
Online Monitoring of Metric Temporal Logic

Hsi-Ming Ho, Joël Ouaknine and James Worrell

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Abstract. Current approaches to monitoring real-time properties suf-
fer either from unbounded space requirements or lack of expressiveness.
In this paper, we adapt a separation technique enabling us to rewrite
arbitrary MTL formulas into LTL formulas over a set of atoms compris-
ing bounded MTL formulas. As a result, we obtain the first trace-length
independent online monitoring procedure for full MTL in a dense-time
setting.

1 Introduction

In recent years, there has been increasing interest in runtime verification as a
complement to traditional model checking techniques (see [20, 28] for surveys).
Runtime monitoring, for example, may be used in situations in which we wish
to evaluate a system that is either too complex to model or whose internal
details are not accessible. Moreover, logics whose model-checking problems are
undecidable may become tractable in this more restricted setting. The latter is
the case in the present paper, which is concerned with runtime monitoring of
Metric Temporal Logic with both forwards and backwards temporal modalities
(MTL[U,S]).

MTL[U,S] was introduced almost 25 years ago by Koymans [18] and has
since become the most widely studied real-time temporal logic. Over the reals,
it has been shown that MTL[U,S] has the same expressiveness as Monadic First-
Order Logic of Order and Metric (FO[<,+Q]) [16]. In this paper, we study the
monitoring problem for MTL[U,S] over timed words. This so-called pointwise
semantics is more natural and appropriate when we consider systems modelled
as timed automata. Also, monitoring timed words is often conceptually simpler
and more efficient [6].

Given an MTL[U,S] formula ϕ and a finite timed word ρ, the prefix problem
asks whether all infinite timed words extending ρ satisfy ϕ. The monitoring
problem can be seen as an online version of the prefix problem where ρ is given
incrementally, one event at a time. The monitoring procedure is required to
output an answer when either (i) all infinite extensions of the current trace satisfy
the specification, or (ii) no infinite extension of the current trace can possibly
meet the specification. In this paper, we consider a variant of the monitoring
problem, based on the notion of informative prefixes [19].

Ideally, for a monitoring procedure to be practical, we require that it be
trace-length independent [7] in the sense that the total space requirement should

not depend on the length of the input trace. With this objective in mind, the
principal difficulty in monitoring MTL[U,S] is that it allows unbounded intervals
and nesting of future and past operators, and hence the truth value of a formula
at some point may depend on the truth values of its subformulas arbitrarily far in
the future or past. For this reason, most real-time monitoring procedures in the
literature impose certain syntactic or semantic restrictions, e.g., only allowing
bounded future modalities1 or assuming integer-time traces. A notable exception
is [4] which handles the full logic MTL[U,S] over dense-time signals, but which
unfortunately fails to be trace-length independent.

The main contribution of this paper is a new online monitoring procedure for
MTL[U,S] over dense-time traces. The procedure we give handles the full logic
MTL[U,S] and is trace-length independent,2 making it suitable for traces with
potentially unbounded lengths, e.g., network activity logs. For a given formula,
we first adapt a separation theorem of [16] to rewrite an MTL[U,S] formula
into an LTL[U,S] formula over a set of atoms comprising bounded MTL[U,S]
formulas, whose truth values are computed and stored efficiently. The remaining
untimed component is then handled via translation to deterministic finite au-
tomata. The resulting algorithm is free of dynamic memory allocations, linked
lists, etc., and hence can be implemented efficiently.

2 Related Work

The most closely related work to the present paper is that of Finkbeiner and
Kuhtz [13], which concerns monitoring MTL over a discrete-time semantics. They
handle bounded formulas in a similar fashion to us and highlight the problematic
role of unbounded temporal operators. However they do not exploit a syntactic
rewriting of unbounded operators from the scope of bounded operators, and are
forced to apply specialised constructions in this case.

Another highly relevant work is that of Nickovic and Piterman [25], in which a
translation from MTL to deterministic timed automata is proposed. The essence
of the method is the observation that, while the truth values of unbounded sub-
formulas must necessarily be guessed, the truth values of bounded subformulas
can be obtained via bounded look-ahead. In spirit, this is very similar to our
approach. The main differences are that they consider only the future fragment,
and we handle bounded subformulas explicitly rather than encoding them into
clock constraints.

Regarding real-time logics with past, it is known that the non-punctual
fragment of MTL[U,S], called MITL[U,S], can be translated into timed au-

1 Note in passing that, unlike for LTL, past modalities strictly increase the expressive-
ness of MTL [9].

2 As shown in [21], trace-length independence necessarily requires a global bound on
the variability of time sequences, i.e., the maximum number of events which can
occur in any given unit-duration time interval. This is a standard assumption which
is in practice always met by physical systems. The proof in [21] is carried out in the
continuous semantics, but it goes through in the pointwise setting as well.

tomata [1, 2, 11, 17, 22]. The difficulty in using such approaches for monitoring
lies in the fact that timed automata cannot be determinised in general. In prin-
ciple one can carry out determinisation on-the-fly for timed words of bounded
variability; however, it is not clear that this approach can yield an efficient pro-
cedure.

Automata-free monitoring procedures also appear in the literature. For ex-
ample, in a pioneering paper, Thati and Roşu [29] propose a rewriting-based
monitoring procedure for MTL[U,S]. Their procedure is trace-length indepen-
dent and amenable to efficient implementations. However, the procedure only
works for integer-time traces and hence does not appear applicable to our set-
ting.

Online monitoring of real-time properties is still a very active topic of re-
search. Recently, there have been some attempts to extend temporal logics with
(restricted) first-order quantifiers for monitoring (see, e.g., [5, 7,10,15,27]). The
work in the present paper can be seen as orthogonal to these advances.

