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Abstract. Current approaches to monitoring real-time properties suf-
fer either from unbounded space requirements or lack of expressiveness.
In this paper, we adapt a separation technique enabling us to rewrite
arbitrary MTL formulas into LTL formulas over a set of atoms compris-
ing bounded MTL formulas. As a result, we obtain the first trace-length
independent online monitoring procedure for full MTL.

1 Introduction

In recent years, there has been increasing interest in runtime verification as a
complement to traditional model checking techniques (see [18, 26] for surveys).
Runtime monitoring, for example, may be used in situations in which we wish
to evaluate a system that is either too complex to model or whose internal
details are not accessible. Moreover, logics whose model-checking problems are
undecidable may become tractable in this more restricted setting. The latter is
the case in the present paper, which is concerned with runtime monitoring of
Metric Temporal Logic with both forwards and backwards temporal modalities
(MTL[U,S]).

Given an MTL[U,S] formula ϕ and a finite timed word ρ, the prefix problem
asks whether all infinite timed words extending ρ satisfy ϕ. The monitoring
problem can be seen as an online version of the prefix problem where ρ is given
incrementally, one event at a time. The monitoring procedure is required to
output an answer when either (i) all infinite extensions of the current trace
satisfy the specification, or (ii) no infinite extension of the current trace can
possibly meet the specification. In this paper, we consider a restricted version of
the monitoring problem, based on the notion of informative prefixes [17].

Ideally, for a monitoring procedure to be practical, we require that it be
trace-length independent [5] in the sense that the total space requirement should
not depend on the length of the input trace. With this objective in mind, the
principal difficulty in monitoring MTL[U,S] is that it allows unbounded inter-
vals and nesting of future and past operators, and hence the truth value of a
formula at some point may depend on the truth values of its subformulas ar-
bitrarily far in the future or past. For this reason, most real-time monitoring
procedures in the literature consider only certain fragments of MTL[U,S], e.g.,
only allowing bounded future modalities.1 An exception is [4] which handles the
1 Note in passing that, unlike for LTL, past modalities strictly increases the expres-
siveness of MTL [7].



full logic MTL[U,S], but which unfortunately fails to be trace-length indepen-
dent. The main contribution of this paper is a novel online monitoring procedure
for MTL[U,S]. The procedure we give handles the full logic MTL[U,S] and is
trace-length independent,2 making it suitable for behaviours with potentially
unbounded lengths, e.g., network activity logs. For a given formula, we first
adapt a separation theorem of [15] to rewrite an MTL[U,S] formula into an
LTL[U,S] formula over a set of atoms comprising bounded MTL[U,S] formulas,
whose truth values are computed and stored efficiently. The remaining untimed
component is then handled via translation to deterministic finite automata. The
resulting algorithm is free of dynamic memory allocations, linked lists, etc., and
hence can be implemented efficiently. We can moreover leverage efficient tech-
niques for monitoring LTL[U,S], including highly optimised automaton transla-
tions via two-way alternating automata [8, 12]. Since we work in the pointwise
semantics, the techniques in [15] (developed for the continuous semantics) must
be carefully adapted. Indeed, the main result of [15]—expressive completeness of
MTL[U,S] for first-order logic—is known not to hold in the pointwise setting.

2 Related Work

The most closely related work to the present paper is that of Finkbeiner and
Kuhtz [11], which concerns monitoring MTL over a discrete-time semantics. They
handle bounded formulas in a similar fashion to us and highlight the problematic
role of unbounded temporal operators. However they do not exploit a syntactic
rewriting of unbounded operators from the scope of bounded operators, and are
forced to apply specialised constructions in this case.

Another highly relevant work is that of Nickovic and Piterman [23], in which a
translation from MTL to deterministic timed automata is proposed. The essence
of the method is the observation that, while the truth values of unbounded sub-
formulas must necessarily be guessed, the truth values of bounded subformulas
can be obtained via bounded look-ahead. In spirit, this is very similar to our
approach. The main differences are that they consider only the future fragment,
and we handle bounded subformulas explicitly rather than encoding them into
clock constraints.

Regarding real-time logics with past, it is known that the non-punctual frag-
ment of MTL[U,S], called MITL[U,S], can be translated into timed automata.
Besides the standard constructions [1, 2], there have been some proposals for
simplified or improved constructions [9,16,20]. The difficulty in using these con-
structions for monitoring lies in the fact that timed automata cannot be deter-
minised in general. In principle one can carry out determinisation on-the-fly for

2 As shown in [19], trace-length independence necessarily requires a global bound on
the variability of time sequences, i.e., the maximum number of events which can
occur in any given unit-duration time interval. This is a standard assumption which
is in practice always met by physical systems. The proof in [19] is carried out in the
continuous semantics, but it goes through in the pointwise case as well.



timed words of bounded variability; however, it is not clear that this approach
can yield an efficient procedure.

Automata-free monitoring procedures also appear in the literature. For ex-
ample, Baldor and Niu propose a monitoring procedure for MTL[U,S] involving
a transition-based representation of flows [4]. The main drawback of this pro-
cedure, as noted above, and in the paper itself, is that the procedure is not
trace-length independent.

3 Background

3.1 Metric Temporal Logic

A time sequence τ = τ1τ2 . . . is a non-empty strictly increasing sequence of
rational numbers such that τ1 = 0. We consider both finite and infinite time
sequences, denoting by |τ | the length of such a sequence. If τ is infinite we
require it to be unbounded, i.e., we disallow so-called Zeno sequences.

A timed word over a finite alphabet Σ is a pair ρ = (σ, τ), where σ = σ1σ2 . . .
is a non-empty finite or infinite word over Σ and τ is a time sequence of the same
length. For ρ = (σ, τ), we refer to the pair (σi, τi) as the ith event in ρ, and define
the distance between ith and jth events to be τj − τi. We equivalently consider
a timed word as a sequence of timed events (σ1, τ1)(σ2, τ2) . . .. The finite timed
words considered in this paper arise as prefixes of infinite timed words, and so
we sometimes use the word prefix to denote an arbitrary finite timed word. We
write TΣ∗ and TΣω for the respective sets of finite and infinite timed words
over Σ. For a set of propositions P we write ΣP = 2P .

For a space-bounded online monitoring procedure to be possible, we must
impose a global bound on the variability of time sequences, cf. [19]. Henceforth
we assume that for some absolute constant kvar all timed words have variability
at most kvar, i.e., there are at most kvar events in any unit time interval.

We specify properties of timed words using Metric Temporal Logic with both
the ‘Until’ and ‘Since’ modalities, denoted MTL[U,S]. Given a set of propositions
P , the formulas of MTL[U,S] are given by the following grammar

ϕ ::= p | true | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 UI ϕ2 | ϕ1 SI ϕ2

where p ∈ P and I ⊆ (0,∞) is an interval with endpoints in Q≥0 ∪ {∞}. We
sometime omit the subscript I if I = (0,∞). Given x ∈ Q, we write x < I to
mean x < sup(I).

Additional temporal operators and dual operators are defined in the standard
way, e.g., PIϕ ≡ true SI ϕ and HIϕ ≡ ¬PI¬ϕ. For an MTL[U,S] formula ϕ,
we denote by |ϕ| the number of subformulas of ϕ.

The satisfaction relation ρ, i |= ϕ for an MTL[U,S] formula ϕ, an infinite
timed word ρ = (σ, τ) and a position i ≥ 1 is defined as follows:

– ρ, i |= p iff p ∈ σi
– ρ, i |= ϕ1 UI ϕ2 iff there exists j > i such that ρ, j |= ϕ2, τj − τi ∈> I, and
ρ, k |= ϕ1 for all k with i < k < j



– ρ, i |= ϕ1 SI ϕ2 iff there exists j, 1 ≤ j < i such that ρ, j |= ϕ2, τi − τj ∈ I
and ρ, k |= ϕ1 for all k with j < k < i.3

The semantics of the Boolean connectives is defined in the expected way.
We say that ρ satisfies ϕ, denoted ρ |= ϕ, if ρ, 1 |= ϕ. We write L(ϕ) for the

set of infinite timed words that satisfy ϕ. Abusing notation, we also write L(ψ)
for the set of infinite (untimed) words that satisfy the LTL[U,S] formula ψ, and
L(A) for the set of infinite words accepted by A.

