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Abstract. It is known that Metric Temporal Logic (MTL) is strictly
less expressive than the Monadic First-Order Logic of Order and Metric
(FO[<,+1]) in the pointwise semantics over bounded time domains (i.e.,
timed words of bounded duration) [2]. In this paper, we present an ex-
tension of MTL, relying on two new temporal operators ‘Earlier’ (E) and
‘Newer’ (N), which has the same expressive power as FO[<,+1] in both
the pointwise and continuous semantics over bounded time domains.

1 Introduction

One of the most prominent specification formalisms used in verification is Lin-
ear Temporal Logic (LTL), which is typically interpreted over the non-negative
integers or reals. A celebrated result of Kamp [7] states that, in either case, LTL
has precisely the same expressive power as the Monadic First-Order Logic of Or-
der (FO[<]). These logics, however, are inadequate to express specifications for
systems whose correct behaviour depends on quantitative timing requirements.
Over the last three decades, much work has therefore gone into lifting classi-
cal verification formalisms and results to the real-time setting. Metric Temporal
Logic (MTL), which extends LTL by constraining the temporal operators by time
intervals, was introduced by Koymans [8] in 1990 and has emerged as a central
real-time specification formalism.

MTL enjoys two main semantics, depending intuitively on whether atomic
formulas are interpreted as state predicates or as (instantaneous) events. In the
former, the system is assumed to be under observation at every instant in time,
leading to a ‘continuous’ semantics based on flows or signals, whereas in the
latter observations of the system are taken to be (finite or infinite) sequences
of timestamped snapshots, leading to a ‘pointwise’ semantics based on timed
words—this is the leading interpretation, for example, for systems modelled as
timed automata. In both cases, the time domain is usually taken to be the
non-negative real numbers. Both semantics have been extensively studied; see,
e.g., [10] for a partial historical account.

Alongside these developments, researchers proposed theMonadic First-Order
Logic of Order and Metric (FO[<,+1]) as a natural quantitative extension of
FO[<]. Unfortunately, Hirshfeld and Rabinovich [4] showed that no ‘finitary’
extension of MTL—and a fortiori MTL itself—could have the same expressive



power as FO[<,+1] over the non-negative reals, shattering the hope of lifting
Kamp’s theorem to the real-time world.1 The situation was however partly im-
proved recently by showing that, over bounded time domains, MTL has precisely
the same expressive power as FO[<,+1] in the continuous semantics [9, 11].2
Nonetheless, and rather surprisingly, MTL remains strictly less expressive than
FO[<,+1] over bounded time domains in the pointwise semantics, i.e., over timed
words of bounded duration, as can immediately be seen from D’Souza and Prab-
hakar’s construction [2].

The main result of this paper is to show that MTL, equipped with both
the forwards and backwards temporal modalities ‘Until’ (U) and ‘Since’ (S),
together with two new modalities ‘Earlier’ (E) and ‘Newer’ (N), has precisely the
same expressive power as FO[<,+1] over bounded time domains in the pointwise
semantics (and also, trivially, in the continuous semantics). This augmented
version of Metric Temporal Logic, written MTL[U ,S,E,N], therefore yields a
definitive real-time analogue of Kamp’s theorem over bounded domains.

It is worth noting that MTL[U ,S,E,N] satisfiability and model checking
(against timed automata) are decidable over bounded time domains, thanks
to the decidability of FO[<,+1] over such domains as established in [9, 11].
Unfortunately, FO[<,+1] has non-elementary complexity, whereas the time-
bounded satisfiability and model-checking problems for MTL are EXPSPACE-
complete [9, 11]. However, it can easily be seen by inspecting the relevant con-
structions that the complexity bounds for MTL carry over to our new logic
MTL[U ,S,E,N].

2 Preliminaries

2.1 Timed Words

A time sequence τ = τ1τ2 . . . is a non-empty finite sequence over non-negative
reals that satisfies the requirements below (we denote the length of τ by |τ |):

– Initialisation: τ1 = 0
– Strict monotonicity : For all i, 1 ≤ i < |τ |, we have τi < τi+1.

A timed word over finite alphabet Σ is a pair ρ = (σ, τ), where σ = σ1σ2 . . .
is a non-empty finite word over Σ and τ is a time sequence of the same length.
We refer to each (σi, τi) as an event. In this sense, a timed word can be regarded
as a sequence of events. We denote by |ρ| the number of events in ρ. A position
in ρ is a number i such that 1 ≤ i ≤ |ρ|. The duration of ρ is defined as τ|ρ|.

1 Hirshfeld and Rabinovich’s result was only stated and proved for the continuous se-
mantics, but we believe that their approach would also carry through for the point-
wise semantics. In any case, using different techniques D’Souza and Prabhakar [2]
independently showed that MTL is strictly weaker than FO[<,+1] in the pointwise
semantics.

2 See also [5,6] which present further expressive completeness results for extensions of
MTL over the reals in the continuous semantics.