3 Background

3.1 Metric Temporal Logic

A time sequence τ = τ1τ2 . . . is a non-empty strictly increasing sequence of
rational numbers such that τ1 = 0. We consider both finite and infinite time
sequences, denoting by |τ | the length of such a sequence. If τ is infinite we
require it to be unbounded, i.e., we disallow the so-called Zeno sequences.

A timed word over a finite alphabet Σ is a pair ρ = (σ, τ), where σ =
σ1σ2 . . . is a non-empty finite or infinite word over Σ and τ is a time sequence
of the same length. We equivalently consider a timed word as a sequence of
events (σ1, τ1)(σ2, τ2) The finite timed words considered in this paper arise
as prefixes of infinite timed words, and so we sometimes use the term prefix to
denote an arbitrary finite timed word. We write TΣ∗ and TΣω for the respective
sets of finite and infinite timed words over Σ. For a set of propositions P we
write ΣP = 2P .

For a space-bounded online monitoring procedure to be possible, we must
impose a global bound on the variability of time sequences, cf. [21]. Henceforth
we assume that all timed words have variability at most kvar for some (a priori
known) absolute constant kvar, i.e., there are at most kvar events in any unit
time interval.

We specify properties of timed words using Metric Temporal Logic with both
the ‘Until’ and ‘Since’ modalities, denoted MTL[U,S]. Given a set of propositions
P , the formulas of MTL[U,S] are given by the following grammar

ϕ ::= p | true | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 UI ϕ2 | ϕ1 SI ϕ2

where p ∈ P and I ⊆ (0,∞) is an interval with endpoints in Q≥0 ∪ {∞}. We
sometime omit the subscript I if I = (0,∞). Given x ∈ Q, we write x < I to
mean x < sup(I). Additional temporal operators and dual operators are defined

in the standard way, e.g.,PIϕ ≡ trueSIϕ andHIϕ ≡ ¬PI¬ϕ. For an MTL[U,S]
formula ϕ, we denote by |ϕ| the number of subformulas of ϕ.

The satisfaction relation ρ, i |= ϕ for an MTL[U,S] formula ϕ, an infinite
timed word ρ = (σ, τ) and a position i ≥ 1 is defined as follows:

– ρ, i |= p iff p ∈ σi
– ρ, i |= ϕ1 UI ϕ2 iff there exists j > i such that ρ, j |= ϕ2, τj − τi ∈ I, and
ρ, k |= ϕ1 for all k with i < k < j

– ρ, i |= ϕ1 SI ϕ2 iff there exists j, 1 ≤ j < i such that ρ, j |= ϕ2, τi − τj ∈ I
and ρ, k |= ϕ1 for all k with j < k < i.3

The semantics of the Boolean connectives is defined in the expected way.
We say that ρ satisfies ϕ, denoted ρ |= ϕ, if ρ, 1 |= ϕ. We write L(ϕ) for the

set of infinite timed words that satisfy ϕ. Abusing notation, we also write L(ψ)
for the set of infinite (untimed) words that satisfy the LTL[U,S] formula ψ, and
L(A) for the set of infinite words accepted by automaton A.

3.2 Truncated Semantics and Informative Prefixes

Since in online monitoring one naturally deals with truncated paths, it is useful
to define a satisfaction relation of formulas over finite timed words. To this end
we adopt a timed version of the truncated semantics [12] which incorporates
strong and weak views on satisfaction over truncated paths. These views indi-
cate whether the evaluation of the formula ‘has completed’ on the finite path,
i.e., whether the truth value of the formula on the whole path is already deter-
mined. For example, the formula F(0,5)p is weakly satisfied by any finite timed
word whose time points are all strictly less than 5 since there is an extension
that satisfies the formula. We also consider the neutral view, which extends to
MTL[U,S] the traditional LTL semantics over finite words [23].

The respective strong, neutral and weak satisfaction relations will be denoted
by |=+f , |=f and |=−f respectively. The definitions below closely follow [12].

Definition 1. The satisfaction relation ρ, i |=+f ϕ for an MTL[U,S] formula ϕ,
a finite timed word ρ = (σ, τ) and a position i, 1 ≤ i ≤ |ρ| is defined as follows:

– ρ, i |=+f p iff p ∈ σi
– ρ, i |=+f true

– ρ, i |=+f ϕ1 ∧ ϕ2 iff ρ, i |=+f ϕ1 and ρ, i |=+f ϕ1

– ρ, i |=+f ¬ϕ iff (ρ, i) 6|=−f ϕ

– ρ, i |=+f ϕ1UI ϕ2 iff there exists j, i < j ≤ |ρ|, such that ρ, j |=+f ϕ2, τj−τi ∈ I,
and ρ, j′ |=+f ϕ1 for all j′ with i < j′ < j

– ρ, i |=+f ϕ1 SI ϕ2 iff there exists j, 1 ≤ j < i, such that ρ, j |=+f ϕ2, τi − τj ∈ I
and ρ, j′ |=+f ϕ1 for all j′ with j < j′ < i.

3 Note that we adopt strict interpretations to UI and SI . It is easy to see that, e.g.,
weak-future until operators can be defined in strict-future ones.