3.2 New Modalities

In this section we recall from [14] the definition of the “Earlier” modalities EcI and
their past counterparts, the “Newer” modalities Nc

I . In [14] these were introduced
to obtain an extension of MTL[U,S] that is expressively complete over bounded
timed words for FO[<,+Q], i.e., monadic first-order logic with a binary order
relation < and binary distance-q relations for each q ∈ Q.

Given c ∈ N and an interval I ⊆ (0,∞) with endpoints in Q≥0 ∪{∞}, define
EcIϕ to hold at position i of an infinite timed word ρ if there exists j such that
τj − τi ∈ I, j is least such that τj − τi ∈ I, ρ, j |= ϕ, and there is no event with
timestamp in (τi+c, τi+c+(τj−a)), where a is the left endpoint of I. Intuitively,
Ec(a,b)P is equivalent to (F[a,a]Pε ∧ F[c,c]Pε)U(0,b−a) (F[a,a]P ) in the continuous
semantics where Pε is a special proposition that holds at all ‘no-event’ points.

The definition of the past counterpart Nc
I is symmetric and omitted; see [14]

for details.
We refer to the extended logic as MTL[U,S,E,N]. Notations defined in the

previous subsection, e.g., |ϕ|, extend naturally to MTL[U,S,E,N] formulas.
It was shown in [14] that the above two modalities strictly extend the ex-

pressiveness of MTL[U,S] over bounded timed words, yielding a logic that is
expressively complete for FO[<,+Q] in this setting. Here we similarly note that
the new modalities cannot be expressed in MTL[U,S] over infinite timed words.

Proposition 1. Over infinite timed words, the modality E1
(1,2) cannot be ex-

pressed in MTL[U,S] with rational constants.

The proof of Proposition 1 is given in Appendix A.
Finally we remark that EcI and Nc

I are both definable in FO[<,+Q] over
infinite timed words. We discuss the question of expressive completeness over
infinite (unbounded) timed words in the Conclusion.

3.3 Truncated Semantics and Informative Prefixes

Since in online monitoring one naturally deals with truncated paths, it is useful
to define a satisfaction relation of formulas over finite timed words. To this
3 Note that we adopt strict-future and strict-past interpretations to UI and SI . It
is easy to see that, e.g., weak-future until operators can be defined in strict-future
ones.



end we adopt a timed version of the truncated semantics [10] which incorporates
strong and weak views on satisfaction over truncated paths. These views indicate
whether the evaluation of the formula ‘has completed’ on the finite path, i.e.,
whether the truth value of the formula on the whole path is already determined.
For example, the formula F(0,5)p is weakly satisfied by any finite timed word
whose time points are all strictly less than 5 since there is an extension that
satisfies the formula. We also consider the neutral view, which extends to MTL
the traditional LTL semantics over finite words [21].

The respective strong, neutral and weak satisfaction relations will be denoted
by |=+f , |=f and |=−f respectively. The definitions below closely follow [10].

Definition 1. The satisfaction relation ρ, i|=+f ϕ for an MTL[U,S,E,N] formula
ϕ, a finite timed word ρ = (σ, τ) and a position i, 1 ≤ i ≤ |ρ| is defined as follows:

– ρ, i |=+f p iff p ∈ σi
– ρ, i |=+f true

– ρ, i |=+f ϕ1 ∧ ϕ2 iff ρ, i |=+f ϕ1 and ρ, i |=+f ϕ1

– ρ, i |=+f ¬ϕ iff (ρ, i) 6|=−f ϕ

– ρ, i |=+f ϕ1UI ϕ2 iff there exists j, i < j ≤ |ρ| such that ρ, j |=+f ϕ2, τj− τi ∈ I,
and ρ, k |=+f ϕ1 for all k with i < k < j

– ρ, i |=+f ϕ1 SI ϕ2 iff there exists j, 1 ≤ j < i such that ρ, j |=+f ϕ2, τi − τj ∈ I
and ρ, k |=+f ϕ1 for all k with j < k < i

– ρ, i |=+f EcIϕ iff there exists j, i < j ≤ |ρ| such that ρ, j |=+f ϕ, τj − τi ∈ I,
τj−1 − τi /∈ I, and there is no k, i < k < j such that τk − τi > c and
τj − τk > (a− c), where a is the left endpoint of I

– ρ, i |=+f Nc
Iϕ iff there exists j, 1 ≤ j < i such that ρ, j |=+f ϕ, τi − τj ∈ I,

τi − τj+1 /∈ I, and there is no k, j < k < i such that τi − τk > c and
τk − τj > a− c, where a is the left endpoint of I.

Definition 2. The satisfaction relation ρ, i|=−f ϕ for an MTL[U,S,E,N] formula
ϕ, a finite timed word ρ = (σ, τ) and a position i, 1 ≤ i ≤ |ρ| is defined as follows:

– ρ, i |=−f p iff p ∈ σi
– ρ, i |=−f true

– ρ, i |=−f ϕ1 ∧ ϕ2 iff ρ, i |=−f ϕ1 and ρ, i |=−f ϕ1

– ρ, i |=−f ¬ϕ iff (ρ, i) 6|=+f ϕ
– ρ, i |=−f ϕ1 UI ϕ2 iff either of the following holds:
• there exists j, i < j ≤ |ρ| such that ρ, j |=−f ϕ2, τj − τi ∈ I, and ρ, k |=−f ϕ1

for all k with i < k < j
• τ|ρ| − τi < I and ρ, k |=−f ϕ1 for all k with i < k ≤ |ρ|

– ρ, i |=−f ϕ1 SI ϕ2 iff there exists j, 1 ≤ j < i such that ρ, j |=−f ϕ2, τi − τj ∈ I
and ρ, k |=−f ϕ1 for all k with j < k < i

– ρ, i |=−f EcIϕ iff either of the following holds:



• there exists j, i < j ≤ |ρ| such that ρ, j |=−f ϕ, τj − τi ∈ I, τj−1 − τi /∈ I
and there is no j′, i < j′ < j such that τj′ − τi > c and τj− τj′ > (a− c),
where a is the left endpoint of I

• τ|ρ| − τi < I and for all j, i < j ≤ |ρ|, τj − τi /∈ I
– (ρ, i) |=−f Nc

Iϕ iff there exists j, 1 ≤ j < i such that ρ, j |=−f ϕ, τi − τj ∈ I,
τi − τj+1 /∈ I and there is no j′, j < j′ < i such that τi − τj′ > c and
τj′ − τj > (a− c), where a is the left endpoint of I.

The following proposition which helps explain the terms strong, neutral and
weak, can be proved by a simple induction on the structure of ϕ.

Proposition 2. For a finite timed word ρ, a position i in ρ and a formula ϕ,

ρ, i |=+f ϕ→ ρ, i |=f ϕ and ρ, i |=f ϕ→ ρ, i |=−f ϕ .

A closely related notion, informative prefixes [17], has been adopted in several
works on online monitoring of untimed properties, e.g., [3, 13]. Intuitively, an
informative prefix for a formula ϕ is a prefix that ‘tells the whole story’ about the
fulfilment or violation of ϕ.4 We give two examples before the formal definition.

Example 1. Consider the following formula over {p1}:

ϕ = FG(¬p1) ∧G(p1 → F(0,3)p1) .

The finite timed word ρ = ({p1}, 0)({p1}, 2)(∅, 5.5) is an informative bad pre-
fix for ϕ, since no extension satisfies the second conjunct. On the other hand,
while ρ′ = ({p1}, 0)({p1}, 2)({p1}, 4) is a bad prefix for ϕ, it has (different) ex-
tensions that satisfy the left and right conjuncts. Thus we do not consider it an
informative bad prefix.

Example 2. Consider the following formula over {p1}:

ϕ′ = G(¬p1) ∧G(p1 → F(0,3)p1) .

This formula is equivalent to the formula ϕ in the previous example. However,
all bad prefixes for ϕ′ are informative.

The formal definitions are as follows. If a prefix ρ strongly satisfies ϕ then
we say that it is an informative good prefix for ϕ. Similarly we say ρ is an
informative bad prefix for ϕ when it fails to weakly satisfy ϕ. Finally ρ is an
informative prefix if it is either an informative good prefix or an informative
bad prefix. Here we have adopted the semantic characterisation of informative
prefixes in terms of the truncated semantics from [10], rather than the original
syntactic definition [17].

The following proposition follows immediately from the definition of infor-
mative prefixes.
4 Our usage of the term informative slightly deviates from [17] as in that paper the
term refers exclusively to bad prefixes.



Proposition 3. ρ is informative for ϕ iff ρ is informative for ¬ϕ.

