfeld and Rabinovich’s result was only stated and proved for the continuous se-
mantics, but we believe that their approach would also carry through for the point-
wise semantics. In any case, using different techniques Prabhakar and D’Souza [20]
and Pandya and Shah [19] independently showed that MTL is strictly weaker than
FO[<,+1] in the pointwise semantics.

2 This requirement is natural in the present context as all the logics we consider in this
thesis are translation invariant : two timed words are indistinguishable by formulas
(of these logics) if they only differ by a fixed delay.
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ρ, and define the distance between ith and jth (i ≤ j) events to be τj − τi. In
this sense, a timed word can be equivalently regarded as a sequence of events.
We denote by |ρ| the number of events in ρ. A position in ρ is a number i such
that 0 ≤ i < |ρ|. The duration of ρ is defined as τ|ρ|−1 if ρ is finite. We write
t ∈ ρ if t is equal to one of the timestamps in ρ.

In the present paper, we are mainly concerned with finite timed words with
bounded time domains of the form [0, N) where N ∈ N (we call them bounded
timed words). For clarity, we refer to finite timed words with all timestamps in
T as T-timed words.

2.3 Flows

A flow over finite alphabet Σ is a function f : T 7→ Σ that is finitely variable,
i.e., the restriction of f to a subinterval of T of finite length has only finite number
of discontinuities. We sometimes write T-flows for flows with time domain T.

2.4 Metric Logics

Syntax We first define a metric predicate logic FO[<,+1], of which all other
logics discussed in this thesis will be defined as sublogics. In the sequel, we write
ΣP = 2P for a set of monadic predicates P.

Definition 1. Given a set of monadic predicates P, the set of FO[<,+1] for-
mulas is generated by the grammar

ϑ ::= P (x) | x < x′ | d(x, x′) ∼ c | true | ϑ1 ∧ ϑ2 | ¬ϑ | ∃xϑ ,

where P ∈ P, x, x′ are variables, ∼ ∈ {=, 6=, <,>,≤,≥} and c ∈ N.3

Formulas of metric temporal logics are built from monadic predicates us-
ing Boolean connectives and modalities. A k-ary modality is defined by an
FO[<,+1] formula ϕ(x,X1, . . . , Xk) with a single free first-order variable x and
k free monadic predicates X1, . . . , Xk. For example, the MTL modality U(0,5) is
defined by

U(0,5)(x,X1, X2) = ∃x′
(
x < x′ ∧ d(x, x′) < 5 ∧X2(x

′)

∧ ∀x′′
(
x < x′′ ∧ x′′ < x′ =⇒ X1(x

′′)
))
.

The MTL formula ϕ1 U(0,5) ϕ2 (using infix notation) is obtained by substituting
MTL formulas ϕ1, ϕ2 for X1, X2, respectively.

3 Note that whilst we still refer to the logic as FO[<,+1], we adopt here an equivalent
definition using a binary distance predicate d(x, x′) (as in [21]) in place of the usual
+1 function symbol.
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Definition 2. Given a set of monadic predicates P, the set of MTL formulas
is generated by the grammar

ϕ ::= P | true | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 UI ϕ2 | ϕ1 SI ϕ2 ,

where P ∈ P and I ⊆ (0,∞) is an interval with endpoints in N ∪ {∞}.

The (future-only) fragment MTLfut is obtained by banning subformulas of the
form ϕ1 SI ϕ2. If I is not present as a subscript to a given modality then it
is assumed to be (0,∞). We sometimes use pseudo-arithmetic expressions to
denote intervals, e.g., ‘≥ 1’ denotes [1,∞) and ‘= 1’ denotes the singleton {1}.
We also employ the usual syntactic sugar, e.g., false ≡ ¬true,Iϕ ≡ true UIϕ,
Iϕ ≡ true SI ϕ, Iϕ ≡ ¬I¬ϕ and Iϕ ≡ false UI ϕ, etc.

Pointwise Semantics With each timed word ρ = (σ, τ) over ΣP we associate
a structure Mρ. Its universe Uρ is the subset {τi | 0 ≤ i < |ρ|} of T. The
order relation < and monadic predicates in P are interpreted in the expected
way. For example, P (τi) holds in Mρ iff P ∈ σi. The binary distance predicate
d(x, x′) ∼ c holds iff |x−x′| ∼ c. The satisfaction relation is defined inductively as
usual. We write Mρ, t0, . . . , tn |= ϑ(x0, . . . , xn) (or ρ, t0, . . . , tn |= ϑ(x0, . . . , xn))
if t0, . . . , tn ∈ Uρ and ϑ(t0, . . . , tn) holds in Mρ. We say that FO[<,+1] formulas
ϑ1(x) and ϑ2(x) are equivalent over T-timed words if for all T-timed words ρ
and t ∈ Uρ,

ρ, t |= ϑ1(x) ⇐⇒ ρ, t |= ϑ2(x) .

We say a metric logic L′ is expressively complete for metric logic L over T-
timed words iff for any formula ϑ(x) ∈ L, there is an equivalent formula ϕ(x) ∈ L′
over T-timed words.

As we have seen earlier, each MTL formula can be defined as an FO[<,+1]
formula with a single free first-order variable. Here for the sake of completeness
we give an (equivalent) traditional inductive definition of the satisfaction relation
for MTL over timed words.

Definition 3. The satisfaction relation (ρ, i) |= ϕ for an MTL formula ϕ, a
timed word ρ = (σ, τ) and a position i in ρ is defined as follows:

– (ρ, i) |= P iff P (τi) holds in Mρ

– (ρ, i) |= true
– (ρ, i) |= ϕ1 ∧ ϕ2 iff (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2

– (ρ, i) |= ¬ϕ iff (ρ, i) 6|= ϕ
– (ρ, i) |= ϕ1UIϕ2 iff there exists j, i < j < |ρ| such that (ρ, j) |= ϕ2, τj−τi ∈ I

and (ρ, k) |= ϕ1 for all k with i < k < j
– (ρ, i) |= ϕ1SI ϕ2 iff there exists j, 1 ≤ j < i such that (ρ, j) |= ϕ2, τi−τj ∈ I

and (ρ, k) |= ϕ1 for all k with j < k < i.