Definition 2. The satisfaction relation ρ, i |=−f ϕ for an MTL[U,S] formula ϕ,
a finite timed word ρ = (σ, τ) and a position i, 1 ≤ i ≤ |ρ| is defined as follows:

– ρ, i |=−f p iff p ∈ σi
– ρ, i |=−f true

– ρ, i |=−f ϕ1 ∧ ϕ2 iff ρ, i |=−f ϕ1 and ρ, i |=−f ϕ1

– ρ, i |=−f ¬ϕ iff (ρ, i) 6|=+f ϕ
– ρ, i |=−f ϕ1 UI ϕ2 iff either of the following holds:

• there exists j, i < j ≤ |ρ|, such that ρ, j |=−f ϕ2, τj−τi ∈ I, and ρ, j′ |=−f ϕ1

for all j′ with i < j′ < j

• τ|ρ| − τi < I and ρ, j′ |=−f ϕ1 for all j′ with i < j′ ≤ |ρ|
– ρ, i |=−f ϕ1 SI ϕ2 iff there exists j, 1 ≤ j < i, such that ρ, j |=−f ϕ2, τi − τj ∈ I

and ρ, j′ |=−f ϕ1 for all j′ with j < j′ < i.

The following proposition which helps explain the terms strong, neutral and
weak, can be proved by a simple induction on the structure of ϕ.

Proposition 1. For a finite timed word ρ, a position i in ρ and an MTL[U,S]
formula ϕ,

ρ, i |=+f ϕ→ ρ, i |=f ϕ and ρ, i |=f ϕ→ ρ, i |=−f ϕ .

A closely related notion, informative prefixes [19], has been adopted in several
works on online monitoring of untimed properties, e.g., [3, 14]. Intuitively, an
informative prefix for a formula ϕ is a prefix that ‘tells the whole story’ about the
fulfilment or violation of ϕ.4 We give two examples before the formal definition.

Example 1. Consider the following formula over {p1}:

ϕ = FG(¬p1) ∧G(p1 → F(0,3)p1) .

The finite timed word ρ = ({p1}, 0)({p1}, 2)(∅, 5.5) is an informative bad prefix
for ϕ, since no extension satisfies the second conjunct. On the other hand, while
ρ′ = ({p1}, 0)({p1}, 2)({p1}, 4) is a bad prefix for ϕ, it has (different) extensions
that satisfy, respectively, the left and right conjuncts. Thus we do not consider
it an informative bad prefix.

Example 2. Consider the following formula over {p1}:

ϕ′ = G(¬p1) ∧G(p1 → F(0,3)p1) .

This formula is equivalent to the formula ϕ in the previous example. However,
all bad prefixes for ϕ′ are informative.

4 Our usage of the term informative slightly deviates from [19] as in that paper the
term refers exclusively to bad prefixes.

If a prefix ρ strongly satisfies ϕ then we say that it is an informative good
prefix for ϕ. Similarly we say ρ is an informative bad prefix for ϕ when it fails to
weakly satisfy ϕ. Finally ρ is an informative prefix if it is either an informative
good prefix or an informative bad prefix. Here we have adopted the seman-
tic characterisation of informative prefixes in terms of the truncated semantics
from [12], rather than the original syntactic definition [19].

The following proposition follows immediately from the definition of infor-
mative prefixes.

Proposition 2. ρ is informative for ϕ iff ρ is informative for ¬ϕ.

Since ρ |=f ϕ↔ ρ 6|=f ¬ϕ, negating a formula essentially exchanges its set of in-
formative good prefixes and informative bad prefixes. The following proposition
says ‘something good remains good’ and ‘something bad remains bad’.

Proposition 3. For a finite timed word ρ, a position i in ρ and an MTL[U,S]
formula ϕ, if ρ is a prefix of the finite timed word ρ′, then

ρ, i |=+f ϕ→ ρ′, i |=+f ϕ and ρ, i 6|=−f ϕ→ ρ′, i 6|=−f ϕ .

4 LTL[U, S] over Bounded Atoms

In this section we present a series of logical equivalences that can be used to
rewrite a given MTL[U,S] formula into an equivalent formula in which no un-
bounded temporal operator occurs within the scope of a bounded operator. Only
the rules for future modalities and open intervals are given, as the rules for past
modalities are symmetric and the rules for other types of intervals are straight-
forward variants. Since we work in the pointwise semantics, the techniques in [16]
(developed for the continuous semantics) must be carefully adapted.

4.1 Normal Form

We say an MTL[U,S] formula is in normal form if it satisfies the following.

(i) All occurrences of unbounded temporal operators are of the form U(0,∞),
S(0,∞), G(0,∞), H(0,∞).

(ii) All other occurrences of temporal operators are of the form UI , SI with
bounded I.

(iii) Negation is only applied to propositions or bounded temporal operators
(except G(0,∞), H(0,∞)).

(iv) In any subformula of the form ϕ1 UI ϕ2, ϕ1 SI ϕ2, FIϕ2, PIϕ2 where I
is bounded, ϕ1 is a disjunction of temporal subformulas and propositions
and ϕ2 is a conjunction thereof.

We describe how to rewrite a given formula into normal form. To satisfy (i) and
(ii), apply the usual rules (e.g., GIϕ↔ ¬FI¬ϕ) and the rule:

ϕ1 U(a,∞) ϕ2 ↔ ϕ1 U ϕ2 ∧
(
F(0,a]true→ G(0,a](ϕ1 ∧ ϕ1 U ϕ2)

)
.

To satisfy (iii), use the usual rules and the rule:

¬(ϕ1 U ϕ2)↔ G¬ϕ2 ∨
(
¬ϕ2 U (¬ϕ2 ∧ ¬ϕ1)

)
.

For (iv), use the usual rules of Boolean algebra and the rules below:

φUI (ϕ1 ∨ ϕ2)↔ (φUI ϕ1) ∨ (φUI ϕ2)

(ϕ1 ∧ ϕ2)UI φ↔ (ϕ1 UI φ) ∧ (ϕ2 UI φ) .