Fix a positive integer N . We denote by T the bounded interval [0, N) or R≥0.
A T-timed word is a timed word with all its timestamps in T. We write TΣ∗for
the set of (finite) T-timed words over Σ. For a set of monadic predicates P we
write ΣP = 2P.

Note that we are focussing on finite timed words. Our results carry over to
the case of (Zeno) infinite timed words as well, with some modifications.

2.2 Metric Logics

We first define a metric predicate logic FO[<,+1] which will serve as a ‘yardstick’
of expressiveness in this paper.

Definition 1. Given a set of monadic predicates P, the set of FO[<,+1] for-
mulas is generated by the grammar

ϑ ::= P (x) | x < x′ | d(x, x′) ≈ c | true | ϑ1 ∧ ϑ2 | ¬ϑ | ∃xϑ ,

where P ∈ P, x, x′ are variables, ≈ ∈ {=, 6=, <,>,≤,≥} and c ∈ N≥0.

With each T-timed word ρ = (σ, τ) over ΣP we associate a structure Mρ. Its
universe Uρ is the finite subset {τi | 1 ≤ i ≤ |ρ|} of T. The order relation < and
monadic predicates in P are interpreted in the expected way. The binary distance
predicate d(x, x′) ≈ c holds iff |x − x′| ≈ c. The satisfaction relation is defined
inductively as usual. We write Mρ, t1, . . . , tn |= ϑ(x1, . . . , xn) (or ρ, t1, . . . , tn |=
ϑ(x1, . . . , xn)) if t1, . . . , tn ∈ Uρ and ϑ(t1, . . . , tn) holds in Mρ. We say that
FO[<,+1] formulas ϑ1(x) and ϑ2(x) are equivalent over T-timed words if for all
T-timed words ρ and t ∈ Uρ,

ρ, t |= ϑ1(x) ⇐⇒ ρ, t |= ϑ2(x) .

Formulas of metric temporal logics are built from monadic predicates us-
ing Boolean connectives and modalities. A k-ary modality is defined by an
FO[<,+1] formula ϕ(x,X1, . . . , Xk) with free second-order variables X1, . . . , Xk

and free first-order variable x. For example, the MTL modality U(0,5) is defined
by

U(0,5)(x,X1, X2) = ∃x′
(
x < x′ ∧ d(x, x′) < 5 ∧X2(x

′)

∧∀x′′
(
x < x′′ ∧ x′′ < x′ =⇒ X1(x

′′)
))
.

In MTL notation, this is written using infix notation X1 U(0,5) X2.

Definition 2. Given a set of monadic predicates P, the set of MTL[U ,S] for-
mulas is generated by the grammar

ϕ ::= P | true | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 UI ϕ2 | ϕ1 SI ϕ2 ,

where P ∈ P and I ⊆ (0,∞) is an interval with endpoints in N≥0 ∪ {∞}.



For each I, let l(I) = inf(I), r(I) = sup(I) and |I| = r(I) − l(I). If I is not
present as a subscript to a given modality then it is assumed to be (0,∞). We
freely use the usual syntactic sugar, e.g., false ≡ ¬true, Iϕ ≡ true UI ϕ,
Iϕ ≡ ¬I¬ϕ and Iϕ ≡ false UI ϕ. For the sake of completeness, we give a
traditional inductive definition of the satisfaction relation of MTL[U ,S] below.

Definition 3. The satisfaction relation (ρ, i) |= ϕ for an MTL[U ,S] formula ϕ,
a timed word ρ = (σ, τ) and a position i in ρ is defined as follows:

– (ρ, i) |= P iff P (τi) holds in Mρ

– (ρ, i) |= true
– (ρ, i) |= ϕ1 ∧ ϕ2 iff (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2

– (ρ, i) |= ¬ϕ iff (ρ, i) 6|= ϕ
– (ρ, i) |= ϕ1UIϕ2 iff there exists j, i < j ≤ |ρ| such that (ρ, j) |= ϕ2, τj−τi ∈ I,

and (ρ, k) |= ϕ1 for all k with i < k < j
– (ρ, i) |= ϕ1SI ϕ2 iff there exists j, 1 ≤ j < i such that (ρ, j) |= ϕ2, τi−τj ∈ I

and (ρ, k) |= ϕ1 for all k with j < k < i.

Note that we adopt strict versions of UI and SI . For convenience, we also define
weak versions of these modalities, e.g., ϕ1 UwI ϕ2 ≡ ϕ1 ∧ (ϕ1 UI ϕ2) if 0 /∈ I and
ϕ1 UwI ϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ (ϕ1 UI ϕ2)) if 0 ∈ I (in this case we allow 0 ∈ I and
assume I = [0,∞) if the subscript is absent). We write ρ |= ϕ if ρ, 1 |= ϕ.