Note that we adopt strict versions of temporal modalities, e.g., ϕ2 holds at i
does not imply that ϕ1 U ϕ2 holds at i. We write ρ |= ϕ if (ρ, 0) |= ϕ.
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Continuous Semantics With each flow f over ΣP we associate a structure
Mf . Its universe Uf is T. The order relation < and monadic predicates in P are
interpreted in the expected way, e.g., P (x) holds in Mf iff P ∈ f(x). The binary
distance predicate d(x, x′) ∼ c holds iff |x − x′| ∼ c. We write Mf , t0, . . . , tn |=
ϑ(x0, . . . , xn) (or f, t0, . . . , tn |= ϑ(x0, . . . , xn)) if t0, . . . , tn ∈ Uf and ϑ(t0, . . . , tn)
holds in Mf . We say that FO[<,+1] formulas ϑ1(x) and ϑ2(x) are equivalent
over T-flows if for all T-flows f and t ∈ Uf ,

f, t |= ϑ1(x) ⇐⇒ f, t |= ϑ2(x) .

A metric logic L′ is expressively complete for metric logic L over T-flows iff
for any formula ϑ(x) ∈ L, there is an equivalent formula ϕ(x) ∈ L′ over T-flows.

The satisfaction relation for MTL over flows is defined as follows.

Definition 4. The satisfaction relation (f, t) |= ϕ for an MTL formula ϕ, a
flow f and t ∈ Uf is defined as follows:

– (f, t) |= P iff P (t) holds in Mf

– (f, t) |= true
– (f, t) |= ϕ1 ∧ ϕ2 iff (f, t) |= ϕ1 and (f, t) |= ϕ2

– (f, t) |= ¬ϕ iff (f, t) 6|= ϕ
– (f, t) |= ϕ1UI ϕ2 iff there exists t′ > t, t′ ∈ T such that (f, t′) |= ϕ2, t′−t ∈ I

and (f, t′′) |= ϕ1 for all t′′ with t < t′′ < t′

– (f, t) |= ϕ1SI ϕ2 iff there exists t′ < t, t′ ∈ T such that (f, t′) |= ϕ2, t− t′ ∈ I
and (f, t′′) |= ϕ1 for all t′′ with t′ < t′′ < t.

We write f |= ϕ if (f, 0) |= ϕ.

Relating the two Semantics Note that timed words can be regarded as a
particular kind of flow: for a given T-timed word ρ over ΣP , we can construct a
corresponding T-flow fρ over ΣP ′ , where P ′ = P ∪ {Pε}, as follows:

– fρ(τi) = σi for all i, 0 ≤ i < |ρ|
– fρ(τi) = {Pε}.

This enables us to interpret metric logics over timed words ‘continuously’. We can
thus compare the expressiveness of metric logics in both semantics by restricting
the models of the continuous interpretations of metric logics to flows of this form
(i.e., fρ for some timed word ρ). For example, we say that FO[<,+1] is not less
expressive in the continuous semantics than in the pointwise semantics since
for each FO[<,+1] formula ϑpw (x), there is an ‘equivalent’ FO[<,+1] formula
ϑcont(x) such that ρ, t |= ϑpw (x) iff fρ, t |= ϑcont(x).

It is worth pointing out that the range of first-order quantifiers is the most
crucial difference between the pointwise and continuous interpretations of metric
logics. For example, the MTLfut formula =1true does not hold at position 0
in ρ = (σ0, 0)(σ1, 0.5)(σ2, 1.2) since there is no event at time 1; but the same
formula holds at time 0 in fρ. While the ability to quantify over time points
between events appears to add to the expressiveness of metric logics, this is not
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the case for FO[<,+1] as both interpretations indeed have equal expressiveness
(when one considers only flows of the form fρ) [6].4 However, it is known that
MTL is strictly more expressive in the continuous semantics than in the pointwise
semantics [20]. Combined with the expressive equivalence of FO[<,+1] in both
semantics, this implies that MTL is not expressive complete for FO[<,+1] over
bounded timed words.

2.5 MTL EF Games

In the proofs of the expressiveness results in this paper, we resort to (extended
versions of) the MTL EF theorem given in [19], which itself is a timed general-
isation of the LTL EF theorem [8]. A brief account of the underlying EF games
played on a pair of timed words is outlined below.

An m-round MTL EF game starts with round 0 and ends with round m. A
configuration is a pair of positions (i, j), respectively in two timed words ρ, ρ′.
Let (ir, jr) be the configuration at the beginning of round r. Spoiler first checks
both events satisfy the same set of monadic predicates. Then she chooses one of
the two timed words and an interval I; as an example say that she chooses ρ.
She then picks i′r such that τi′r − τir ∈ I, where τi′r and τir are the correspond-
ing timestamps in ρ. Duplicator must choose a position j′r in ρ′ such that the
difference of the corresponding timestamps in ρ′ is in I. If Spoiler plays -part
or -part, the game proceeds to the next round with (ir+1, jr+1) = (i′r, j

′
r). If

she plays U-part or S-part, another position j′′r in ρ′ such that jr < j′′r < j′r (if
exists) would be chosen by her, and Duplicator would need to choose a position
i′′r in ρ such that ir < i′′r < i′r as response. The game then proceeds to the next
round with (ir+1, jr+1) = (i′′r , j

′′
r ). If Duplicator fails to respond at any point

then Spoiler wins the game. We write ρ, i ≈m ρ′, j if Duplicator has a winning
strategy for the m-round MTL EF game on ρ, ρ′ that starts from configuration
(i, j).5

Theorem 1 ([19]). For timed words ρ, ρ′ and an MTL formula ϕ of modal
depth ≤ m,

ρ, 0 ≈m ρ′, 0 implies ρ |= ϕ ⇐⇒ ρ′ |= ϕ .