4.2 Extracting Unbounded Operators from Bounded Operators

We now provide a set of rewriting rules that extract unbounded operators from
the scopes of bounded operators. In what follows, let ϕxlb = false U(0,b) true,
ϕylb = false S(0,b) true and

ϕugb =
(
(ϕxlb → G(b,2b)ϕ1) ∧

(
¬ϕylb → (ϕ1 ∧G(0,b]ϕ1)

))
U

((
ϕ1 ∧ (ϕ1 U(b,2b) ϕ2)

)
∨
(
¬ϕylb ∧

(
ϕ2 ∨

(
ϕ1 ∧ (ϕ1 U(0,b] ϕ2)

))))
,

ϕggb = G
(
(ϕxlb → G(b,2b)ϕ1) ∧

(
¬ϕylb → (ϕ1 ∧G(0,b]ϕ1)

))
.

Proposition 4. The following equivalences hold over infinite timed words.

θU(a,b)

(
(ϕ1 U ϕ2) ∧ χ

)
↔ θU(a,b)

(
(ϕ1 U(0,2b) ϕ2) ∧ χ

)
∨
((
θU(a,b) (G(0,2b)ϕ1 ∧ χ)

)
∧ ϕugb

)
θU(a,b) (Gϕ ∧ χ)↔

(
θU(a,b) (G(0,2b)ϕ ∧ χ)

)
∧ ϕggb

θU(a,b)

(
(ϕ1 S ϕ2) ∧ χ

)
↔ θU(a,b)

(
(ϕ1 S(0,b) ϕ2) ∧ χ

)
∨
((
θU(a,b) (H(0,b)ϕ1 ∧ χ)

)
∧ ϕ1 S ϕ2

)
θU(a,b) (Hϕ ∧ χ)↔

(
θU(a,b) (H(0,b)ϕ ∧ χ)

)
∧Hϕ(

(ϕ1 U ϕ2) ∨ χ
)
U(a,b) θ ↔

(
(ϕ1 U(0,2b) ϕ2) ∨ χ

)
U(a,b) θ

∨
(((

(ϕ1 U(0,2b) ϕ2) ∨ χ
)
U(0,b) (G(0,2b)ϕ1)

)
∧

F(a,b)θ ∧ ϕugb
)

(
(Gϕ) ∨ χ

)
U(a,b) θ ↔ χU(a,b) θ

∨
(
χU(0,b) (G(0,2b)ϕ1) ∧ F(a,b)θ ∧ ϕggb

)

(
(ϕ1 S ϕ2) ∨ χ

)
U(a,b) θ ↔

(
(ϕ1 S(0,b) ϕ2) ∨ χ

)
U(a,b) θ

∨
(((

H(0,b)ϕ1 ∨ (ϕ1 S(0,b) ϕ2) ∨ χ
)
U(a,b) θ

)
∧

ϕ1 S ϕ2

)
(
(Hϕ) ∨ χ

)
U(a,b) θ ↔ χU(a,b) θ ∨

((
(H(0,b)ϕ ∨ χ)U(a,b) θ

)
∧Hϕ

)
.

Proof. We sketch the proof for the first rule as the proofs for other rules are
similar. In the following, let the current position be i and the position of an
(arbitrary) event in (τi + a, τi + b) be j.

For the forward direction, let the witness position where ϕ2 holds be w. If
τw < τj + 2b, the subformula ϕ1 U(0,2b) ϕ2 clearly holds at j and we are done.
Otherwise, G(0,2b)ϕ1 holds at j and it follows that (ϕxlb → G(b,2b)ϕ1) and ϕylb
(and vacuously ¬ϕylb → (ϕ1 ∧G(0,b]ϕ1)) hold at all positions j′, i < j′ < j. Let
l > j be the first position such that τw ∈ (τl + b, τl +2b). Consider the following
cases:

– There is such l: It is clear that
(
ϕ1∧(ϕ1U(b,2b)ϕ2)

)
holds at l. SinceG(b,2b)ϕ1

holds at all positions j′′, j ≤ j′′ < l by the minimality of l, (ϕxlb → G(b,2b)ϕ1)
also holds at these positions. For the other conjunct, note that ϕylb holds at
j and ϕ1 ∧G(0,b]ϕ1 holds at all positions j′′′, j < j′′′ < l.

– There is no such l: Consider the following cases:
• ¬ϕylb and ¬P[b,b]true hold at w: There is no event in (τw − 2b, τw). The

proof is similar to the case where l exists.
• ¬ϕylb and P[b,b]true hold at w: Let l′ be the position such that τl′ =
τw − b. There must be no event in (τl′ − b, τl′). It follows that ¬ϕylb and(
ϕ1 ∧ (ϕ1 U(0,b] ϕ2)

)
hold at l′. The proof is similar.

• ϕylb holds at w: By assumption, there is no event in (τw−2b, τw−b). It is
easy to see that there is a position such that ¬ϕylb∧

(
ϕ1∧ (ϕ1U(0,b]ϕ2)

)
holds. The proof is again similar.

We prove the other direction by contraposition. Consider the interesting case
where G(0,2b)ϕ1 holds at j yet ϕ1 U ϕ2 does not hold at j. If ϕ2 never holds
in [τj + 2b,∞) then we are done. Otherwise, let l > j be the first position such
that both ϕ1 and ϕ2 do not hold at l (note that τl ≥ τj + 2b). It is clear that((
ϕ1 ∧ (ϕ1U(b,2b) ϕ2)

)
∨
(
¬ϕylb ∧

(
ϕ2 ∨

(
ϕ1 ∧ (ϕ1U(0,b] ϕ2)

))))
does not hold

at at all positions j′, i < j′ ≤ l. Consider the following cases:

– ϕylb does not hold at l: ϕ1∧G(0,b]ϕ1 does not hold at l, and hence ϕugb fails
to hold at i.