2.3 Relative Expressiveness

Let L,L′ be two metric logics. We say that L′ is at least as expressive as L
(L ⊆ L′) over T-timed words if, for any sentence ϑ of L, there exists a sentence ϕ
of L′ such that ϑ and ϕ are satisfied by precisely the same set of T-timed words.
They are said to be equally expressive (L = L′) over T-timed words if each is
at least as expressive as the other over T-timed words. When L′ is a temporal
logic and L is a predicate logic, we say that L′ is expressively complete for L
(L ↔= L′) over T-timed words if for any formula ϑ(x) ∈ L, there is an equivalent
formula ϕ ∈ L′ over T-timed words.

3 Expressiveness

In this section, we present a sequence of successively more expressive exten-
sions of MTL over bounded timed words, culminating in the next section with
a logic that is expressive complete. Several of the modalities introduced below
will feature in the proof of our main result. Along the way we highlight the key
requirements for expressive completeness.

3.1 Definability of Time 0

Recall that MTL and FO[<,+1] have the same expressiveness over continuous
domains of the form [0, N) [9], a result that fails over [0, N)-timed words. To



account for this difference between the two semantics, observe that a distinctive
feature of the continuous semantics is exploited in [9]: in any [0, N)-flow, the
formula =(N−1)true holds in [0, 1) and nowhere else. One can make use of
conjunctions of similar formulas to tell which unit interval the current instant
is in. Apparently, this trick does not work for MTL in the pointwise semantics.
However, for MTL[U ,S], this ability can be achieved by using past modalities.
We define

ϕi,i+1 =[i,i+1)(¬true)

and let Φunit = {ϕi,i+1 | i ∈ N≥0}. It is clear that ϕi,i+1 holds only in [i, i + 1)
and nowhere else. Indeed, our main result depends crucially on the use of these
formulas. Denote by MTL[Φunit] the extension of MTL obtained by allowing
these formulas as subformulas. This very restrictive use of past modalities strictly
increases the expressiveness of MTL.

Proposition 1. MTL ( MTL[Φunit] over [0, N)-timed words.

Proof. For a given m ∈ N≥0, we construct the following models:

Am = (∅, 0)(∅, 1− 2.5

2m+ 5
)(∅, 1− 1.5

2m+ 5
)(∅, 1− 0.5

2m+ 5
) . . . (∅, 1 + m+ 2.5

2m+ 5
) ,

Bm = (∅, 0)(∅, 1− 1.5

2m+ 5
)(∅, 1− 0.5

2m+ 5
)(∅, 1 + 0.5

2m+ 5
) . . . (∅, 1 + m+ 3.5

2m+ 5
) .

Am

Bm

0 1 1.5 2

Fig. 1. Models Am and Bm

The models are illustrated in Figure 1 where each hollow box represents an
event. It can be shown that no MTL formula of modal depth ≤ m distinguishes
Am and Bm while there is a simple MTL[Φunit] formula does. We detail the proof
in Appendix. ut

This conservative extension is not sufficient, however: the following proposi-
tion says that non-trivial nesting of future modalities and past modalities gives
more expressiveness.

Proposition 2. MTL[Φunit] ( MTL[U ,S] over [0, N)-timed words.

Proof. For a given m ∈ N≥0, we construct

Cm = (∅, 0)(∅, 0.5 + 0.5

4m+ 6
)(∅, 0.5 + 1.5

4m+ 6
) . . . (∅, 1.5− 0.5

4m+ 6
) .



Cm

Dm

0 0.5 1 1.5 2

Fig. 2. Models Cm and Dm

Dm is constructed as Cm except that the event at time 0.5 + m+1.5
4m+6 is missing.

The models are illustrated in Figure 2 where each hollow box represents
an event. It can be shown that no MTL[Φunit] formula of modal depth ≤ m
distinguishes Cm and Dm while there is a simple MTL[U ,S] formula does. We
give detailed proof in Appendix. ut

3.2 Counting Modalities

The modality Cn(x, ϕ) asserts that ϕ holds at least at n points in the open
interval (x, x+1). The modalities Cn for n ≥ 2 are called the counting modalities.
It is well-known that these modalities are inexpressible in MTL[U ,S] over R≥0-
flows [3]. For this reason, they (or variants thereof) are often used to separate
the expressiveness of various metric logics (cf., e.g., [1,12,13]). For example, the
FO[<,+1] formula

ϑpqr = ∃x
(
P (x) ∧ ∃x′

(
x < x′ ∧ d(x, x′) > 1 ∧ d(x, x′) < 2 ∧Q(t1)

∧∃x′′
(
x′ < x′′ ∧ d(x, x′′) > 1 ∧ d(x, x′′) < 2 ∧R(x′′)

)))
has no equivalent in MTL[U ,S] over R≥0-timed words [12]. Indeed, it is shown
very recently that in the continuous semantics, MTL[U ,S] with counting modal-
ities and their past versions (which we denote by MTL[U ,S, {Cn,

←
Cn}∞n=2]) is

expressively complete for FO[<,+1] [5]. However, counting modalities are ex-
pressible in MTL[U ,S] in the time-bounded setting. To see this, observe that the
following formula is equivalent to ϑpqr over [0, N)-timed words (we make use of
formulas in Φunit defined in the last subsection):



( ∨
i∈[0,N−1]

(
P ∧ ϕi,i+1 ∧

(
>1

(
Q ∧(R ∧ ϕi+1,i+2)

)
∨<2

(
R ∧ ϕi+2,i+3 ∧(Q ∧ ϕi+2,i+3)

)
∨
(
>1(Q ∧ ϕi+1,i+2) ∧<2(R ∧ ϕi+2,i+3)

))))
.