Note that in the theorem above, moves allowed in the game correspond to
modalities allowed in ϕ. In the sequel, we will introduce new moves into the game
based on newly introduced modalities. The theorem extends in a straightforward
manner.

3 A Hierarchy of Expressiveness

In this section, we present a sequence of successively more expressive extensions
of MTLfut over bounded timed words. Along the way we highlight the key fea-
4 The translation in [6] also holds in a time-bounded setting with trivial modifications.
5 In [19], the largest constant used in specifying the endpoints of I is also considered.
For our purpose here in this paper, the largest constant can be assumed to be ≤ 2
in all proofs.
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tures that give rise to the differences in expressiveness. The necessity of a ‘new’
extension (such as the one in the next section) is justified by the fact that no
known extension can lead to expressive completeness.

3.1 Definability of Time 0

Recall that MTLfut and FO[<,+1] have the same expressiveness over [0, N)-
flows [16,18]. This result fails for the case of bounded timed words.

Proposition 1 (Corollary of [20, Section 8]). MTL is strictly more expres-
sive than MTLfut over [0, N)-timed words.6

To account for this difference between the two semantics, observe that a distinc-
tive feature of the continuous interpretation of MTLfut is exploited in [16,18]: in
any [0, N)-flow, the formula =(N−1)true holds in [0, 1) and nowhere else. One
can make use of conjunctions of similar formulas to determine which unit inter-
val in [0, N) the current instant (where the relevant formula is being evaluated)
is in. Unfortunately, since the duration of a given bounded timed word is not
known a priori, this trick does not work for MTLfut in the pointwise semantics.
For example, the formula =1true does not hold at any position in the [0, 2]-
timed word ρ = (σ0, 0)(σ1, 0.5). However, the same effect can achieved in MTL
by using past modalities. Let

ϕi,i+1 =[i,i+1)(¬true)

and Φunit = {ϕi,i+1 | i ∈ N}. It is clear that ϕi,i+1 holds only at events with
timestamps in [i, i + 1) and nowhere else. Denote by MTLfut[Φunit] the exten-
sion of MTLfut obtained by allowing these formulas as subformulas. This very
restrictive use of past modalities strictly increases the expressiveness of MTLfut.
Indeed, our main result depends crucially on the use of these formulas.

Proposition 2. MTLfut[Φunit] is strictly more expressive than MTLfut over [0, N)-
timed words.

Proof. For a given m ∈ N, we construct the following models:

Am = (∅, 0)(∅, 1− 2.5

2m+ 5
)(∅, 1− 1.5

2m+ 5
)(∅, 1− 0.5

2m+ 5
) . . . (∅, 1 + m+ 2.5

2m+ 5
) ,

Bm = (∅, 0)(∅, 1− 1.5

2m+ 5
)(∅, 1− 0.5

2m+ 5
)(∅, 1 + 0.5

2m+ 5
) . . . (∅, 1 + m+ 3.5

2m+ 5
) .

The models are illustrated in Figure 1, where each white box represents an
event (at which no monadic predicate holds).

We play the game on Am,Bm. It is clear that if ir = jr and ir ≥ 1 then
Duplicator wins the remaining rounds. If ir = jr + 1 and Spoiler chooses some
move, Duplicator can always make ir+1 = jr+1 ≥ 1 or (ir+1, jr+1) = (ir+1, jr+

6 The models constructed in [20, Section 8] are themselves bounded timed words.
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Am

Bm

0 1 1.5 2

Fig. 1. Models Am and Bm

1). It follows from Theorem 1 that no MTLfut formula of modal depth ≤ m
distinguishes Am and Bm while the formula

(0,1)

(
ϕ0,1 ∧(ϕ0,1 ∧ϕ0,1)

)
,

which says “there are three events with timestamps in [0, 1)”, distinguishes Am
and Bm for any m ∈ N (when evaluated at position 0). ut

3.2 Past Modalities

The following proposition says that the conservative extension in the last sub-
section is not sufficient for obtaining expressive completeness: non-trivial nesting
of future modalities and past modalities provides more expressiveness.

Proposition 3. MTL is strictly more expressive than MTLfut[Φunit] over [0, N)-
timed words.

Proof. For a given m ∈ N, we construct

Cm = (∅, 0)(∅, 0.5

2m+ 3
)(∅, 1.5

2m+ 3
) . . . (∅, 2− 0.5

2m+ 3
) .

Dm is constructed as Cm except that the event at time m+1.5
2m+3 is missing.

Cm

Dm

0 1 2

Fig. 2. Models Cm and Dm

The models are illustrated in Figure 2, where each white box represents an
event (at which no monadic predicate holds).
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We play the game on Cm,Dm. If ir = jr + 1 and ir ≥ m+ 4 then Duplicator
wins the remaining rounds. The proof is similar to the proof of Proposition 2.
It follows from Theorem 1 that no MTLfut[Φunit] formula of modal depth ≤ m
distinguishes Cm and Dm while the formula

(1,2)(=1true) ,

which says “for each event with timestamp in (1, 2), there is a corresponding
event that is exactly 1 time unit earlier”, distinguishes Cm and Dm for anym ∈ N
(when evaluated at position 0). ut

3.3 Counting Modalities

The modality Cn(x,X) asserts that X holds at least at n points in the open
interval (x, x+1). The modalities Cn for n ≥ 2 are called counting modalities. It
is well-known that these modalities are inexpressible in MTL over R≥0-flows [10].
For this reason, they (or variants thereof) are often used to separate the expres-
siveness of various metric logics (cf., e.g., [2, 19,20]). For example, the following
property

– P holds at an event at time y in the future
– Q holds at an event at time y′ > y
– R holds at an event at time y′′ > y′ > y
– Both the Q-event and the R-event are within (1, 2) from the P -event

can be expressed as the FO[<,+1] formula

ϑpqr(x) = ∃y
(
x < y ∧ P (y) ∧ ∃y′

(
y < y′ ∧ d(y, y′) > 1 ∧ d(y, y′) < 2 ∧Q(y′)

∧ ∃y′′
(
y′ < y′′ ∧ d(y, y′′) > 1 ∧ d(y, y′′) < 2 ∧R(y′′)

)))
.