– ϕylb holds at l: Consider the following cases:
• There is an event in (τl− 2b, τl− b): Let this event be at position j′′. We

have j′′ + 1 < l, τj′′+1 − τj′′ ≥ b and τl − τj′′+1 < b. However, it follows
that ϕylb does not hold at j′′+1 and ϕ1∧G(0,b]ϕ1 holds at j′′+1, which
is a contradiction.

• There is no event in (τl − 2b, τl − b): Let the first event in [τl − b, τl) be
at position j′′. It is clear that ϕylb does not hold at j′′ and ϕ1 ∧G(0,b]ϕ1

must hold at j′′, which is a contradiction.

ut

Proposition 5. For an MTL[U,S] formula ϕ, we can use the rules above to
obtain an equivalent formula ϕ̂ in which no unbounded temporal operator appears
in the scope of a bounded temporal operator.

Proof. Define the unbounding depth ud(ϕ) of a formula ϕ to be the modal depth
of ϕ counting only unbounded operators. We demonstrate a rewriting process
on ϕ which terminates in an equivalent formula ϕ̂ such that any subformula ψ̂
of ϕ̂ with outermost operator bounded has ud(ψ̂) = 0.

Assume that the input formula ϕ is in normal form. Let k be the largest un-
bounding depth among all subformulas of ϕ with bounded outermost operators.
We pick all minimal (wrt. subformula order) such subformulas ψ with ud(ψ) = k.
By applying the rules in Section 4.2, we can rewrite ψ into ψ′ where all subfor-
mulas of ψ′ with bounded outermost operators have unbounded depths strictly
less than k. We then substitute these ψ′ back into ϕ to obtain ϕ′. We repeat
this step until there remain no bounded operators with unbounding depth k.
Rules that rewrite a formula into normal form are used whenever necessary on
relevant subformulas—this will never affect their unbounding depths. It is easy
to see that we will eventually obtain such a formula ϕ∗. Now rewrite ϕ∗ into
normal form and start over again. This is to be repeated until we reach ϕ̂. ut

Given the input formula ϕ over propositions P = {p1, . . . , pn}, we can apply
the rewriting process above to obtain a formula ϕ̂. Since each rewriting rule is a
logical equivalence, we have the following theorem.

Theorem 1. L(ϕ) = L(ϕ̂).

The syntactic separation of the original formula could potentially induce a
non-elementary blow-up. However, such behaviour does not seem to be realised
in practice. In our experience, the syntactically separated formula is often of
comparable size to the original formula, which itself is typically small. For ex-
ample, consider the following formula:

G
(
ChangeGear→ F(0,30)(InjectFuel ∧PInjectLubricant)

)
.

The syntactically separated version of the formula is

G
[
ChangeGear→ F(0,30)(InjectFuel ∧P(0,30)InjectLubricant)

∨
(
F(0,30)(InjectFuel) ∧PInjectLubricant

)]
.

In any case, Proposition 5 and Theorem 1 imply that we may even require the
input formula to be in ‘separated form’ without sacrificing any expressiveness.

5 Online Monitoring Procedure

Having obtained ϕ̂ = Φ(ψ1, . . . , ψm) where ψ1, . . . , ψm are bounded formulas
over P and Φ is an LTL[U,S] formula, we now introduce new propositions
Q = {q1, . . . , qm} that correspond to bounded subformulas. In this way, we
can monitor Φ as an untimed property over Q, only that now we obtain the
truth values of q1, . . . , qm by simple dynamic programming procedures. As these
propositions correspond to bounded formulas, we only need to store a ‘sliding
window’ on the input timed word.

5.1 Untimed LTL[U, S] Part

We describe briefly the standard way to construct automata that detect informa-
tive prefixes [19]. For a given LTL formula Θ, first use a standard construction [30]
to obtain a language-equivalent alternating Büchi automaton AΘ. Then redefine
its set of accepting states to be the empty set and treat it as an automaton
over finite words. The resulting automaton AtrueΘ accepts exactly all informa-
tive good prefixes for Θ. For online monitoring, one can then determinise AtrueΘ

with the usual subset construction. The same can be done for ¬Θ to obtain a
deterministic automaton detecting informative bad prefixes for Θ.

In our case, we first translate the LTL[U,S] formulas Φ and ¬Φ into a pair
of two-way alternating Büchi automata. It is easy to see that, with the same
‘tweaks’, we can obtain two automata that accept informative good prefixes
and informative bad prefixes for Φ (by Proposition 2). We then apply existing
procedures that translate two-way alternating automata over finite words into
deterministic automata, e.g., [8]. We call the resulting automata Dgood and Dbad
and execute them in parallel.

5.2 Bounded Metric Part

We define fr(ϕ) and pr(ϕ) (future-reach and past-reach) for an MTL[U,S] for-
mula ϕ as follows (the cases for boolean connectives are defined as expected):

– fr(true) = pr(true) = fr(p) = pr(p) = 0 for all p ∈ P
– fr(ϕ1 UI ϕ2) = sup(I) + max(fr(ϕ1), fr(ϕ2))

– pr(ϕ1 SI ϕ2) = sup(I) + max(pr(ϕ1), pr(ϕ2))

– fr(ϕ1 SI ϕ2) = max(fr(ϕ1), fr(ϕ2)− inf(I))

– pr(ϕ1 UI ϕ2) = max(pr(ϕ1), pr(ϕ2)− inf(I)).

Intuitively, these indicate the lengths of the time horizons needed to determine
the truth value of ϕ. We also define lf (ψ) = kvar · dfr(ψ)e and lp(ψ) = kvar ·
dpr(ψ)e (recall that we assume that timed words are of bounded variability kvar).