The same idea can be generalised to handle counting modalities and their past
counterparts.



Proposition 3. MTL[U ,S] ↔= MTL[U ,S, {Cn,
←
Cn}∞n=2] over [0, N)-timed words.

3.3 Non-Local Properties

The results in the last subsection shows that part of the expressiveness hierar-
chy collapses in the time-bounded setting. Nonetheless, MTL[U ,S] is still not
expressive enough to capture all of FO[<,+1]. Recall that another feature of the
continuous semantics used in the proof in [9] is that =iϕ holds at t iff ϕ holds
at t+ i. Suppose that we want to specify the following property over P = {P,Q}
at the current time t1 for some integer constant a > 0:

– There is an event in (t1 + a,∞) where Q holds
– P holds at all events between t1 + a and there.

Under the continuous semantics, by introducing a special monadic predicate Pε
that holds at all ‘no-event’ points in the flow, the property can easily be expressed
as

ϕcont1 ==a((P ∨ Pε) U Q) .

See Figure 3 for an illustration. Filled boxes denote events at which ¬P ∧ Q
holds whereas hollow boxes denote events at which P ∧ ¬Q holds. The formula
ϕcont1 holds at t1 in the continuous semantics. By contrast, it does not hold at
t1 in the pointwise semantics since there is no event at t1 + a.

t1 t′ t1 + c t′ + c t1 + a t′ + a

d1 d2

Fig. 3. ϕcont1 holds at t1 in the continuous semantics

To express the above property in the pointwise semantics, we introduce a
relatively simple family of modalities B→I (called ‘Beginning’) and their past
versions B←I . They can be used to specify the first events in given intervals. For
example, the following modality asserts that the first event in (a, b) satisfies ϕ:

B→(a,b)(x1, ϕ) = ∃x2
(
x1 < x2 ∧ d(x1, x2) > a ∧ d(x1, x2) < b ∧ ϕ(x2)
∧@x3 (x1 < x3 ∧ x3 < x2 ∧ d(x1, x3) > a ∧ d(x1, x3) < b)

)
.

Now the property above can be defined as B→(a,∞)(P U
w Q). We refer to the

extension of MTL[U ,S] with B→I ,B←I as MTL[U ,S,B�].

Proposition 4. MTL[U ,S] ( MTL[U ,S,B�] over [0, N)-timed words.



Proof. This is a variation of the proof in [12, Section 5]. Given m ∈ N≥0, we
describe models Em and Fm that are indistinguishable by MTL[U ,S] formulas
of modal depth ≤ m but distinguishing in MTL[U ,S,B�]. The detailed proof is
given in Appendix.

We first describe Em. Let g = 1
2m+6 and pick ε < g

1
g−1

. The first event (at

time 0) satisfies ¬P ∧ ¬Q. Then, a sequence of overlapping segments starts at
time 0.5

2m+5 (see Figure 4). Each segment consists of an event satisfying P ∧ ¬Q
and an event satisfying ¬P ∧ Q. For ease of presentation we will refer to them
as P -events and Q-events.

g g ε

Fig. 4. A single segment in Em

Em

Fm

t3m+9 1.5

y′ y

x x′

g − g
1
g
−1

g g

Fig. 5. Near the (3m+ 9)th-segments in Em and Fm

If the P -event in the ith segment is at time t, then its Q-event is at time
t+ 2g + 1

2 · ε. All P -events in neighbouring segments are separated by g − g
1
g−1

.
We put a total of 4m+12 segments. The only difference between the constructed
models Em,Fm lies in the (3m+9)th segment. Let this segment starts at t3m+9.
In Fm, we move the corresponding Q-event to t+2g− 1

2 · ε (see Figure 5). Note
that there are P -events at time 0.5 in both models (in their (m+4)th segments).
We have Em |=(P ∧ B→(1,2)P ) whilst Fm 6|=(P ∧ B→(1,2)P ).

ut

Despite being a non-trivial addition to MTL[U ,S], we show that this simple
extension is still less expressive than FO[<,+1].

Proposition 5. MTL[U ,S,B�] ( FO[<,+1] over [0, N)-timed words.



Proof. Given m ∈ N≥0, we construct two models as follows. This is a variation
of the proof in [13, Section 7]. Let

Gm = (∅, 0)(∅, 0.5

2m+ 3
)(∅, 1.5

2m+ 3
) . . . (∅, 1− 0.5

2m+ 3
)

(∅, 1 + 0.5

2m+ 2
)(∅, 1 + 1.5

2m+ 2
) . . . . . . (∅, 2− 0.5

2m+ 2
) .