This formula has no equivalent in MTL over R≥0-timed words [19]. Indeed, it
was shown recently that in the continuous semantics, MTL with counting modal-
ities and their past counterparts (which we denote by MTL[{Cn,

←
Cn}∞n=2]) is

expressively complete for FO[<,+1] [12]. However, counting modalities add no
expressiveness to MTL in the time-bounded setting. To see this, observe that the
following formula is equivalent to ϑpqr(x) over [0, N)-timed words (we make use
of formulas in Φunit defined in Section 3.1):



( ∨
i∈[0,N−1]

(
P ∧ ϕi,i+1 ∧

(
>1

(
Q ∧(R ∧ ϕi+1,i+2)

)
∨<2

(
R ∧ ϕi+2,i+3 ∧(Q ∧ ϕi+2,i+3)

)
∨
(
>1(Q ∧ ϕi+1,i+2) ∧<2(R ∧ ϕi+2,i+3)

))))
.
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i i+ 1 i+ 2

i i+ 1 i+ 2

i i+ 1 i+ 2

Fig. 3. Counting modalities is expressible

The three cases in the formula are illustrated in Figure 3 (from top to bottom)
where times are measured relative to the current instant. Red, blue and yellow
boxes represents P -events, Q-events and R-events respectively.

The same idea can readily be generalised to handle counting modalities and
their past counterparts. We therefore have the following proposition.

Proposition 4. MTL is expressively complete for MTL[{Cn,
←
Cn}∞n=2] over [0, N)-

timed words.

3.4 Non-Local Properties: One Reference Point

Proposition 4 shows that part of the expressiveness hierarchy over R≥0-timed
words collapses in the time-bounded setting. Nonetheless, MTL is still not ex-
pressive enough to capture all of FO[<,+1]. Recall that another feature of the
continuous interpretation of MTLfut used in the proof in [16, 18] is that =kϕ
holds at t iff ϕ holds at t + k. Suppose that we want to specify the following
property over P = {P,Q} for some integer constant a > 0 (let the current instant
be t1):

– There is an event at time t2 > t1 + a where Q holds
– P holds at all events in (t1 + a, t2).

In the continuous semantics, the property can easily be expressed as the MTLfut
formula

ϕcont1 ==a

(
(P ∨ Pε) U Q

)
.

over flows of the form fρ (over P′ = P ∪ {Pε}. See Figure 4 for an example.
Red boxes denote events at which P holds whereas blue boxes denote events at
which Q holds. The formula ϕcont1 holds at t1 in the continuous semantics.

In essence, when the current time is t1, the continuous interpretation of MTL
allows one to speak of properties ‘around’ t1 + a regardless of whether there is
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t1 t1 + a

Fig. 4. ϕcont1 holds at t1 in the continuous semantics

g g ε

Fig. 5. A single segment in Em

an actual event at t1 + a. The same is not readily possible with the pointwise
interpretation of MTL if there is no event at t1 + a. To handle this issue within
the pointwise semantic framework, we introduce a relatively simple family of
modalities B→I (‘Beginning’) and their past versions B←I . They can be used to
specify the first events in given intervals. To be precise, we define the modality
that asserts “X holds at the first event in (a, b) relative to the current instant”
as the following FO[<,+1] formula:

B→(a,b)(x,X) = ∃x′
(
x < x′ ∧ d(x, x′) > a ∧ d(x, x′) < b ∧X(x′)

∧ @x′′
(
x < x′′ ∧ x′′ < x′ ∧ d(x, x′′) > a

))
.

Now the property above can be defined as B→(a,∞)

(
Q∨ (P U Q)

)
in the pointwise

semantics. We refer to the extension of MTL with B→I ,B←I as MTL[B�].
The following proposition states that this extension is indeed non-trivial.

Proposition 5. MTL[B�] is strictly more expressive than MTL over [0, N)-
timed words.

Proof. The proof we give here is inspired by a proof in [19, Section 5]. Given
m ∈ N, we describe models Em and Fm that are indistinguishable by MTL
formulas of modal depth ≤ m but distinguishing in MTL[B�].

We first describe Em. Let g = 1
2m+6 and pick ε < g

1
g−1

. The first event (at

time 0) satisfies ¬P ∧ ¬Q. Then, a sequence of overlapping segments (arranged
as described below) starts at time 0.5

2m+5 . See Figure 5 for an illustration of a
segment. Each segment consists of an event satisfying P ∧ ¬Q (the red boxes)
and an event satisfying ¬P ∧ Q (the blue boxes). For ease of presentation we
will refer to them as P -events and Q-events. If the P -event in the ith segment is
at time t, then its Q-event is at time t+ 2g + 1

2ε. All P -events in neighbouring
segments are separated by g − g

1
g−1

. We put a total of 4m+ 12 segments.

Fm is almost identical to Em except the (3m+9)th segment. Let this segment
start at t3m+9. In Fm, we move the corresponding Q-event to t + 2g − 1

2ε (see
Figure 6). Note that there are P -events at time 0.5 in both models (in their
(m+ 4)th segment).