Since ρ |=f ϕ↔ ρ 6|=f ¬ϕ, negating a formula essentially exchanges its set of in-
formative good prefixes and informative bad prefixes. The following proposition
says ‘something good remains good’ and ‘something bad remains bad’.

Proposition 4. For a finite timed word ρ, a position i in ρ and a formula ϕ, if
ρ is a prefix of the finite timed word ρ′, then

ρ, i |=+f ϕ→ ρ′, i |=+f ϕ and ρ, i 6|=−f ϕ→ ρ′, i 6|=−f ϕ .

4 LTL[U, S] over Bounded Atoms

In this section we present a series of logical equivalences that can be used to
rewrite a given MTL[U,S] formula into an equivalent formula in which no un-
bounded temporal operator occurs within the scope of a bounded operator. Only
the rules for future modalities and open intervals are given, as the rules for past
modalities are symmetric and the rules for other types of intervals are straight-
forward variants.

4.1 Normal Form

We say a formula is in normal form if it satisfies the following.

(i) All occurrences of unbounded temporal operators are of the form U(0,∞),
S(0,∞), G(0,∞), H(0,∞).

(ii) All other occurrences of temporal operators are of the form EcI , N
c
I , UI ,

SI with bounded I.
(iii) Negation is only applied to propositions or bounded temporal operators

(except G(0,∞), H(0,∞)).
(iv) In any subformula of the form ϕ1 UI ϕ2, ϕ1 SI ϕ2, FIϕ2, PIϕ2 where I

is bounded, ϕ1 is a disjunction of temporal subformulas and propositions
and ϕ2 is a conjunction thereof.

(v) In any subformula of the form EcIϕ, N
c
Iϕ, the outermost connective of ϕ

can only be negation or temporal operators.

We describe how to rewrite a given formula into normal form. To satisfy (i) and
(ii), apply the usual rules (e.g., GIϕ↔ ¬FI¬ϕ) and the rule:

ϕ1 U(a,∞) ϕ2 ↔ ϕ1 U ϕ2 ∧
(
F(0,a]true→ G(0,a](ϕ1 ∧ ϕ1 U ϕ2)

)
.

Also use the rule:

Ec(a,∞)ϕ↔ Ec(a,a+max(c,a−c)]ϕ ∨
(
¬F(c,a]true ∧ Fw[0,c](false U(c,∞) ϕ)

)
.

To satisfy (iii), use the usual rules and the rule:

¬(ϕ1 U ϕ2)↔ G¬ϕ2 ∨
(
¬ϕ2 U (¬ϕ2 ∧ ¬ϕ1)

)
.



For (iv) and (v), use the usual rules of Boolean algebra and the rules below:

φUI (ϕ1 ∨ ϕ2)↔ (φUI ϕ1) ∨ (φUI ϕ2)

(ϕ1 ∧ ϕ2)UI φ↔ (ϕ1 UI φ) ∧ (ϕ2 UI φ)

EcI(ϕ1 ∨ ϕ2)↔ EcIϕ1 ∨ EcIϕ2

EcI(ϕ1 ∧ ϕ2)↔ EcIϕ1 ∧ EcIϕ2 .

4.2 Extracting Unbounded Operators from Bounded Operators

We now provide a set of rewriting rules that extract unbounded operators from
the scopes of bounded operators. In what follows, let ϕxlb = false U(0,b) true,
ϕylb = false S(0,b) true and

ϕugb =
(
(ϕxlb → G(b,2b)ϕ1) ∧

(
¬ϕylb → (ϕ1 ∧G(0,b]ϕ1)

))
U

((
ϕ1 ∧ (ϕ1 U(b,2b) ϕ2)

)
∨
(
¬ϕylb ∧

(
ϕ2 ∨

(
ϕ1 ∧ (ϕ1 U(0,b] ϕ2)

))))
,

ϕggb = G
(
(ϕxlb → G(b,2b)ϕ1) ∧

(
¬ϕylb → (ϕ1 ∧G(0,b]ϕ1)

))
.

Proposition 5. The following equivalences hold over infinite timed words.

Ec(a,b)(ϕ1 U ϕ2)↔ (Ec(a,b)true)

∧
(
Ea(a,b)(ϕ1 U(0,2b) ϕ2) ∨

(
Ea(a,b)(G(0,2b)ϕ1) ∧ ϕugb

))
Ec(a,b)Gϕ↔ (Ec(a,b)true) ∧ (Ea(a,b)G(0,2b)ϕ) ∧ ϕggb

Ec(a,b)(ϕ1 S ϕ2)↔ (Ec(a,b)true)

∧
((

Ea(a,b)(ϕ1 S(0,b) ϕ2)
)
∨
(
(Ea(a,b)H(0,b)ϕ1) ∧ (ϕ1 S ϕ2)

))
Ec(a,b)Hϕ↔ (Ec(a,b)true) ∧ (Ea(a,b)H(0,b)ϕ) ∧Hϕ .

Proof. We prove the first rule as the proofs of other rules are similar. In the
following, let the current position be i and the position of the first event in
(τi + a, τi + b) be j.

For the forward direction, let the witness position where ϕ2 holds be w. If
τw < τj + 2b, the subformula Ea(a,b)(ϕ1 U(0,2b) ϕ2) clearly holds at i. Otherwise
we have Ea(a,b)(G(0,2b)ϕ1) holds at i. It follows that (ϕxlb → G(b,2b)ϕ1) and ϕylb
(and hence ¬ϕylb → (ϕ1 ∧G(0,b]ϕ1)) holds at all positions j′, i < j′ < j. Let
l > j the first position such that τw ∈ (τl + b, τl + 2b). Consider the following
cases:

– There is such l: It is clear that
(
ϕ1∧(ϕ1U(b,2b)ϕ2)

)
holds at l. SinceG(b,2b)ϕ1

holds at all positions j′′, j ≤ j′′ < l by the minimality of l, (ϕxlb → G(b,2b)ϕ1)
also holds at these positions. For the other conjunct, note that ϕylb holds at
j and ϕ1 ∧G(0,b]ϕ1 holds at all positions j′′′, j < j′′′ < l.



– There is no such l: Consider the following cases:
• ¬ϕylb and ¬P[b,b]true holds at w: There is no event in (τw−2b, τw). The

proof is similar to the case where l exists.
• ¬ϕylb and P[b,b]true holds at w: Let l′ be the position such that τl′ =
τw − b. There must be no event in (τl′ − b, τl′). It follows that ¬ϕylb and(
ϕ1 ∧ (ϕ1 U(0,b] ϕ2)

)
holds at l′. The proof is similar.

• ϕylb holds at w: By assumption, there is no event in (τw−2b, τw−b). It is
easy to see that there is a position such that ¬ϕylb∧

(
ϕ1∧ (ϕ1U(0,b]ϕ2)

)
holds. The proof is again similar.

The other direction is more straightforward.
ut

Proposition 6. The following equivalences hold over infinite timed words.

θU(a,b)

(
(ϕ1 U ϕ2) ∧ χ

)
↔ θU(a,b)

(
(ϕ1 U(0,2b) ϕ2) ∧ χ

)
∨
((
θU(a,b) (G(0,2b)ϕ1 ∧ χ)

)
∧ ϕugb

)
θU(a,b) (Gϕ ∧ χ)↔

(
θU(a,b) (G(0,2b)ϕ ∧ χ)

)
∧ ϕggb

θU(a,b)

(
(ϕ1 S ϕ2) ∧ χ

)
↔ θU(a,b)

(
(ϕ1 S(0,b) ϕ2) ∧ χ

)
∨
((
θU(a,b) (H(0,b)ϕ1 ∧ χ)

)
∧ ϕ1 S ϕ2

)
θU(a,b) (Hϕ ∧ χ)↔

(
θU(a,b) (H(0,b)ϕ ∧ χ)

)
∧Hϕ(

(ϕ1 U ϕ2) ∨ χ
)
U(a,b) θ ↔

(
(ϕ1 U(0,2b) ϕ2) ∨ χ

)
U(a,b) θ

∨
(((

(ϕ1 U(0,2b) ϕ2) ∨ χ
)
U(0,b) (G(0,2b)ϕ1)

)
∧

F(a,b)θ ∧ ϕugb
)

(
(Gϕ) ∨ χ

)
U(a,b) θ ↔ χU(a,b) θ

∨
(
χU(0,b) (G(0,2b)ϕ1) ∧ F(a,b)θ ∧ ϕggb

)(
(ϕ1 S ϕ2) ∨ χ

)
U(a,b) θ ↔

(
(ϕ1 S(0,b) ϕ2) ∨ χ

)
U(a,b) θ

∨
(((

H(0,b)ϕ1 ∨ (ϕ1 S(0,b) ϕ2) ∨ χ
)
U(a,b) θ

)
∧

ϕ1 S ϕ2

)
(
(Hϕ) ∨ χ

)
U(a,b) θ ↔ χU(a,b) θ ∨

((
(H(0,b)ϕ ∨ χ)U(a,b) θ

)
∧Hϕ

)
.