Hm is constructed as Gm except that the event at time m+1.5
2m+3 is missing.

Gm

Hm

0 1 2

Fig. 6. Models Gm and Hm for m = 2

Figure 6 illustrates the models for the case m = 2. Filled boxes represent
events. It can be shown that no MTL[U ,S,B�] formula of modal depth ≤ m
distinguishes Gm and Hm while there is a simple FO[<,+1] formula does. The
detailed proof is given in Appendix. ut

As the models Gm and Hm can, of course, be distinguished by an MTL[U ,S]
formula in the continuous semantics, some further extension is needed in the
pointwise framework. Observe that one can write formulas such as

ϕcont2 = (=c(P ∨ Pε)) U (=aQ)

where a and c are distinct. This formula holds at t1 (in the continuous semantics)
iff there is t′ > t1 such that:

– There is an event at t′ + a and Q holds there
– P holds at all events in (t1 + c, t′ + c).

See again Figure 3 for an illustration (ϕcont2 also holds at t1). This ability appears
to be essential: let ϕ′ = ¬Pε∧¬=1¬Pε, the following formula distinguishes Gm
and Hm in the continuous semantics:

ϕcont−d =((=1¬Pε) ∧ ϕ′ ∧ (Pε ∧=1Pε) U (ϕ′ ∧=1¬Pε)) .

In the next section, we propose new modalities that adds this ability to MTL[U ,S].
We show later that this ability is indeed the ‘missing piece’ in our setting.



4 New Modalities

We introduce new unary modalities EcI (called ‘Earlier’), where I ⊆ (0,∞) is an
interval with endpoints in N≥0 ∪ {∞}, c ∈ N≥0 and 0 ≤ c ≤ l(I). In words, the
temporal formula Ec(a,b)ϕ holds at t1 iff the following holds:

– ϕ holds at the first event (at time t2) in (t1 + a, t1 + b)
– There is no event in (t1 + c, t1 + c+ (t2 − a)).

For example, Ec(a,∞)(P ∧ ¬Q) holds at t1 in Figure 3 as d2 ≤ d1. Formally,

Ec(a,b)(x1, ϕ) = ∃x2
(
x1 < x2 ∧ d(x1, x2) > a ∧ d(x1, x2) < b ∧ ϕ(x2)

∧@x3
(
x1 < x3 ∧ x3 < x2 ∧ d(x1, x3) > a ∧ d(x1, x3) < b

)
∧@x4

(
x1 < x4 ∧ x4 < x2 ∧ d(x1, x4) > c ∧ d(x2, x4) > (a− c)

))
.

Definitions for other types of intervals are similar. We also define their past
counterparts Nc

I (called ‘Newer’). The logic obtained by adding these modalities
to MTL[U ,S] is referred to as MTL[U ,S,E,N].

Our main result is the following theorem.

Theorem 1. MTL[U ,S,E,N] is expressively complete for FO[<,+1] over
[0, N)-timed words.

4.1 More Liberal Bounds

It is easy to see that we can allow c > l(I) in EcI for free. For instance, E10
(2,5)ϕ

is equivalent to E2
(2,5)ϕ ∧ ¬E

2
(10,13)true over [0, N)-timed words. Indeed, we can

even allow negative constants, i.e., I ⊆ (−∞,∞) with endpoints in Z∪{∞} and
c ∈ Z. For example, over [0, N)-timed words, E−7(5,10)ϕ is equivalent to

E5
(5,10)(ϕ ∧N12

(5,10)true) ∧
(
E0
(5,10)true ∨

(
ϕ′ U (ϕ′ ∧ E0

(5,10)true)
))

where ϕ′ = N7
(0,∞)true ∧ ¬=7true. Now let ϕ′′ = true ∧ ¬=1true. The

models Gm and Hm in Section 3.3 can be distinguished by the following formula:

ϕpw−d =
(
N1

(1,∞)
wtrue ∧ ϕ′′ ∧ E−1(0,∞)(ϕ

′′ ∧ E−1(−1,∞)
wtrue

)
.

Compare this with the formula ϕcont−d defined in Section 3.3, which distin-
guishes Gm and Hm in the continuous semantics.

4.2 Generalised ‘Until’ and ‘Since’

To facilitate the proof of Theorem 1, we introduce a family of derived modali-
ties which can be understood as generalisations of the usual ‘Until’ and ‘Since’



modalities. Let I = (a, b) ⊆ (0,∞) and c ≤ a,

Uc(a,b)(x1, ϕ1, ϕ2) = ∃x2
(
x1 < x2 ∧ d(x1, x2) > a ∧ d(x1, x2) < b ∧ ϕ2(x2)

∧∀x3
(
x1 < x3 ∧ x3 < x2 ∧ d(x1, x3) > c

∧ d(x2, x3) > (a− c) =⇒ ϕ1(x3)
))
.

Definitions for other types of intervals are similar. We also define the generalised
‘Since’ modalities St

I .