Naïve Method Suppose that we would like to obtain the truth value of qi
at position j in the input (infinite) timed word ρ = (σ, τ). Observe that only
events occurring between τj − pr(ψi) and τj + fr(ψi) can affect the truth value
of ψi at j. This implies that ρ, j |= ψi ↔ ρ′, j |=f ψi, given that ρ′ is a prefix
of ρ that contains all events between τj − pr(ψi) and τj + fr(ψi). Since ρ is
of bounded variability kvar, there will be at most lp(ψi) + 1 + lf (ψi) events
between τj − pr(ψi) and τj + fr(ψi). It follows that we can simply record all
events in this interval. Events outside of this interval are irrelevant as they do
not affect whether ρ′, j |=f ψi. In particular, we maintain a two-dimensional array
of lp(ψi) + 1 + lf (ψi) + 1 rows and 1 + |ψ| columns. The first column is used to
store timestamps of the corresponding events.5 The last |ψ| columns are used
to store the truth values of subformulas. We then use dynamic programming
procedures (cf. [24]) to evaluate whether ρ′, j |=f ψi. These procedures fill up the
array in a bottom-up manner, starting from minimal subformulas. The columns
for boolean combinations can be filled in the natural way.

Now consider all propositions in Q. We can obtain the truth values of them
at all positions in the ‘sliding window’ by using an array of lQp + 1 + lQf + 1

rows and 1 + |ψ1|+ · · ·+ |ψm| columns, where lQp = maxi∈[1,m] lp(ψi) and l
Q
f =

maxi∈[1,m] lf (ψi). Each column can be filled in time linear in its length. Overall,
we need an array of size O(kvar ·csum ·|ϕ̂|) where csum is the sum of the constants
in ϕ̂, and for each position j we need time O(kvar · csum · |ϕ̂|) to obtain the truth
values of all propositions in Q. This method is not very efficient as for each j
we need to fill all columns for temporal subformulas from scratch. Previously
computed entries cannot always be reused as certain entries are ‘wrong’—they
were computed without the knowledge of events outside of the interval.

Incremental Evaluation We describe an optimisation which allows effective
reuse of computed entries stored in the table. The idea is to treat entries that
depend on future events as ‘unknown’ and not to fill them. By construction,
these unknown entries will not be needed for the result of the evaluation.

For a past subformula, e.g, ϕ1 S(a,b) ϕ2, we can simply suspend the column-
filling procedure when we filled all entries using the truth values of ϕ1 and ϕ2

(at various positions) that are currently known. We may continue when the
truth values of ϕ1 and ϕ2 (at some other positions) that are previously unknown
become available. The case for future subformulas is more involved. Suppose
that we filling a column for p1 U(a,b) p2 with the naïve method. Denote the
corresponding timestamp of an index i in the column by t(i) and the timestamp
of the last acquired event by tmax. Observe that not all of the truth values at
indices j, t(j) + b > tmax can be reused later, as they might depend on future
events. However, if we know that ϕ1 does not hold at some j′, t(j′) + b > tmax,
then all the truth values at indices < j′ can be reused in the following iterations
as they cannot depend on future events. Now consider the general case of filling

5 We assume the timestamps can be finitely represented, e.g., with a built-in data
type, and additions and subtractions on them can be done in constant time.

the column for ψ = ϕ1 U(a,b) ϕ2. We keep an index jψ that points to the first
unknown entry in the column, and we now let tmax = min(t(jϕ1

− 1), t(jϕ2
− 1)).

In each iteration, if jϕ1 and jϕ2 are updated to some new values, tmax also
changes accordingly. If this happens, we first check if t(jψ) + b > tmax. If this
is the case, we do nothing (observe the fact that ϕ1 must hold at all indices l,
t(jψ) < t(l) ≤ tmax, thus the truth value at jψ must remain unknown). Otherwise
we find the least index l′ > jψ such that t(l′) + b > tmax. Additionally, we check
if all truth values of ϕ1 between tmax and toldmax are true, starting from tmax. If ϕ1

is not satisfied at some (maximal) position j′ then start filling at max(l′, j′)− 1.
Otherwise we start filling from l′ − 1.

Observe that we can use a variable to keep track of the least index l′ > jψ
such that t(l′) + b > tmax instead of finding it each time since it increases
monotonically. Also we can keep track of the greatest index where ϕ2 holds.
With these variables, we can easily make the extra ‘sweeping’ happen only twice
(once for ϕ1 and once for ϕ2) over newly acquired truth values. Also observe
that the truth value of a subformula at a certain position will be filled only once.
These observations imply that each entry in the array can be filled in amortised
constant time. Assuming that each step of an deterministic automaton takes
constant time, we can state the following theorem.

Theorem 2. For an MTL[U,S] formula ϕ, the automata Dgood and Dbad have
size 22

O(|Φ|)
where Φ is the LTL[U,S] formula described above. Moreover, for an

infinite timed word of bounded variability kvar, our procedure uses space O(kvar ·
csum · |ϕ̂|) and amortised time O(|ϕ̂|) per event, where ϕ̂ is the syntactically
separated equivalent formula of ϕ and csum is the sum of the constants in ϕ̂.

5.3 Correctness

One may think of the monitoring process on an infinite timed word ρ ∈ TΣω
P as

continuously extending a corresponding finite timed word ρ′ ∈ TΣ∗Q. Suppose
that, instead of Dgood and Dbad, we now execute a deterministic ω-automaton
DΦ such that L(DΦ) = L(Φ). Since we are implicitly ensuring that the truth
values of propositions in Q are valid along the way, it is easy to see that the
corresponding run on DΦ will be accepting iff ρ |= ϕ. However, for the purpose
of online monitoring, we will be more interested in deciding whether ρ |= ϕ given
only a finite prefix of ρ. In this subsection we show that our approach is both
sound and complete for detecting informative prefixes.