11



Em

Fm

t3m+9 1.5

y′ y

x x′

g − g
1
g
−1

g g

Fig. 6. Near the (3m+ 9)th-segments in Em and Fm

The only difference in two models is a pair of Q-events. We denote this pair
of events by x and y respectively and write their corresponding timestamps as
tx and ty (see Figure 6). It is easy to verify that no two events are separated by
an integer distance. We say a configuration (i, j) is identical if i = j. For i ≥ 1,
we denote by seg(i) the segment that the ith event belongs to, and we write P (i)
if the ith event is a P -event and Q(i) if its a Q-event.

Proposition 6. Duplicator has a winning strategy for m-round MTL EF game
on Em,Fm that starts from (0, 0). In particular, she has a winning strategy such
that for each round 0 ≤ r ≤ m, the ithr event in Em and the jthr event in Fm
satisfy the same set of propositions and

– if ir 6= jr, then
• seg(ir)− seg(jr) < r
• (m + 1 − r) < seg(ir), seg(jr) < (m + 5 + r) or (3m + 8 − r) <
seg(ir), seg(jr) < (3m+ 12 + r).

We prove the proposition by induction on r. The idea is to try to make the
resulting configurations identical. When this is not possible, Duplicator imitates
what Spoiler does.

– Base step. The proposition holds trivially for (i0, j0) = (0, 0).
– Induction step. Suppose that the claim holds for r < m. We prove it also

holds for r + 1.
• (ir, jr) = (0, 0):
Duplicator can always make (ir+1, jr+1) identical.

• (ir, jr) 6= (0, 0) is identical:
Duplicator tries to make (i′r, j

′
r) identical. This may only fail when

∗ P (ir) ∧ P (jr) and seg(ir) = seg(jr) = m+ 4.
∗ Q(ir) ∧Q(jr) and seg(ir) = seg(jr) = 3m+ 9, i.e., x and y.

In these cases, Duplicator chooses another event in a neighbouring seg-
ment that minimises |seg(i′r) − seg(j′r)|. For example, if (ir, jr) corre-
sponds to x and y and Spoiler chooses j′r such that P (j′r) and seg(j′r) =
m + 4 in a S(1,∞)-move, Duplicator chooses i′r with seg(i′r) = m + 3. If

12



Spoiler then plays -part, the resulting configuration (ir+1, jr+1) will
clearly satisfy the claim. If she plays S-part, Duplicator makes (i′′r , j

′′
r )

identical whenever possible. Otherwise she chooses the appropriate event
that minimises |seg(i′′r )− seg(j′′r )|. For instance, if Q(i′′r ) and seg(i′′r ) =
m+ 1, Duplicator chooses j′′r such that Q(j′′r ) and seg(j′′r ) = m+ 2.

• (ir, jr) is not identical:
Duplicator tries to make (i′r, j

′
r) identical. If this is not possible, then

Duplicator chooses an event that minimises |seg(i′r) − seg(j′r)|. For ex-
ample, consider seg(ir) = m + 4, seg(jr) = m + 3 such that P (ir) and
P (jr), and Spoiler chooses x in an U(0,1)-move. In this case, Duplicator
cannot choose y′ but the first Q-event that happens before y′. Duplicator
responds to U-parts and S-parts in similar ways as before. It is easy to
see that the claim holds.

Proposition 5 now follows from Proposition 6, Theorem 1, and the fact that
Em |=(P ∧ B→(1,2)P ) but Fm 6|=(P ∧ B→(1,2)P ). ut

3.5 Non-Local Properties: Two Reference Points

Adding modalities B→I ,B←I to MTL allows one to specify properties with respect
to a distant time point even when there is no event at that point. However, the
following proposition shows that this is still not enough for expressive complete-
ness.

Proposition 7. FO[<,+1] is strictly more expressive than MTL[B�] over [0, N)-
timed words.

Proof. This is similar to a proof in [20, Section 7]. Given m ∈ N, we construct
two models as follows. Let

Gm = (∅, 0)(∅, 0.5

2m+ 3
)(∅, 1.5

2m+ 3
) . . . (∅, 1− 0.5

2m+ 3
)

(∅, 1 + 0.5

2m+ 2
)(∅, 1 + 1.5

2m+ 2
) . . . . . . (∅, 2− 0.5

2m+ 2
) .

Hm is constructed as Gm except that the event at time m+1.5
2m+3 is missing.

Gm

Hm

0 1 2

Fig. 7. Models Gm and Hm for m = 2
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Figure 7 illustrates the models for the case m = 2 where white boxes rep-
resent events at which no monadic predicate holds. Observe that no two events
are separated by an integer distance. We say that a configuration (i, j) is syn-
chronised if they correspond to events with the same timestamp. Here we extend
Theorem 1 with a B→I move and its past counterpart. In this move, Spoiler picks
(say) i′r such that

– τi′r − τir ∈ I in ρ
– There is no position i′ < i′r in ρ such that τi′ − τir ∈ I,

and Duplicator must choose a position j′r in ρ′ such that j′r is the first position
in I relative to jr in ρ′.

Proposition 8. Duplicator has a winning strategy for m-round MTL[B�] EF
game on Gm,Hm that starts from (0, 0). In particular, she has a winning strategy
such that for each round 0 ≤ r ≤ m, the ithr event in Gm and the jthr event in
Hm satisfy the same set of propositions and

– if (ir, jr) is not synchronised, then
• |ir − jr| = 1
• (m+2− r) < ir, jr < (m+4+ r) or (3m+5− r) < ir, jr < (3m+6+ r).

We prove the proposition by induction on r. The idea, again, is to try to make
the resulting configurations identical.

– Base step. The proposition holds trivially for (i0, j0) = (0, 0).
– Induction step. Suppose that the claim holds for r < m. We prove it also

holds for r + 1.
• (ir, jr) = (0, 0):
Duplicator tries to make (i′r, j

′
r) synchronised. If Spoiler chooses i′r =

m+ 3, Duplicator chooses j′r = m+ 2.
• (ir, jr) 6= (0, 0) is synchronised:
Duplicator tries to make (i′r, j′r) synchronised. If this is not possible then
Duplicator chooses the event that minimises |i′r − j′r|. It is easy to see
that the resulting configuration (ir+1, jr+1) satisfies the claim regardless
of how Spoiler plays.