Proposition 7. For a formula ϕ, we can use the rules above to obtain an equiv-
alent formula ϕ̂ in which no unbounded temporal operator appears in the scope
of a bounded temporal operator.



Proof. Define the unbounding depth ud(ϕ) of a formula ϕ to be the modal depth
of ϕ counting only unbounded operators. We demonstrate a rewriting process
on ϕ which terminates in an equivalent formula ϕ̂ such that any subformula ψ̂
of ϕ̂ with outermost operator bounded has ud(ψ̂) = 0.

Assume that the input formula ϕ is in normal form. Let k be the largest un-
bounding depth among all subformulas of ϕ with bounded outermost operators.
We pick all minimal (wrt. subformula order) such subformulas ψ with ud(ψ) = k.
By applying the rules in Section 4.2, we can rewrite ψ into ψ′ where all subfor-
mulas of ψ′ with bounded outermost operators have unbounded depths strictly
less than k. We then substitute these ψ′ back into ϕ to obtain ϕ′. We repeat
this step until there remain no bounded operators with unbounding depth k.
Rules that rewrite a formula into normal form are used whenever necessary on
relevant subformulas—this will never affect their unbounding depths. It is easy
to see that we will eventually obtain such a formula ϕ∗. Now rewrite ϕ∗ into
normal form and start over again. This is to be repeated until we reach ϕ̂. ut

Given the input formula ϕ over propositions P = {p1, . . . , pn}, we can apply
the rewriting process above to obtain a formula ϕ̂. Since each rewriting rule is a
logical equivalence, we have the following theorem.

Theorem 1. L(ϕ) = L(ϕ̂).

The separation of the original formula could possibly induce a non-elementary
blow-up. However, we argue that this rarely happens in practice. For example,
consider the following formula:

G
(
ChangeGear→ F(0,30)(InjectFuel ∧PInjectLubricant)

)
.

The syntactically separated version of the formula is

G
[
ChangeGear→ F(0,30)(InjectFuel ∧P(0,30)InjectLubricant)

∨
(
F(0,30)(InjectFuel) ∧PInjectLubricant

)]
,

which is of comparable size.

5 Online Monitoring Procedure

Having obtained ϕ̂ = Φ(ψ1, . . . , ψm) where ψ1, . . . , ψm are bounded formulas
over P and Φ is an LTL[U,S] formula, we now introduce new propositions
Q = {q1, . . . , qm} that correspond to bounded subformulas. In this way, we
can monitor Φ as an untimed property over Q, only that now we obtain the
truth values of q1, . . . , qm by simple dynamic programming procedures. As these
propositions correspond to bounded formulas, we only need to store a ‘sliding
window’ on the input timed word.



5.1 Untimed LTL[U, S] Part

We describe briefly the standard way to construct automata that detect informa-
tive prefixes [17]. For a given LTL formula Θ, first use a standard construction [27]
to obtain a language-equivalent alternating Büchi automaton AΘ. Then redefine
its set of accepting states to be the empty set and treat it as an automaton
over finite words. The resulting automaton AtrueΘ accepts exactly all informa-
tive good prefixes for Θ. For online monitoring, one can then determinise AtrueΘ

with the usual subset construction. The same can be done for ¬Θ to obtain a
deterministic automaton detecting informative bad prefixes for Θ.

In our case, we first translate the LTL[U,S] formulas Φ and ¬Φ into a pair
of two-way alternating Büchi automata. It is easy to see that, with the same
‘tweaks’, we can obtain two automata that accept informative good prefixes
and informative bad prefixes for Φ (by Proposition 3). We then apply existing
procedures that translate two-way alternating automata over finite words into
deterministic automata, e.g., [6]. We call the resulting automata Dgood and Dbad
and execute them in parallel.

5.2 Bounded Metric Part

We define fr(ϕ) and pr(ϕ) (future-reach and past-reach) for an MTL[U,S,E,N]
formula ϕ as follows (the cases for boolean connectives are defined as expected):

– fr(true) = pr(true) = fr(p) = pr(p) = 0 for all p ∈ P
– fr(ϕ1 UI ϕ2) = sup(I) + max(fr(ϕ1), fr(ϕ2))
– pr(ϕ1 SI ϕ2) = sup(I) + max(pr(ϕ1), pr(ϕ2))
– fr(ϕ1 SI ϕ2) = max(fr(ϕ1), fr(ϕ2)− inf(I))
– pr(ϕ1 UI ϕ2) = max(pr(ϕ1), pr(ϕ2)− inf(I))
– fr(EcIϕ) = sup(I) + fr(ϕ)
– pr(Nc

Iϕ) = sup(I) + pr(ϕ)
– fr(Nc

Iϕ) = max(0, fr(ϕ)− inf(I))
– pr(EcIϕ) = max(0, pr(ϕ)− inf(I)).

Intuitively, these indicate the lengths of the time horizons needed to determine
the truth value of ϕ. For a bounded formula ψ, we rewrite ψ so that all temporal
operators appear in their positive form, e.g., ϕ1 UI ϕ2. Recall that we assume
that timed words are of bounded variability kvar. Let lf (ψ) = kvar · dfr(ψ)e and
lp(ψ) = kvar · dpr(ψ)e.

Naïve Method Suppose that we would like to obtain the truth value of qi
at position j in the input (infinite) timed word ρ = (σ, τ). Observe that only
events occurring between τj − pr(ψi) and τj + fr(ψi) can affect the truth value
of ψi at j. This implies that ρ, j |= ψi ↔ ρ′, j |=f ψi, given that ρ′ is a prefix
of ρ that contains all events between τj − pr(ψi) and τj + fr(ψi). Since ρ is of
bounded variability kvar, there will be at most lp(ψ) + 1+ lf (ψ) events between
τj − pr(ψi) and τj + fr(ψi). It follows that we can simply record all events



in this interval. Events outside of this interval are irrelevant as they do not
affect whether ρ′, j |=f ψi. In particular, we maintain a two-dimensional array of
l = lp(ψ)+1+lf (ψ)+1 rows and 1+|ψ| columns. The first column is used to store
timestamps of the corresponding events.5 The last |ψ| columns are used to store
the truth values of subformulas. We then use dynamic programming procedures
(cf. [22]) to evaluate whether ρ′, j |=f ψi. These procedures fill up the array in a
bottom-up manner, starting from minimal subformulas. New operators EcI ,N

c
I

can be handled similarly, and the columns for boolean combinations can be filled
in the natural way.

Now consider all propositions in Q. We can obtain the truth values of them
at all positions in the ‘sliding window’ by using an array of lQp + 1 + lQf + 1

rows and 1 + |ψ1|+ · · ·+ |ψm| columns, where lQp = maxi∈[1,m] lp(ψi) and l
Q
f =

maxi∈[1,m] lf (ψi). Each column can be filled in time linear in its length. Overall,
we need an array of size O(kvar ·csum ·|ϕ̂|) where csum is the sum of the constants
in ϕ̂, and for each position j we need time O(kvar · csum · |ϕ̂|) to obtain the truth
values of all propositions in Q. This method is not very efficient as for each j
we need to fill all columns for temporal subformulas from scratch. Previously
computed entries cannot always be reused as certain entries are ‘wrong’—they
were computed without the knowledge of events outside of the interval.

Incremental Evaluation We describe an optimisation which allows effective
reuse of computed entries stored in the table. The idea is to treat entries that
depend on future events as ‘unknown’ and not to fill them. By construction,
these unknown entries will not be needed for the result of the evaluation.