The following proposition is immediate since three views of the truncated
semantics coincide in this case.

Proposition 6. For a bounded MTL[U,S] formula ψ, a finite timed word ρ =
(σ, τ) and a position 1 ≤ i ≤ |ρ| such that τi + fr(ψ) ≤ τ|ρ| and τi − pr(ψ) ≥ 0,
we have

ρ, i |=+f ψ ↔ ρ, i |=f ψ ↔ ρ, i |=−f ψ .

The following lemma implies that the rewriting process outlined in Section 4
preserves the ‘informativeness’ of prefixes.

Lemma 1. For an MTL[U,S] formula ϕ, let ϕ′ be the formula obtained after
applying one of the rewriting rules in Section 4 on some of its subformula. We
have

ρ |=+f ϕ↔ ρ |=+f ϕ
′ and ρ |=−f ϕ↔ ρ |=−f ϕ

′ .

Proof. See Appendix A. ut

Given the lemma above, we can state the following theorem.

Theorem 3. The set of informative good prefixes of ϕ coincides with the set of
informative good prefixes of ϕ̂. The same holds for informative bad prefixes.

Now we state the main result of the paper in the following two theorems.

Theorem 4 (Soundness). In our procedure, if we ever reach an accepting state
of Dgood (Dbad) via a finite word u ∈ Σ∗Q, then the finite timed word ρ ∈ TΣ∗P
that we have read must be an informative good (bad) prefix for ϕ.

Proof. For such u and the corresponding ρ (note that |u| ≤ |ρ|),

∀i ∈ [1, |u|]
(
(u, i 6|=−f Θ → ρ, i 6|=−f ϑ) ∧ (u, i |=+f Θ → ρ, i |=+f ϑ)

)
where Θ is a subformula of Φ and ϑ = Θ(ψ1, . . . , ψm). This can easily be proved
by structural induction. If u is accepted by Dgood, we have u|=+f Φ by construction.
By the above we have ρ |=+f Φ(ψ1, . . . , ψm), as desired. The case for Dbad is
symmetric. ut

Theorem 5 (Completeness). Whenever we read an informative good (bad)
prefix ρ = (σ, τ) for ϕ, Dgood (Dbad) must eventually reach an accepting state.

Proof. For the finite word u′ obtained a bit later with |u′| = |ρ|,

∀i ∈ [1, |u′|]
(
(ρ, i |=+f ϑ→ u′, i |=+f Θ) ∧ (ρ, i 6|=−f ϑ→ u′, i 6|=−f Θ)

)
where Θ is a subformula of Φ and ϑ = Θ(ψ1, . . . , ψm). Again, this can be proved
by structural induction (the base step holds by Proposition 3). The theorem
follows. ut

Remark 1. As pointed out in Example 1, is possible that some of the bad prefixes
for the input formula ϕ are not informative. Certain syntactic restrictions can be
imposed on ϕ to avoid such a situation. For example, it can be shown that all bad
prefixes of Safety-MTL [26] formulas will inevitably be extended to informative
bad prefixes.6

6 As noted by Kupferman and Vardi [19], all Safety-MTL properties are either inten-
tionally safe or accidentally safe.

6 Conclusion

We have proposed a new trace-length independent dense-time online monitoring
procedure for MTL[U,S], based on rewriting the input MTL[U,S] formula into
an LTL[U,S] formula over a set of bounded MTL[U,S] atoms. The former is
converted into a deterministic (untimed) automaton, while the truth values of
the latter are maintained through dynamic programming. We circumvent the
potentially delicate issue of translating MTL[U,S] to a class of deterministic
timed automata.

We are currently investigating whether the procedure can be extended to
support more expressive modalities. Another possible direction for future work
is to improve the monitoring procedure. For example, the dynamic programming
procedures in Section 5.2 can support subformulas with unbounded past. This
can be exploited to use a smaller equivalent formula in place of ϕ̂.

References

1. Alur, R., Feder, T., Henzinger, T.: The benefits of relaxing punctuality. Journal of
the ACM 43(1), 116–146 (1996)

2. Alur, R., Henzinger, T.: Back to the future: towards a theory of timed regular
languages. In: Proceedings of FOCS 1992. pp. 177–186. IEEE Computer Society
Press (1992)

3. Armoni, R., Korchemny, D., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: Deterministic
dynamic monitors for linear-time assertions. In: Proceedings of FATES/RV 2006.
LNCS, vol. 4262, pp. 163–177. Springer (2006)

4. Baldor, K., Niu, J.: Monitoring dense-time, continuous-semantics, metric temporal
logic. In: Proceedings of RV 2012. LNCS, vol. 7687, pp. 245–259. Springer (2012)

5. Basin, D., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric
first-order temporal properties. In: Proceedings of FSTTCS 2008. LIPIcs, vol. 2,
pp. 49–60. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2008)

6. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for monitoring real-time prop-
erties. In: Proceedings of RV 2011. LNCS, vol. 7186, pp. 260–275. Springer (2011)

7. Bauer, A., Küster, J., Vegliach, G.: From propositional to first-order monitoring.
In: Proceedings of RV 2013. LNCS, vol. 8174, pp. 59–75. Springer (2013)

8. Birget, J.C.: State-complexity of finite-state devices, state compressibility and in-
compressibility. Mathematical Systems Theory 26(3), 237–269 (1993)

9. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL.
In: Proceedings of FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer (2005)

10. Chai, M., Schlingloff, H.: A rewriting based monitoring algorithm for TPTL. In:
Proceedings of CS&P 2013. CEUR Workshop Proceedings, vol. 1032, pp. 61–72.
CEUR-WS.org (2013)