• (ir, jr) is not synchronised:
The strategy of Duplicator is same as the case above.

Proposition 7 now follows from Proposition 8, our extended version of Theorem 1,
and the fact that the FO[<,+1] formula

∃x

(
@y (y < x) ∧ ∃x′

(
d(x, x′) > 1 ∧ d(x, x′) < 2

∧ ∃x′′
(
x′ < x′′ ∧ @y′ (x′ < y′ ∧ y′ < x′′)

∧ @y′′
(
d(x′, y′′) < 1 ∧ d(x′′, y′′) > 1

))))
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distinguishes Gm and Hm for any m ∈ N. This formula asserts that there is a
pair of neighbouring events in (1, 2) such that there is no event between them if
they are both mapped to exactly one time unit earlier. ut

One way to understand this phenomenon is to consider the arity of MTL
operators. Let the current instant be t1. Suppose that we want to specify the
following property (a > c > 0):

– There is an event at t2 = t′ + a > t1 + a where Q holds
– P holds at all events in

(
t1 + c, t1 + c+ (t2 − t1 − a)

)
.

t1 t′ t1 + c t′ + c t1 + a t′ + a

Fig. 8. ϕcont2 holds at t1 in the continuous semantics

See Figure 8 for an example where red boxes are P -events and blue boxes are
Q-events. In the continuous semantics we can simply write

ϕcont2 =
(
=c(P ∨ Pε)

)
U (=aQ) .

Observe how this formula (effectively) talks about properties around two points:
t1+c and t1+a. In the same vein, the following formula can be used to distinguish
Gm and Hm (defined in the proof of Proposition 7) in the continuous semantics:

ϕcont3 =(1,2)

(
¬Pε ∧ (=1Pε) U (¬Pε)

)
.

In the next section, we propose new modalities that add this ability to MTL in
the pointwise semantics. We show later that this ability is exactly the missing
piece of expressiveness.

4 New Modalities

4.1 Generalised ‘Until’ and ‘Since’

We introduce a family of modalities which can be understood as generalisations
of the usual ‘Until’ and ‘Since’ modalities. Let I ⊆ (0,∞) be an interval with
endpoints in N ∪ {∞} and c ∈ N. The formula ϕ1 U

c
I ϕ2 (using infix notation),

when imposed at t1, asserts that

– There is an event at t2 where ϕ2 holds and t2 − t1 ∈ I

– ϕ1 holds at all events in
(
c, c+

(
t2 −

(
t1 + inf(I)

)))
relative to t1.
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Formally, for I = (a, b) ⊆ (0,∞) and a ≥ c ≥ 0, we define the generalised ‘Until’
modality Uc(a,b) by the following FO[<,+1] formula:

Uc(a,b)(x,X1, X2) = ∃x′
(
x < x′ ∧ d(x, x′) > a ∧ d(x, x′) < b ∧X2(x

′)

∧ ∀x′′
(
x < x′′ ∧ d(x, x′′) > c ∧ x′′ < x′

∧ d(x′, x′′) > (a− c) =⇒ X1(x
′′)
))
.

Symmetrically, we define the generalised ‘Since’ modality Sc
(a,b) for I = (a, b)

and a ≥ c ≥ 0:

Sc
(a,b)(x,X1, X2) = ∃x′

(
x′ < x ∧ d(x, x′) > a ∧ d(x, x′) < b ∧X2(x

′)

∧ ∀x′′
(
x′′ < x ∧ d(x, x′′) > c ∧ x′ < x′′

∧ d(x′, x′′) > (a− c) =⇒ X1(x
′′)
))
.

We will refer to the logic obtained by adding these modalities to MTL as MTL[U,S].
Note that the usual ‘Until’ and ‘Since’ modalities can be written in terms of gen-
eralised modalities. For instance,

ϕ1 U(a,b) ϕ2 = ϕ1 U
a
(a,b) ϕ2 ∧ ¬

(
true U0

(0,a] (¬ϕ1)
)
.

4.2 More Liberal Bounds

In the definition of modalities UcI and Sc
I in the last subsection, we stressed

that I ⊆ (0,∞) and inf(I) ≥ c ≥ 0. This is because more liberal usage of
bounds are indeed merely syntactic sugar. For instance, one may define a modal-
ity U10

(2,5)(x,X1, X2) to assert the following property when imposed at t1:

– There is an event at t2 where ϕ2 holds and t2 − t1 ∈ (2, 5)
– ϕ1 holds at all events in (10, 13) relative to t1.

This can be expressed in FO[<,+1] as the formula

∃x′
(
x < x′ ∧ d(x, x′) > 2 ∧ d(x, x′) < 5 ∧X2(x

′)

∧ ∀x′′
(
x < x′′ ∧ d(x, x′′) > 10 ∧ d(x′, x′′) < 8 =⇒ X1(x

′′)
))
.

However, this definition is not necessary as the formula above is indeed equivalent
to

(2,5)ϕ2 ∧ ¬
(
(¬ϕ2) U

2
(10,13)

(
¬ϕ1 ∧ ¬(=8ϕ2)

))
if we substitute ϕ1, ϕ2 for X1, X2. This can be further generalised as follows.

Proposition 9. The property (imposed at t1):

– There is an event at t2 where ϕ2 holds and t2 − t1 ∈ (a, b)
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– ϕ1 holds at all events in
(
c, c+

(
t2 −

(
t1 + a

)))
relative to t1

with c ∈ Z, I = (a, b) ⊆ (−∞,∞) and a ∈ Z can be expressed in modalities
defined in Section 4.1.