For a past subformula, e.g, ϕ1 S(a,b) ϕ2, we can simply suspend the column-
filling procedure when we filled all entries using the truth values of ϕ1 and ϕ2

(at various positions) that are currently known. We may continue when the
truth values of ϕ1 and ϕ2 (at some other positions) that are previously unknown
become available. Subformulas of the form Nc

Iϕ can be handled in a similar
way. The case for future subformulas is more involved. Suppose that we filling
a column for p1 U(a,b) p2 with the naïve method. Denote the corresponding
timestamp of an index i in the column by t(i) and the timestamp of the last
acquired event by tmax. Observe that not all of the truth values at indices j,
t(j) + b > tmax can be reused later, as they might depend on future events.
However, if we know that ϕ1 does not hold at some j′, t(j′) + b > tmax, then
all the truth values at indices < j′ can be reused in the following iterations as
they cannot depend on future events. Now consider the general case of filling the
column for ψ = ϕ1U(a,b)ϕ2. We keep an index jψ that points to the first unknown
entry in the column, and we now let tmax = min(t(jϕ1

− 1), t(jϕ2
− 1)). In each

iteration, if jϕ1
and jϕ2

are updated to some new values, tmax also changes
accordingly. In this case, we first check if t(jψ)+b > tmax. If this is the case, we do
nothing (observe the fact that ϕ1 must hold at all indices l, t(jψ) < t(l) ≤ tmax,

5 We assume the timestamps can be finitely represented, e.g., with a built-in data
type, and additions and subtractions on them can be done in constant time.



thus the truth value at jψ must remain unknown). Otherwise we find the least
index l′ > jψ such that t(l′)+ b > tmax. Additionally, we check if all truth values
of ϕ1 between tmax and toldmax are true, starting from tmax. If ϕ1 is not satisfied
at some position j′ then start filling at max(l′, j′)− 1. Otherwise we start filling
from l′ − 1. Note that we still make use of the truth values of ϕ1 and ϕ2 up to
tmax.

Observe that we can use a variable to keep track of the least index l′ > jψ
such that t(l′) + b > tmax instead of finding it each time since it increases
monotonically. Also we can keep track of the greatest index where ϕ2 holds.
With these variables, we can easily make the extra ‘sweeping’ happen only twice
(once for ϕ1 and once for ϕ2) over newly acquired truth values. Also observe
that the truth value of a subformula at a certain position will be filled only once.
These observations imply that each entry in the array can be filled in amortised
constant time. Similar ideas work for subformulas of the form EcIϕ. Assuming
that each step of an deterministic automaton takes constant time, we can state
the following theorem.

Theorem 2. For a formula ϕ and an infinite timed word of bounded variability
kvar, our online monitoring procedure requires two DFAs of size 22

O(|Φ|)
, an

array of size O(kvar · csum · |ϕ̂|) where csum is the sum of the constants in ϕ̂, and
amortised time O(|ϕ̂|) per event.

5.3 Correctness

One may think of the monitoring process on an infinite timed word ρ ∈ TΣω
P as

continuously extending a corresponding finite timed word ρ′ ∈ TΣ∗Q. Suppose
that, instead of Dgood and Dbad, we now execute a deterministic ω-automaton
DΦ such that L(DΦ) = L(Φ). Since we are implicitly ensuring that the truth
values of propositions in Q are valid along the way, it is easy to see that the
corresponding run on DΦ will be accepting iff ρ |= ϕ. However, for the purpose
of online monitoring, we will be more interested in deciding whether ρ |= ϕ given
only a finite prefix of ρ. In this subsection we show that our approach is both
sound and complete for detecting informative prefixes.

The following proposition is immediate since three views of the truncated
semantics coincide in this case.

Proposition 8. For a bounded formula ψ, a finite timed word ρ = (σ, τ) and a
position 1 ≤ i ≤ |ρ| such that τi + fr(ψ) ≤ τ|ρ| and τi − pr(ψ) ≥ 0, we have

ρ, i |=+f ψ ↔ ρ, i |=f ψ ↔ ρ, i |=−f ψ .

The following lemma implies that the rewriting process outlined in Section 4
preserves the ‘informativeness’ of prefixes.

Lemma 1. For a formula ϕ, let ϕ′ be the formula obtained after applying one
of the rewriting rules in Section 4 on some of its subformula. We have

ρ |=+f ϕ↔ ρ |=+f ϕ
′ and ρ |=−f ϕ↔ ρ |=−f ϕ

′ .



Proof. See Appendix B. ut

Given the lemma above, we can state the following theorem.

Theorem 3. The set of informative good prefixes of ϕ coincides with the set of
informative good prefixes of ϕ̂. Same for informative bad prefixes.

Now we state the main result of the paper in the following two theorems.

Theorem 4 (Soundness). In our procedure, if we ever reach an accepting state
of Dgood (Dbad) over a finite word u ∈ Σ∗Q, then the finite timed word ρ ∈ TΣ∗P
that we have read must be an informative good (bad) prefix for ϕ.

Proof. For such u and the corresponding ρ (note that |u| ≤ |ρ|),

∀i ∈ [1, |u|]
(
(u, i 6|=−f Θ → ρ, i 6|=−f ϑ) ∧ (u, i |=+f Θ → ρ, i |=+f ϑ)

)
where Θ is a subformula of Φ and ϑ = Θ(ψ1, . . . , ψm). This can easily be proved
by structural induction. If u is accepted by Dgood, we have u|=+f Φ by construction.
By the above we have ρ |=+f Φ(ψ1, . . . , ψm), as desired. The case for Dbad is
symmetric. ut

Theorem 5 (Completeness). Whenever we read an informative good (bad)
prefix ρ = (σ, τ) for ϕ, Dgood (Dbad) must eventually reach an accepting state.

Proof. For the finite word u′ obtained a bit later with |u′| = |ρ|,

∀i ∈ [1, |u′|]
(
(ρ, i |=+f ϑ→ u′, i |=+f Θ) ∧ (ρ, i 6|=−f ϑ→ u′, i 6|=−f Θ)

)
where Θ is a subformula of Φ and ϑ = Θ(ψ1, . . . , ψm). Again, this can be proved
by structural induction (the base step holds by Proposition 4). The theorem
follows. ut

Remark 1. As pointed out in Example 1, is possible that some of the bad pre-
fixes for ϕ are not informative. To avoid such a situation, we can impose certain
syntactic restrictions on ϕ. For example, it can be shown that all bad prefixes
of Safety-MTL [24] formulas will inevitably be extended to informative bad pre-
fixes.6

6 Conclusion

We have given an efficient online monitoring procedure for MTL[U,S,E,N], the
extension of MTL[U,S] with the new modalities. Along the way, we also obtain
a new proof that MTL[U,S] is not expressively complete for FO[<,+Q] in the
pointwise semantics, in contrast to the situation in the continuous semantics. In
6 In the words of Kupferman and Vardi [17], all Safety-MTL properties are either

intentionally safe or accidentally safe.



particular, we have introduced two new families of first-order definable modalities
EcI ,N

c
I that strictly increase the expressiveness of MTL[U,S].

Our procedure detects all informative prefixes for the input formula. It works
by rewriting the input MTL[U,S,E,N] formula into an LTL[U,S] formula over a
set of bounded MTL[U,S,E,N] atoms. The former is converted into a determin-
istic (untimed) automaton, while the truth values of the latter are maintained
by dynamic programming. Crucially we circumvent the potentially delicate issue
of translating MTL[U,S,E,N] to a class of deterministic timed automata.

In the future we plan to compare the expressiveness of MTL[U,S,E,N]
and FO[<,+Q]. The new modalities EcI ,N

c
I seem to fill a certain gap between

pointwise and continuous interpretations of MTL[U,S], suggesting that their
inclusion may yield expressive completeness. Indeed, we have proved recently
that MTL[U,S,E,N] is expressively complete for FO[<,+1] over timed words of
bounded durations [14]. Another possible direction for future work is to improve
the monitoring procedure. For example, the dynamic programming procedures in
Section 5.2 can support subformulas with unbounded past. This can be exploited
to use a smaller equivalent formula in place of ϕ̂.
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A Proof of Proposition 1

In order to prove this proposition, we will need some extra definitions. Given a
formula ϕ, we define its granularity g as the largest positive rational such that
1
g ∈ N>0 and all constants appear in ϕ are integer multiples of g. We then resort
to a rational variant of the MTL[U,S] EF theorem (see [25] for details). We
write ρ, i ≈c,gn ρ′, i′ if for every n-round MTL[U,S] EF-game allowing constants
m ·g ≤ c ·g,m ∈ N≥0 on ρ, ρ′ that starts from configuration (i, i′), the Duplicator
always has a winning strategy.