Proposition 6. ϕ1U
c
(a,b)ϕ2 with (a, b) ⊆ (0,∞) is definable in MTL[U ,S,E,N].

Proof. We give equivalent formulas (over [0, N)-timed words) in each case below:

– c = a: It is clear that

ϕ1 U
c
(a,b) ϕ2 =(a,b)ϕ2 ∧ Ea(a,b)(ϕ1 Uw ϕ2) .

– c < a: Let

ϕ3 = ϕ2 ∨
(
true ∧ ¬=(a−c)true

∧
(
(¬=(a−c)true ∧N

(a−c)
(0,∞)true) U (ϕ2 ∧N

(a−c)
(0,∞)true)

))
.

The desired formula is the conjunction of (a,b)ϕ2 and

Ec(a,b)ϕ3 ∨ Ec(c,c+(b−a))

(
ϕ1 Uw

(
ϕ1 ∧ E0

(a−c,∞)ϕ3

))
.

– c > a: Let

ϕ4 = ϕ2 ∨
(
true ∧ ¬=(c−a)true

∧
(
(¬=(c−a)true ∧N

(a−c)
(0,∞)true) U (ϕ2 ∧N

(a−c)
(0,∞)true)

))
.

The desired formula is the conjunction of (a,b)ϕ2 and

Ec(a,b)ϕ4 ∨ Ec(c,c+(b−a))

(
ϕ1 Uw

(
ϕ1 ∧ E0

(a−c,∞)ϕ4

))
.

ut

The proofs for other type of intervals (and more liberal bounds) are similar.
Note that the usual modalities can be written in the generalised modalities, e.g.,

ϕ1 U(a,b) ϕ2 = ϕ1 U
a
(a,b) ϕ2 ∧ ¬

(
true U0

(0,a] (¬ϕ1)
)
.

We will refer to the logic with modalities UcI ,S
c
I (where I ⊆ (−∞,∞) with

endpoints in Z ∪ {∞} and c ∈ Z) as MTL[U,S].

Proposition 7. MTL[U,S] ↔= MTL[U ,S,E,N] over T-timed words.



5 The Translation

We give a translation from an arbitrary FO[<,+1] formula with one free variable
into an equivalent MTL[U,S] formula. Our proof strategy is similar to that in [9]:
we eliminate the metric by introducing extra predicates, convert to LTL, and then
replace the new predicates by their equivalent MTL[U,S] formulas.

5.1 Eliminating the Metric

We introduce fresh monadic predicates P = {Pi | P ∈ P, 0 ≤ i ≤ N − 1}
as in [9] and, additionally, Q = {Qi | 0 ≤ i ≤ N − 1}. The monadic predi-
cates Q indicate the existence of events. Let ϕevent = ∀x

(∨
i∈[0,N−1]Qi(x)

)
∧

∀x
(∧

i∈[0,N−1](Pi(x) =⇒ Qi(x))
)
and ϕinit = ∃x (@x′ (x′ < x) ∧Q0(x)). There

is an obvious ‘stacking’ bijection (indicated by overlining) between [0, N)-timed
words over 2P and [0, 1)-timed words over 2P∪Q satisfying ϕevent ∧ ϕinit.

Let ϑ(x) be an FO[<,+1] formula with one free variable and in which each
quantifier uses a fresh new variable. Wlog. we assume that ϑ(x) contains only
existential quantifiers (this can be achieved by syntactic rewriting). Replace the
formula by

(Q0(x) ∧ ϑ[x/x]) ∨ (Q1(x) ∧ ϑ[x+ 1/x]) ∨ . . . ∨ (QN−1(x) ∧ ϑ[x+ (N − 1)/x])

where ϑ[e/x] denotes the formula obtained by substituting all free occurrences of
x in ϑ by (an expression) e. Then, similarly, recursively replace every subformula
∃x′ θ by

∃x′ ((Q0(x
′) ∧ θ[x′/x′]) ∨ . . . ∨ (QN−1(x

′) ∧ θ[x′ + (N − 1)/x′])) .

Note that we do not actually have the +1 function in our structures; they only
serve as annotations and will be removed later, e.g., x′ + k means that Qk(x′)
holds. Then, carry out the following syntactic substitutions:

– For each inequality of the form x1 + k1 < x2 + k2, replace it with
• x1 < x2 if k1 = k2
• true if k1 < k2
• ¬true if k1 > k2

– For each distance formula, e.g., d(x1 + k1, x2 + k2) ≤ 2, replace it with
• true if |k1 − k2| ≤ 1
• (¬(x1 < x2) ∧ ¬(x2 < x1)) ∨ (x2 < x1) if k2 − k1 = 2
• (¬(x1 < x2) ∧ ¬(x2 < x1)) ∨ (x1 < x2) if k1 − k2 = 2
• ¬true if |k1 − k2| > 2

– Replace terms of the form P (x1 + k) with Pk(x1).