Proof. (By example) For example, the formula ϕ1 U
−7
(5,10) ϕ2 (with the intended

meaning as described above) is equivalent to

¬ϕ2U
5
(5,10)

(
ϕ2∧(ϕ1S

12
(5,10)true)

)
∧
(
(falseU0

(5,10)ϕ2)∨
(
ϕ′U

(
(falseU0

(5,10)ϕ2)∧ϕ′
)))

where ϕ′ = ϕ1 S
7
(0,5)

(
true ∧ ¬(=7¬ϕ1)

)
. This allows us to write, e.g.,

ϕ1 U
5
(−7,−2) ϕ2 =(2,7)ϕ2 ∧ ¬

(
(¬ϕ2) U

−7
(5,10)

(
¬ϕ1 ∧ ¬(=12ϕ2)

))
.

As another example, ϕ1 S
−15
(−10,−5) ϕ2 is equivalent to the disjunction of

false U0
(−10,−5)

(
ϕ2 ∧ (ϕ1 S

5
(−10,−5) true)

)
and

(5,10)ϕ2 ∧

(
ϕ′′ U

((
false U0

(−10,−5)
(
ϕ2 ∧ (ϕ1 S

5
(−10,−5) true)

))
∧ ϕ′′

))

where ϕ′′ = ϕ1S
15
(0,5)

(
true∧¬(=15¬ϕ1)

)
. The remaining cases can be handled

with similar ideas. ut

We can now give an MTL[U,S] formula that distinguishes, in the pointwise
semantics, the models Gm and Hm in Section 3.5:

(1,2)

(
true ∧ (false U−1(0,∞) true)

)
.

This formula is, in essence, very similar to the formula ϕcont3 defined in Sec-
tion 3.5, which distinguishes Gm and Hm in the continuous semantics.

5 The Translation

We give a translation from an arbitrary FO[<,+1] formula with one free vari-
able into an equivalent MTL[U,S] formula (over [0, N)-timed words). Our proof
strategy is similar to that in [16]: we eliminate the metric by introducing ex-
tra predicates, convert to LTL, and then replace the new predicates by their
equivalent MTL[U,S] formulas.
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5.1 Eliminating the Metric

We introduce fresh monadic predicates P = {Pi | P ∈ P, 0 ≤ i ≤ N − 1}
as in [16] and, additionally, Q = {Qi | 0 ≤ i ≤ N − 1}. Intuitively, Pi(x)
holds (for x ∈ [0, 1)) iff P ∈ P holds at time i + x in the corresponding [0, N)-
timed word, and Qi(x) holds iff there is an event at time i + x in the cor-
responding [0, N)-timed word, regardless of whether any P ∈ P holds there.
Let ϑevent = ∀x

(∨
i∈[0,N−1]Qi(x)

)
∧ ∀x

(∧
i∈[0,N−1]

(
Pi(x) =⇒ Qi(x)

))
and

ϑinit = ∃x
(
@x′ (x′ < x) ∧Q0(x)

)
. There is an obvious ‘stacking’ bijection (indi-

cated by overlining) between [0, N)-timed words over ΣP and [0, 1)-timed words
over ΣP∪Q satisfying ϑevent ∧ϑinit. For example, the stacked counterpart of the
[0, 2)-timed word

({A}, 0)({A,C}, 0.3)({B}, 1)({B,C}, 1.5)

with P = {A,B,C} is a [0, 1)-timed word:

({Q0, Q1, A0, B1}, 0)({Q0, A0, C0}, 0.3)({Q1, B1, C1}, 0.5) .

Let ϑ(x) be an FO[<,+1] formula with one free variable and in which each
quantifier uses a fresh new variable. Without loss of generality, we assume that
ϑ(x) contains only existential quantifiers (this can be achieved by syntactic
rewriting). Replace the formula by(
Q0(x) ∧ ϑ[x/x]

)
∨
(
Q1(x) ∧ ϑ[x+ 1/x]

)
∨ . . . ∨

(
QN−1(x) ∧ ϑ[x+ (N − 1)/x]

)
where ϑ[e/x] denotes the formula obtained by substituting all free occurrences of
x in ϑ by (an expression) e. Then, similarly, recursively replace every subformula
∃x′ θ by

∃x′
((
Q0(x

′) ∧ θ[x′/x′]
)
∨ . . . ∨

(
QN−1(x

′) ∧ θ[x′ + (N − 1)/x′]
))
.

Note that we do not actually have the +1 function in our structures; it only
serves as annotation here and will be removed later, e.g., x′ + k means that
Qk(x

′) holds. We then carry out the following syntactic substitutions:

– For each inequality of the form x1 + k1 < x2 + k2, replace it with
• x1 < x2 if k1 = k2
• true if k1 < k2
• ¬true if k1 > k2

– For each distance formula, e.g., d(x1 + k1, x2 + k2) ≤ 2, replace it with
• true if |k1 − k2| ≤ 1
• (¬(x1 < x2) ∧ ¬(x2 < x1)) ∨ (x2 < x1) if k2 − k1 = 2
• (¬(x1 < x2) ∧ ¬(x2 < x1)) ∨ (x1 < x2) if k1 − k2 = 2
• ¬true if |k1 − k2| > 2

– Replace terms of the form P (x1 + k) with Pk(x1).
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This gives a non-metric first-order formula ϑ(x) over P∪Q. Denote by frac(t)
the fractional part of a non-negative real t. It is not hard to see that for each
[0, N)-timed word ρ = (σ, τ) over ΣP and its stacked counterpart ρ, the following
holds:

– ρ, t |= ϑ(x) implies ρ, t |= ϑ(x) where t = frac(t)
– ρ, t |= ϑ(x) implies there exists t ∈ Uρ with frac(t) = t s.t. ρ, t |= ϑ(x).

Moreover, if ρ, t |= ϑ(x), then the integral part of t indicates which clause in
ϑ(x) is satisfied when x is substituted with t = frac(t), and vice versa.