Theorem 6 ([25]). For infinite timed words ρ, ρ′ and an MTL[U,S] formula ϕ
of granularity g, modal depth ≤ n with largest constant ≤ c · g,

ρ, 1 ≈c,gn ρ′, 1 implies ρ |= ϕ↔ ρ′ |= ϕ .

We will construct two families of infinite timed words (Mn,c,g) and (Nn,c,g)
that are indistinguishable by MTL[U,S] formulas of granularity g, modal depth
≤ n with all constants ≤ c · g.

Fix some n, c ∈ N≥0 and g ∈ Q>0 (wlog. we assume g < δ and g < 1
5 ).

Let c′ be the least integer greater than 1−g
1−2g · (c + 3) + 1 and pick ε < g

1
g−1

.

A sequence of ‘empty’ events (in which none of p1, p2 hold) starts at time 0
and is equally separated by g. After the last empty event at c · g, a number of
overlapping segments start at time (c + 1) · g. Each segment consists of a p1-
event and a p2-event. If the p1-event in the ith segment is at, say, t, then its
p2-event is at t + 2g + i

3·n·c′+3 · ε (see Figure 1). All p1-events in neighbouring
segments are separated by g − g

1
g−1

. We put a total of 2 · n · c′ + 1 segments.7

Then an infinite sequence of empty events, equally separated by g, starts at g
after the p2-event in the last segment. The only difference of the constructed
timed words Mn,c,g, Nn,c,g lies in the middle (i.e., (n · c′ + 1)th) segment. Say
this segment starts at t, then in Mn,c,g we move the corresponding p2-event to
t + 2g − n·c′+1

3·n·c′+3 · ε instead. For convenience, we denote this pair of events in
Mn,c,g and Nn,c,g by x and y and write their corresponding timestamps as tx
and ty (see Figure 2). It is easy to see that no p2-event has distance an integer
multiple of g to some other p1-event or p2-event. This completes our description
of the construction of (Mn,c,g) and (Nn,c,g).

We say a configuration (i, j) is identical if i = j. For a position i ≥ 1,
seg(i) indicates to which segment the ith event belongs. For convenience we
define seg(i) = 0 if the ith event is empty. Let (ir, jr) be the configuration at
the beginning of round r. We say that the Duplicator has followed the copy-cat
strategy in round r if seg(ir+1)− seg(ir) = seg(jr+1)− seg(jr).

Proposition 9. For a previously described n-round MTL[U,S] EF game on
Mn,c,g, Nn,c,g starting from (1, 1), the Duplicator always has a winning strat-
egy such that for each round 0 ≤ r ≤ n, the ithr -event in Mn,c,g and the jthr -event
in Nn,c,g satisfy the same set of propositions and
7 We assume n · c′ ≥ 1

g
− 1. If this is not the case, simply put more segments.
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Fig. 2. Near the middle segments in Mn,c,g and Nn,c,g

– if seg(ir) 6= seg(jr), then
(n− r + 1) · c′ − 1 < seg(ir), seg(jr) < (n+ r − 1) · c′ + 3.

Proof. We prove the proposition by induction on r. The basic idea is to make
the resulting configurations identical whenever possible. Otherwise we try to
adopt the copy-cat strategy. If that is also not possible, we choose another event
that satisfies the same propositions. In the following, we refer to the timed word
that the Spoiler first chooses as ρs = (σs, τs) (ρd = (σd, τd) for that of the
Duplicator).

– Base step. The proposition holds trivially for (i0, j0) = (1, 1).
– Induction step. Suppose the claim holds for r < n. We prove it also holds

for r + 1.
• (ir, jr) = (1, 1):

Since all segments happen at time > c · g, the Duplicator can always
make (ir+1, jr+1) an identical configuration.

• (ir, jr) 6= (1, 1) is identical:
We may assume r > 0 and thus n > 0. Observe that any two p1-events
that arem·( 1g−1) segments away are separated bym·(1−2g), which is an
integer multiple of g. More specifically, those p1-events whose distances
to tm are multiples of g will also have distances to tl which are multiples
of g. Consider the following cases:
∗ (ir, jr) both correspond to empty events and the Spoiler chooses

event x or event y. However, the least distance between such a pair
(ir, jr) and either event x or y is larger than g + n · c′ · (g − g

1
g−1

) +

2g− g
1
g−1

> c · g, which implies that the Duplicator can always make

(ir+1, jr+1) identical.



∗ (ir, jr) both correspond to p1-events and the Spoiler chooses (say)
i′r = x. The Duplicator may either choose j′r = y (then the Duplicator
can surely make (ir+1, jr+1) identical later) or if that is not possible,
choose event j′r = y′. In the latter case, if the Spoiler plays F-part,
it is obvious that the resulting configuration (ir+1, jr+1) would sat-
isfy the claim. If she plays U-part, the Duplicator may either make
(ir+1, jr+1) identical or seg(jr+1) − seg(ir+1) = −1. In this latter
case it is clear that the claim still holds (seg(ir+1) = n · c′ + 2 or
seg(ir+1) = n · c′ + 4). Notice that the assumption g < 1

5 is crucial
for the U-part (consider, e.g., g = 1

5 and τsir = τdjr = tl + g).
∗ (ir, jr) corresponds to p2-events except x and y, and the Spoiler

chooses, say, event i′r = x. The reasoning is exactly similar to the
case above.

∗ (ir, jr) corresponds to events x and y. If the Spoiler chooses some
event z and forces the Duplicator not to choose the corresponding
event but another one in a neighbouring segment, then that event z
must be less than (c + 1) · g away from tl. If it happens before tl,
then tm would have distance < (c− 1) · g to it. If it happens after tl,
then tm would be < (c+3) · g away from it. Assume that z happens
before tl. If z is a p1-event, we divide (c−1) ·g by (g− g

1
g−1

) to obtain
1−g
1−2g · (c− 1) > |seg(z)− seg(ir)| where seg(ir) = n · c′ +1. Observe
that the p1-event z′ that the Duplicator chooses as the response will
be at most one more segment away. Then the claim holds regardless
of the Spoiler plays F-part or U-part (may cause a drift of two more
segments) later. If z is a p2-event, observe that its corresponding
p1-event in the same segment must be at less than 2g + g

1
g−1

<

3 · (g − g
1
g−1

) away from z. Add this to (c − 1) · g and divide the

result by (g − g
1
g−1

) gives 1−g
1−2g · (c − 1) + 3 < 1−g

1−2g · (c + 2). Again,

the p2-event z′ that the Duplicator chooses will at most one more
segment away. The case for z happens after tl is similar.

• (ir, jr) is not identical:
We claim that no matter how the Spoiler plays, the Duplicator can
always either make (ir+1, jr+1) identical or, ensure that (ir+1, jr+1) has
not moved towards the nearest end by ≥ c′ segments. In the latter case
the claim holds by IH. Note that we cannot always follow the copy-
cat strategy. In the following, we would assume that the Spoiler always
chooses some event that is more than two events away from the current
event, e.g., j′r > jr+2. If j′r ≤ jr+2, it is easy to see that the Duplicator
can simply choose i′r = ir + (j′r − jr).
Assume that (ir, jr) corresponds to a pair of p1-events and wlog. assume
that the Spoiler chooses a position j′r such that j′r > jr. If the Duplicator
can choose i′r such that i′r = j′r and i′r 6= ir + 1, the Duplicator chooses
i′r = j′r. Then, if the Spoiler plays F-part, it is immediate that ir+1 =
jr+1. If the Spoiler plays U-part, then the Duplicator makes ir+1 = jr+1



whenever possible. Otherwise, for example, if ir < jr and the Spoiler
chooses some p1-event in (τdir , τ

d
jr
) as ir+1, then the Duplicator chooses

jr+1 = jr + 2. Observe that ir+1 has moved towards jr (and away from
the nearest end). The claim holds by IH. If the Duplicator cannot choose
i′r such that i′r = j′r, or she can but i′r = ir + 1 prevents her from doing
so, consider the following cases:
∗ the Duplicator can choose i′r such that i′r = ir + (j′r − jr): If the
Duplicator cannot choose i′r = j′r, then the Duplicator chooses i′r =
ir + (j′r − jr). As before, we know that τsj′r < τsjr + (c + 1) · g. It is
easy to see that seg(ir+1)−seg(ir) < c′ and seg(jr+1)−seg(jr) < c′,
and hence the claim holds by IH. If the Duplicator can indeed choose
i′r = j′r but i′r = ir +1, then the Duplicator chooses i′r = ir +3. It is
easy to see that the claim holds by IH.