This gives a non-metric first-order formula ϑ(x) overP∪Q. Denote by frac(t)
the fractional part of a non-negative real t. It is not hard to see that for each
[0, N)-timed word ρ = (σ, τ) over 2P and its stacked counterpart ρ, the following
holds:



– ρ, t |= ϑ(x) implies ρ, t |= ϑ(x) where t = frac(t)
– ρ, t |= ϑ(x) implies there exists t ∈ Uρ with frac(t) = t s.t. ρ, t |= ϑ(x).

Moreover, if ρ, t |= ϑ(x), then the integral part of t indicates which clause in
ϑ(x) is satisfied when x is substituted with t = frac(t), and vice versa.

By Kamp’s theorem [7], ϑ(x) is equivalent to an LTL[U ,S] formula ϕ of the
following form:

(Q0 ∧ ϕ0) ∨ (Q1 ∧ ϕ1) ∨ . . . ∨ (QN−1 ∧ ϕN−1) .

5.2 From Non-Metric to Metric

We now construct an MTL[U,S] formula that is equivalent to ϑ(x) over [0, N)-
timed words. Note that we make heavy use of the formulas in Φunit defined in
Section 3.1.

Proposition 8. Let ψ be a subformula of ϕi for some i ∈ [0, N − 1). There is
an MTL[U,S] formula ψ such that for all t ∈ ρ and t ∈ ρ with frac(t) = t, we
have

ρ, t |= ψ ⇐⇒ ρ, t |= ψ .

Proof. We prove this by induction on the structure of ϕi.

– Base step. Consider the following cases:
• ψ = Pj : Let

ψ = (ϕ0,1∧=jP )∨ . . .∨ (ϕj,j+1∧P )∨ . . .∨ (ϕN−1,N ∧=((N−1)−j)P ) .

• ψ = Qj : Similarly we let

ψ = (ϕ0,1∧=jtrue)∨. . .∨(ϕj,j+1∧true)∨. . .∨(ϕN−1,N∧=((N−1)−j)true) .

– Induction step. The case for boolean operations are trivial and hence omitted.
• ψ = ψ1 U ψ2: By IH we have ψ1 and ψ2. Let

ψj,k,l = ψ1 U
k
(j,j+1) (ψ2 ∧ ϕl,l+1) .

The desired formula is

ψ =
∨

i∈[0,N−1]

ϕi,i+1 ∧
∨

j∈[−i,...,(N−1)−i]
l=i+j

 ∧
k∈[−i,...,(N−1)−i]

ψj,k,l


 .

• ψ = ψ1 S ψ2: This is symmetric to the case for ψ1 U ψ2.
ut

Construct corresponding formulas ϕi for each ϕi using the proposition above.
Substitute them into ϕ and replace all Qi by ϕi,i+1 to obtain our final formula
ϕ. We claim that it is equivalent to ϑ(x) over [0, N)-timed words.

Proposition 9. For all T-timed words ρ and t ∈ Uρ, we have

ρ, t |= ϕ(x) ⇐⇒ ρ, t |= ϑ(x) .

Proof. Follows directly from Section 5.1 and Proposition 8. ut
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A MTL[U ,S,B�] EF Games

We resort to a variant of the MTL[U ,S] EF theorem for the following proofs. A
brief account of the underlying EF games is outlined below. For details we refer
the reader to [12].

An m-round MTL[U ,S,B�] EF game starts with round 0 and ends with
round m. A configuration is a pair of positions (i, i′), respectively in two timed
words. Let (ir, jr) be the configuration at the beginning of round r. Spoiler first
checks both events satisfy the same set of monadic predicates. Then she chooses
(say) i′r according to I. Duplicator chooses j′r as a response, also according to I.
If Spoiler plays -part, -part, or it is indeed a B→-move or B←-move, 3 the
game proceeds to the next round with (ir+1, jr+1) = (i′r, j

′
r). If she plays U-part

or S-part, another position j′′r would be chosen by her, and Duplicator would
need to choose i′′r as response. The game then proceeds to the next round with
(ir+1, jr+1) = (i′′r , j

′′
r ). If Duplicator fails to response at any point then Spoiler

wins the game. We write ρ, i ≈m ρ′, i′ if Duplicator has a winning strategy for the
m-round EF game on ρ, ρ′ that starts from configuration (i, i′).4 In the theorem
below, modalities allowed in ϕ correspond to moves that Spoiler can take in the
game.

Theorem 2 ([12]). For timed words ρ, ρ′ and a temporal formula ϕ of modal
depth ≤ m,

ρ, 1 ≈m ρ′, 1 implies ρ |= ϕ ⇐⇒ ρ′ |= ϕ .