By Kamp’s theorem [14], ϑ(x) is equivalent to an LTL[U ,S] formula ϕ of the
following form:

(Q0 ∧ ϕ0) ∨ (Q1 ∧ ϕ1) ∨ . . . ∨ (QN−1 ∧ ϕN−1) .

5.2 From Non-Metric to Metric

We now construct an MTL[U,S] formula that is equivalent to ϑ(x) over [0, N)-
timed words. Note that we make heavy use of the formulas in Φunit defined in
Section 3.1.

Proposition 10. Let ψ be a subformula of ϕi for some i ∈ [0, N − 1]. There
is an MTL[U,S] formula ψ such that for any [0, N)-timed word ρ, t ∈ ρ and
frac(t) = t ∈ ρ, we have

ρ, t |= ψ ⇐⇒ ρ, t |= ψ .

Proof. The MTL[U,S] formula ψ is constructed inductively as follows:

– Base step. Consider the following cases:
• ψ = Pj : Let

ψ = (ϕ0,1∧=jP )∨ . . .∨ (ϕj,j+1∧P )∨ . . .∨ (ϕN−1,N ∧=((N−1)−j)P ) .

• ψ = Qj : Similarly we let

ψ = (ϕ0,1∧=jtrue)∨. . .∨(ϕj,j+1∧true)∨. . .∨(ϕN−1,N∧=((N−1)−j)true) .

– Induction step. The case for boolean operations is trivial and hence omitted.
• ψ = ψ1 U ψ2: By IH we have ψ1 and ψ2. Let

ψj,k,l = ψ1 U
k
(j,j+1) (ψ2 ∧ ϕl,l+1) .

The desired formula is

ψ =
∨

i∈[0,N−1]

ϕi,i+1 ∧
∨

j∈[−i,(N−1)−i]
l=i+j

 ∧
k∈[−i,(N−1)−i]

ψj,k,l


 .
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• ψ = ψ1 S ψ2: This is symmetric to the case for ψ1 U ψ2.

The claim holds by a straightforward induction on the structure of ψ and ψ.
ut

Construct corresponding formulas ϕi for each ϕi using the proposition above.
Substitute them into ϕ and replace all Qi by ϕi,i+1 to obtain our final formula
ϕ. We claim that it is equivalent to ϑ(x) over [0, N)-timed words.

Proposition 11. For any [0, N)-timed words ρ and t ∈ Uρ, we have

ρ, t |= ϕ(x) ⇐⇒ ρ, t |= ϑ(x) .

Proof. Follows directly from Section 5.1 and Proposition 10. ut

We are now ready to state our main result.

Theorem 2. MTL[U,S] is expressively complete for FO[<,+1] over
[0, N)-timed words.

6 Time-Bounded Verification

We now show that the timed-bounded satisfiability and model-checking problems
for MTL[U,S] are EXPSPACE-complete.

Theorem 3. The time-bounded satisfiability problem for MTL[U,S] is EXPSPACE-
complete.

Proof. Recall from Section 5.1 that an (untimed) finite word that satisfies ϑinit
and ϑevent can be embedded into a [0, 1)-timed word ρ. Given an MTL[U,S]
formula ϕ, we can construct an equisatisfiable LTL formula ϕ′ of exponential
size. The idea is that for each subformula ψ of ϕ and every i ∈ [0, N), we
introduce a monadic predicate Fψi . We then add suitable subformulas in ϕ′ to
ensure that Fψi holds at time t ∈ ρ iff ψ holds at time t ∈ ρ (where ρ is the
unstacked counterpart of ρ and frac(t) = t).

The construction in [16] carries over to our pointwise case except for the new
modalities which can be handled as follows. For example, for i ≤ N − 4 and a
subformula P U1

2,3 Q of ϕ, we add to ϕ′ the following subformula as a conjunct:

F
PU1

(2,3)Q

i ↔
(
(Qi+1 → FPi+1) U F

Q
i+2

)
∨
(
(Qi+1 → FPi+1) ∧

(
FQi+3 ∧(Qi+2 → FPi+2)

))
.

EXPSPACE-hardness follows from the proof of EXPSPACE-hardness of Bounded-
MTL in [3] as it readily carries over to our bounded-time setting. ut

Since the time-bounded model-checking problem and satisfiability problem
are interreducible [9, 16], we have the following theorem.

Theorem 4. The time-bounded satisfiability problem for timed automata against
MTL[U,S] is EXPSPACE-complete.
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7 Conclusion

Our main result is that over bounded timed words, MTL extended with our new
modalities ‘generalised until’ and ‘generalised since’ is expressively complete for
FO[<,+1]. Along the way we obtain a strict hierarchy of metric temporal logics,
based on their expressiveness over bounded timed words:

MTLfut ( MTLfut[Φunit] ( MTL ( MTL[B�] ( MTL[U,S] = FO[<,+1].

The proposed modalities U and S are not very intuitive. However, as we proved
that a simpler variant of these modalities are strictly less expressive over bounded
timed words, it is unlikely that a reasonable expressively complete extension of
MTL, if exists, would be “simpler” than our extensions.

A possible future direction would be to investigate whether a similar expres-
sive completeness result can be obtained in the case of R≥0-timed words. This
is likely to require a separation theorem (in the style of [13]) that works in the
pointwise semantics.

The idea of considering bounded time domains is useful in dealing with other
formalisms as well. For example, new decidability and complexity results have
been obtained for hybrid automata in time-bounded settings [4, 5]. It would be
interesting to investigate the whether our results can be combined with such new
developments in practical applications. For example, an implication of our result
to the model-checking and satisfiability problems (of timed automata against
MTL[U,S]) is that traditional, highly-matured LTL-based verification tools such
as SPIN [11] and SPOT [7] can easily be utilised in implementations.
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