∗ the Duplicator cannot choose i′r such that i′r = ir + (j′r − jr): This
can only happen when j′r corresponds to a p2-event. Observe that all
p1-events in neighbouring segments are separated by g − g

1
g−1

. The

implication is that there exists t such that t− τsjr = m · g = m′ · g
1
g−1

for some m,m′ ∈ N>0, and there exists |k1|, |k2| < 1, k1, k2 6= 0 such
that t− τsjr lies between
· τsj′r − τ

s
jr

= m1 · g
1
g−1

+ k1 · ε,m1 ∈ N>0

· τdir+(j′r−jr)
− τdir = m2 · g

1
g−1

+ k2 · ε,m2 ∈ N>0.
It is obvious that m1 = m2. If k1 · k2 > 0, since there is no integer
multiple of g

1
g−1

that lies between, e.g., m′ · g
1
g−1

and (m′ +1) · g
1
g−1

,

this is a contradiction. If k1 · k2 < 0, we must have m′ = m1 = m2.
This only happens when ir + (j′r − jr) in ρd corresponds to event
x. In this case, the Duplicator chooses the corresponding event in a
neighbouring segment. For example, if (ir, jr) corresponds to a pair
of p1-events, seg(ir) = n · c′ + 1, seg(jr) = n · c′, I = (2g, 3g) and
j′r = y′, then the Duplicator chooses i′r = x′. Now if the Spoiler plays
F-part, since we know that τsj′r < τ sjr + (c + 1) · g, the claim holds.
If the Spoiler plays U-part, e.g., in the fore-mentioned example, the
Spoiler chooses ir+1 = x, then the Duplicator chooses jr+1 = y′′. We
see that the claim also holds.

Now assume that (ir, jr) corresponds to a pair of p2-events and wlog.
assume that the Spoiler chooses a position j′r such that j′r < jr. Most
cases can be argued in very similar ways. We consider the situation
when the Duplicator cannot choose i′r such that i′r = ir + (j′r − jr).
If j′r corresponds to a p1-event then the argument is exactly similar
to above. Otherwise if j′r corresponds to a p2-event, observe the fact
that all p2-events in neighbouring segments, except x, are separated by
g− g

1
g−1

+ 1
3·n·c′+3 ·ε. By a similar argument, if k1 ·k2 < 0, the Duplicator

chooses the corresponding event in a neighbouring segment. It can be
argued in the same way that the claims holds regardless of the Spoiler
plays F-part or U-part later.



ut

Proposition 10. For a given MTL[U,S] formula ϕ of granularity g, modal
depth n with largest constant c · g, the constructed timed words Mn,c,g, Nn,c,g
satisfy

Mn,c,g |= ϕ↔ Nn,c,g |= ϕ ,

while
Mn,c,g |= F(p1 ∧ E1

(1,2)p1) and Nn,c,g 6|= F(p1 ∧ E1
(1,2)p1) .

Proof. Observe that for each p1-event in Nn,c,g, the first point in (1, 2) may only
be an empty event or a p2-event that is 1

g −1 segments later. InMn,c,g, there will
be a p1-event in (1, 2) from some p1-event. The rest follows from Proposition 9
and Theorem 6. ut

B Proof of Lemma 1

Proof. Since the satisfaction relations are defined inductively, we can work di-
rectly on the relevant subformula. We would like to prove that for a finite timed
word ρ and a position i in ρ,

ρ, i |=+f φ↔ ρ, i |=+f φ
′ and ρ, i |=−f φ↔ ρ, i |=−f φ

′

where φ ↔ φ′ matches one of the rules in Section 4. It is easy to see that the
usual rules used to push negations or switch between modalities and their duals,
e.g., GIϕ ↔ ¬FI¬ϕ, do not affect the informativeness of prefixes. For a group
of similar rules we will only prove a representative one, as the proof for others
follow similarly. In the following we let the LHS be φ and RHS be φ′.

– ϕ1 U(a,∞) ϕ2 ↔ ϕ1 U ϕ2 ∧
(
F(0,a]true→ G(0,a](ϕ1 ∧ ϕ1 U ϕ2)

)
:

• ρ, i |=+f φ↔ ρ, i |=+f φ′:
Assume ρ, i|=+f φ. By definition we have ρ, i|=+f ϕ1Uϕ2. If there is no event
in (τi, τi+a], since there must be an event in (τi+a, τ|ρ|], ρ |=−f F(0,a]true
cannot hold and we are done. If there are events in (τi, τi+a], then for all
j such that τj−τi ∈ (0, a] we have ρ, j 6|=−f ¬ϕ1. Also for all such j we have
ρ, j 6|=−f ¬ϕ1 U ϕ2 since it is obvious that ρ, j |=+f ϕ1 U ϕ2. For the other
direction, if ρ, i|=+f ϕ1Uϕ2 because of a witness in (τi+a, τ|ρ|) then we are
done. If this is not the case we must have ρ, i |=−f F(0,a]true (since there
is an event in (τi, τi+a]). We then have ρ, i 6|=−f F(0,a]

(
¬ϕ1∨¬(ϕ1Uϕ2)

)
(this implies τ|ρ| ≥ a). Now for all j such that τj − τi ∈ (0, a] we have
ρ, j |=+f ϕ1 and ρ, j |=+f ϕ1 U ϕ2, which imply ρ, i |=+f φ.

• ρ, i |=−f φ↔ ρ, i |=−f φ′:
Assume ρ, i |=−f φ. This holds if there is a witness in (a,∞) or ρ, i |=f Gϕ1.
In both cases we have ρ, i|=−f ϕ1Uϕ2. If there is no event in (τi, τi+a] then



we are done. If there is a witness, then for all such j that τj − τi ∈ (0, a]
we have ρ, j |=−f ϕ1 and ρ, j |=−f ϕ1 U ϕ2. If there is no witness then for
all such j we again have ρ, j |=−f ϕ1 and ρ, j |=−f ϕ1 U ϕ2. For the other
direction, if there is no event in (τi, τi+a] we are done. If there are event
in (τi, τi + a], all j such that τj − τj ∈ (0, a] will satisfy ρ, j |=−f ϕ1 and
ρ, j |=−f ϕ1 U ϕ2. This clearly gives ρ, i |=−f φ.

– ¬(ϕ1 U ϕ2)↔ G¬ϕ2 ∨
(
¬ϕ2 U (¬ϕ2 ∧ ¬ϕ1)

)
:

• ρ, i |=+f φ↔ ρ, i |=+f φ′:
Assume ρ, i |=+f φ ↔ ρ, i 6|=−f ϕ1 U ϕ2. This implies that ϕ1 fails to hold
before ϕ2 holds, and we have ρ, i |=+f ¬ϕ2 U (¬ϕ2 ∧ ¬ϕ1). For the other
direction note that ρ, i 6|=+f G¬ϕ2, the second disjunct must be satisfied,
and it is easy to see that ρ, i |=+f φ.

• ρ, i |=−f φ↔ ρ, i |=−f φ′:
Assume ρ, i |=−f ¬(ϕ1 U ϕ2) ↔ ρ, i 6|=+f ϕ1 U ϕ2. This implies either
ρ, j 6|=+f ϕ2 ↔ ρ, j |=−f ¬ϕ2 for all j > i in ρ (this gives ρ, i |=−f G¬ϕ2)
or ϕ1 fails to hold before ϕ2 holds—ρ, i |=−f ¬ϕ2 U (¬ϕ2 ∧ ¬ϕ1). For the
other direction, if ρ, i|=−f G¬ϕ2 ↔ ρ, i 6|=+f Fϕ2 then ρ, i|=+f ϕ1Uϕ2 cannot
hold. If ρ, i |=−f ¬ϕ2 U (¬ϕ2 ∧ ¬ϕ1) then either ρ, i |=−f G¬ϕ2 or there is
a witness, and it is easy to see that ρ, i |=+f ϕ1 U ϕ2 cannot hold.