B Proof of Proposition 1

Proof. We play the game on Am,Bm. It is clear that if ir = jr and ir ≥ 2
then Duplicator wins the remaining rounds. If ir = jr + 1 and Spoiler chooses
some move, Duplicator can always make ir+1 = jr+1 ≥ 2 or (ir+1, jr+1) =
(ir + 1, jr + 1). The result follows from Theorem 2. ut

C Proof of Proposition 2

Proof. We play the game on Cm,Dm. If ir = jr+1 and ir ≥ m+4 then Duplicator
wins the remaining rounds. The proof is similar to the proof of Proposition 2. ut

D Proof of Proposition 4

As noted before, the only difference in two models is a pair of Q-events. We
denote this pair of events by x and y respectively and write their corresponding
timestamps as tx and ty (see Figure 5). It is easy to verify that no two events
3 We define additional moves for B→I and B←I according to their semantics.
4 For our purpose, the largest constant used in the games can be assumed to be ≤ 2
in all proofs.



are separated by an integer distance. We say a configuration (i, j) is identical if
i = j. For i ≥ 2, we denote by seg(i) the segment that the ith event belongs to,
and we write P (i) if the ith event is a P -event and Q(i) if its a Q-event.

Proposition 10. Duplicator has a winning strategy for m-round MTL[U ,S] EF
game on Em,Fm that starts from (1, 1). In particular, she has a winning strategy
such that for each round 0 ≤ r ≤ m, the ithr event in Em and the jthr event in
Fm satisfy the same set of propositions and

– if ir 6= jr, then
• seg(ir)− seg(jr) < r

• (m + 1 − r) < seg(ir), seg(jr) < (m + 5 + r) or (3m + 8 − r) <
seg(ir), seg(jr) < (3m+ 12 + r).

Proof. We prove the proposition by induction on r.

– Base step. The proposition holds trivially for (i0, j0) = (1, 1).
– Induction step. Suppose that the claim holds for r < m. We prove it also

holds for r + 1.
• (ir, jr) = (1, 1):
Duplicator can always make (ir+1, jr+1) identical.

• (ir, jr) 6= (1, 1) is identical:
Duplicator tries to make (i′r, j

′
r) identical. This may only fail when

∗ P (ir) ∧ P (jr) and seg(ir) = seg(jr) = m+ 4.
∗ Q(ir) ∧Q(jr) and seg(ir) = seg(jr) = 3m+ 9, i.e., x and y.

In these cases, Duplicator chooses another event in a neighbouring seg-
ment that minimises |seg(i′r) − seg(j′r)|. For example, if (ir, jr) corre-
sponds to x and y and Spoiler chooses j′r such that P (j′r) and seg(j′r) =
m + 4 in a S(1,∞)-move, Duplicator chooses i′r with seg(i′r) = m + 3. If
Spoiler then plays -part, the resulting configuration (ir+1, jr+1) will
clearly satisfy the claim. If she plays S-part, Duplicator makes (i′′r , j

′′
r )

identical whenever possible. Otherwise she chooses the appropriate event
that minimises |seg(i′′r )− seg(j′′r )|. For instance, if Q(i′′r ) and seg(i′′r ) =
m+ 1, Duplicator chooses j′′r such that Q(j′′r ) and seg(j′′r ) = m+ 2.
• (ir, jr) is not identical:
Duplicator tries to make (i′r, j

′
r) identical. If this is not possible, then

Duplicator chooses an event that minimises |seg(i′r) − seg(j′r)|. For ex-
ample, consider seg(ir) = m + 4, seg(jr) = m + 3 such that P (ir) and
P (jr), and Spoiler chooses x in an U(0,1)-move. In this case, Duplicator
cannot choose y′ but the first Q-event that happens before y′. Duplicator
responds to U-parts and S-parts in similar ways as before. It is easy to
see that the claim holds.

ut

Proposition 4 now follows directly from Proposition 10.



E Proof of Proposition 5

Observe that no two events are separated by an integer distance. We say say a
configuration (i, j) is synchronised if they correspond to events with the same
timestamp.

Proposition 11. Duplicator has a winning strategy form-round MTL[U ,S,B�]
EF game on Gm,Hm that starts from (1, 1). In particular, she has a winning
strategy such that for each round 0 ≤ r ≤ m, the ithr event in Gm and the jthr
event in Hm satisfy the same set of propositions and

– if (ir, jr) is not synchronised, then
• |ir − jr| = 1
• (m+2− r) < ir, jr < (m+4+ r) or (3m+5− r) < ir, jr < (3m+6+ r).

Proof. We prove the proposition by induction on r.

– Base step. The proposition holds trivially for (i0, j0) = (1, 1).
– Induction step. Suppose that the claim holds for r < m. We prove it also

holds for r + 1.
• (ir, jr) = (1, 1):
Duplicator tries to make (i′r, j

′
r) synchronised. If Spoiler chooses i′r =

m+ 3, Duplicator chooses j′r = m+ 2.
• (ir, jr) 6= (1, 1) is synchronised:
Duplicator tries to make (i′r, j′r) synchronised. If this is not possible then
Duplicator chooses the event that minimises |i′r − j′r|. It is easy to see
that the resulting configuration (ir+1, jr+1) satisfies the claim regardless
of how Spoiler plays.

• (ir, jr) is not synchronised:
The strategy of Duplicator is same as the case above.

ut

Proposition 5 now follows directly from Proposition 11.