– Ec(a,∞)ϕ ↔ Ec(a,a+max(c,a−c)]ϕ ∨
(
¬F(c,a]true ∧ Fw[0,c](false U(c,∞) ϕ)

)
(let

c ≥ a− c):

• ρ, i |=+f φ↔ ρ, i |=+f φ′:
Assume ρ, i |=+f φ. If there is an event in (τi+c, τi+a] then since c ≥ a−c,
the witness must be in (τi + a, τi + a + c], and clearly ρ, i |=+f Ec(a,a+c]ϕ.
If there is no event in (τi + c, τi + a] then ρ, i |=−f F(c,a]true cannot hold.
In this case, if the witness is in (τi + a, τi + a+ c] then ρ, i |=+f Ec(a,a+c]ϕ.
If the witness is in (τi + a+ c, τ|ρ|] then ρ, i |=+f Fw[0,c](false U(c,∞) ϕ) as
a ≥ c. For the other direction, if ρ, i |=+f Ec(a,a+c]ϕ then clearly ρ, i |=+f φ. If
ρ, i 6|=−f F(c,a]true, note that the witness for ρ, i |=+f Fw[0,c](falseU(c,∞) ϕ)

must be the last event in [τi, τi + c], and it is clear that ρ, i |=+f φ.
• ρ, i |=−f φ↔ ρ, i |=−f φ′:

Assume ρ, i |=−f φ. If τ|ρ| ≤ τi + a then ρ, i |=−f Ec(a,a+c]ϕ. If τ|ρ| > τi + a

and the witness is in (τi + a, τi + a + c] then again ρ, i |=−f Ec(a,a+c]ϕ.
Otherwise τ|ρ| > τi + a + c and there is no event in (τi + a, τi + a + c].
This implies that there is no event in (τi + c, τi + a] and hence ρ, i 6|=+f
F(c,a]true. Since τ|ρ| > τi + a + c, ρ, i |=−f Fw[0,c](false U(c,∞) ϕ) clearly
holds. For the other direction, if ρ, i |=−f Ec(a,a+c]ϕ then clearly ρ, i |=−f φ.



If ρ, i 6|=+f F(c,a]true, then if τ|ρ| ≤ c we are done. Otherwise if τ|ρ| > a,
since ρ, i |=−f Fw[0,c](falseU(c,∞) ϕ), the first event in (τi+ a, τ|ρ|] must be
a witness for ρ, i |=−f φ.

– Ec(a,b)(ϕ1 U ϕ2)↔ (Ec(a,b)true)

∧
(
Ea(a,b)(ϕ1 U(0,2b) ϕ2) ∨

(
Ea(a,b)(G(0,2b)ϕ1) ∧ ϕugb

))
:

• ρ, i |=+f φ↔ ρ, i |=+f φ′:
Assume ρ, i |=+f φ. It is clear that ρ, i |=+f Ec(a,b)true. With an argument
similar to the proof of Proposition 5, it is easy to see that ρ, i |=+f
Ea(a,b)(ϕ1 U(0,2b) ϕ2) or ρ, i |=+f Ea(a,b)(G(0,2b)ϕ1) ∧ ϕugb. For the other
direction, if ρ, i |=+f Ea(a,b)(ϕ1U(0,2b)ϕ2) then we are done. Otherwise, the
argument is similar to the proof of Proposition 5.

• ρ, i |=−f φ↔ ρ, i |=−f φ′:
Assume ρ, i |=−f φ. If τ|ρ| ≤ a then we are done. Otherwise if τ|ρ| > a, we
must have ρ, i |=−f Ec(a,b)true. The rest is similar to the proof of Proposi-
tion 5. The other direction is also similar to the proof of Proposition 5.

–
(
(ϕ1 U ϕ2) ∨ χ

)
U(a,b) θ ↔

(
(ϕ1 U(0,2b) ϕ2) ∨ χ

)
U(a,b) θ

∨
(((

(ϕ1 U(0,2b) ϕ2) ∨ χ
)
U(0,b) (G(0,2b)ϕ1)

)
∧ F(a,b)θ ∧ ϕugb

)
:

• ρ, i |=+f φ↔ ρ, i |=+f φ′:
Assume ρ, i|=+f φ. It is obvious that ρ, i|=

+
f F(a,b)θ holds. If the first disjunct

of φ′ does not hold, then ρ, i |=+f
(
(ϕ1 U(0,2b) ϕ2) ∨ χ

)
U(0,b) (G(0,2b)ϕ1)

must hold. The last conjunct holds by an argument similar to the proof
of Proposition 5. For the other direction, if the first disjunct of φ′ holds
then we are done. If it does not hold, then there must be a witness (at
which ϕ2 holds) in [τi + 2b, τ|ρ|], and it is easy to see that ρ, i |=+f φ.

• ρ, i |=−f φ↔ ρ, i |=−f φ′:
Assume ρ, i |=−f φ. If the first disjunct of φ′ does not hold then there must
be events in [τi+2b, τ|ρ|]. It follows that ρ, i |=−f

(
(ϕ1U(0,2b)ϕ2)∨χ

)
U(0,b)

(G(0,2b)ϕ1) and ρ, i |=−f F(a,b)θ must hold. The rest is similar to the proof
to Proposition 5. For the other direction, if the first disjunct of φ′ holds
then we are done. Otherwise if τ|ρ| < b, it is easy to see that ρ, i |=−f φ. If
this is not the case then the proof closely follows Proposition 5.

ut

C Proof of Remark 1

Consider Safety-MTL with past: when written in negation normal form, all UI

are bounded while there are no restrictions on SI .



Proposition 11 (Safety). η, i 6|= ϕ implies that there is a prefix ρ of η s.t. for
any ζ, ρζ, i 6|= ϕ.

Proof. Simple induction on the structure of ϕ. ut

Proposition 12 (Non-pathological safety). For a prefix ρ, if ρζ, i 6|= ϕ for
all ζ, then for any ζ there exists a prefix ρ′ of ρζ s.t. ρ′, i |=+f ¬ϕ.

Proof. We prove this by structural induction. The base step is trivial. For the
induction step:

– ϕ1 ∨ ϕ2:
For arbitrary ζ we have ρζ, i 6|= ϕ1 and ρζ, i 6|= ϕ2. Hence for any ζ there is a
ρ′ such that ρ′, i |=+f ¬ϕ1 and ρ′, i |=+f ¬ϕ2 (by IH and Proposition 4). We then
have ρ′, i |=+f ¬ϕ1 ∧ ρ′, i |=+f ¬ϕ2 ↔ ρ′, i |=+f (¬ϕ1 ∧¬ϕ2)↔ ρ′, i |=+f ¬(ϕ1 ∨ϕ2).

– ϕ1 ∧ ϕ2:
For arbitrary ζ we have ρζ, i 6|= ϕ1 and ρζ, i 6|= ϕ2. Hence for any ζ there
is a ρ′ such that ρ′, i |=+f ¬ϕ1 or ρ′, i |=+f ¬ϕ2 (by IH). We then have ρ′ 6|=−f
ϕ1 ∨ ρ′ 6|=−f ϕ2 ↔ ρ′ 6|=−f ϕ1 ∧ ϕ2 ↔ ρ′ |=+f ¬(ϕ1 ∧ ϕ2).

– ϕ1 UI ϕ2:
ρζ, i 6|= ϕ1 UI ϕ2 for any ζ iff for any ζ, ϕ1 fails to hold before ϕ2 holds
or there is no ϕ2 (later than τi) in I. By non-Zenoness and the fact that
I is bounded, in the first case we have, for a given ζ, a prefix ρ′ of ρζ s.t.
∃j ∈ (i, |ρ′|]

(
τj − τi ≤ I ∧ ρ′, j |=+f ¬ϕ1 ∧ ∀l ∈ (i, j] (ρ′, l |=+f ¬ϕ2)

)
by IH. In

the second case we have ρ′ s.t. ∀j ∈ (i, |ρ′|] (τj − τi ∈ I → ρ′, j |=+f ¬ϕ2). In
either case it is easy to see that ρ′, i |=+f ¬(ϕ1 UI ϕ2).

– ϕ1ŨIϕ2: ρζ, i 6|= ϕ1ŨIϕ2 for arbitrary ζ iff for any ζ, we have ¬ϕ1 UI

¬ϕ2 holds at i. We have, for a given ζ, a prefix ρ′ of ρζ such that ∃j ∈
(i, |ρ′|]

(
τj − τi ∈ I ∧ ρ′, j |=+f ¬ϕ2 ∧ ∀l ∈ (i, j) (ρ′, l |=+f ¬ϕ1)

)
by IH. Now, of

course, ρ′, i |=+f ¬ϕ1 UI ¬ϕ2 ↔ ρ′, i |=+f ¬(ϕ1ŨIϕ2).

The cases for ϕ1 SI ϕ2 and ϕ1S̃Iϕ2 are exactly similar. ut