11. D’Souza, D., Matteplackel, R.: A clock-optimal hierarchical monitoring automaton
construction for MITL. Tech. Rep. 2013-1, Department of Computer Science and
Automation, Indian Institute of Science (2013), http://www.csa.iisc.ernet.in/
TR/2013/1/lics2013-tr.pdf

12. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y.: Reasoning with temporal logic
on truncated paths. In: Proceedings of CAV 2003. LNCS, vol. 2725, pp. 27–39.
Springer (2003)

http://www.csa.iisc.ernet.in/TR/2013/1/lics2013-tr.pdf
http://www.csa.iisc.ernet.in/TR/2013/1/lics2013-tr.pdf

13. Finkbeiner, B., Kuhtz, L.: Monitor circuits for LTL with bounded and unbounded
future. In: Proceedings of RV 2009. LNCS, vol. 5779, pp. 60–75. Springer (2009)

14. Geilen, M.: On the construction of monitors for temporal logic properties. Elec-
tronic Notes in Theoretical Computer Science 55(2), 181–199 (2001)

15. Gunadi, H., Tiu, A.: Efficient runtime monitoring with metric temporal logic: A
case study in the android operating system. In: Proceedings of FM 2014. LNCS,
Springer (2014), to appear.

16. Hunter, P., Ouaknine, J., Worrell, J.: Expressive completeness of metric temporal
logic. In: Proceedings of LICS 2013. pp. 349–357. IEEE Computer Society Press
(2013)

17. Kini, D., Krishna, S., Pandya, P.: On construction of safety signal automata for
MITL[U,S] using temporal projections. In: Proceedings of FORMATS 2011. LNCS,
vol. 6919, pp. 225–239. Springer (2011)

18. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2(4), 255–299 (1990)

19. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
in System Design 19(3), 291–314 (2001)

20. Leucker, M., Schallhart, C.: A brief account of runtime verification. Journal of
Logic and Algebraic Programming 78(5), 293–303 (2009)

21. Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: Past, present, future.
In: Proceedings of FORMATS 2005. LNCS, vol. 3829, pp. 2–16. Springer (2005)

22. Maler, O., Nickovic, D., Pnueli, A.: FromMITL to timed automata. In: Proceedings
of FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer (2006)

23. Manna, Z., Pnueli, A.: Temporal verification of reactive systems: safety, vol. 2.
Springer (1995)

24. Markey, N., Raskin, J.: Model checking restricted sets of timed paths. Theoretical
Computer Science 358(2-3), 273–292 (2006)

25. Nickovic, D., Piterman, N.: From MTL to deterministic timed automata. In: Pro-
ceedings of FORMATS 2010. LNCS, vol. 6246, pp. 152–167. Springer (2010)

26. Ouaknine, J., Worrell, J.: Safety metric temporal logic is fully decidable. In: Pro-
ceedings of TACAS 2006. LNCS, vol. 3920, pp. 411–425. Springer (2006)

27. Pedro, A.d.M., Pereira, D., Pinho, L.M., , Pinto, J.S.: A compositional monitor-
ing framework for hard real-time systems. In: Proceedings of NFM 2014. LNCS,
Springer (2014), to appear.

28. Sokolsky, O., Havelund, K., Lee, I.: Introduction to the special section on runtime
verification. International Journal on Software Tools for Technology Transfer 14(3),
243–247 (2011)

29. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications.
Electronic Notes in Theoretical Computer Science 113, 145–162 (2005)

30. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Logics
for Concurrency – Structure versus Automata (8th Banff Higher Order Work-
shop’95). LNCS, vol. 1043, pp. 238–266. Springer (1996)

A Proof of Lemma 1

Proof. Since the satisfaction relations are defined inductively, we can work di-
rectly on the relevant subformula. We would like to prove that for a finite timed
word ρ and a position i in ρ,

ρ, i |=+f φ↔ ρ, i |=+f φ
′ and ρ, i |=−f φ↔ ρ, i |=−f φ

′

where φ ↔ φ′ matches one of the rules in Section 4. It is easy to see that the
usual rules used to push negations or switch between modalities and their duals,
e.g., GIϕ ↔ ¬FI¬ϕ, do not affect the informativeness of prefixes. For a group
of similar rules we will only prove a representative one, as the proof for others
follow similarly. In the following we let the LHS be φ and RHS be φ′.

– ϕ1 U(a,∞) ϕ2 ↔ ϕ1 U ϕ2 ∧
(
F(0,a]true→ G(0,a](ϕ1 ∧ ϕ1 U ϕ2)

)
:

• ρ, i |=+f φ↔ ρ, i |=+f φ′:
Assume ρ, i|=+f φ. By definition we have ρ, i|=+f ϕ1Uϕ2. If there is no event
in (τi, τi+a], since there must be an event in (τi+a, τ|ρ|], ρ |=−f F(0,a]true
cannot hold and we are done. If there are events in (τi, τi+a], then for all
j such that τj−τi ∈ (0, a] we have ρ, j 6|=−f ¬ϕ1. Also for all such j we have
ρ, j 6|=−f ¬ϕ1 U ϕ2 since it is obvious that ρ, j |=+f ϕ1 U ϕ2. For the other
direction, if ρ, i|=+f ϕ1Uϕ2 because of a witness in (τi+a, τ|ρ|) then we are
done. If this is not the case we must have ρ, i |=−f F(0,a]true (since there
is an event in (τi, τi+a]). We then have ρ, i 6|=−f F(0,a]

(
¬ϕ1∨¬(ϕ1Uϕ2)

)
(this implies τ|ρ| ≥ a). Now for all j such that τj − τi ∈ (0, a] we have
ρ, j |=+f ϕ1 and ρ, j |=+f ϕ1 U ϕ2, which imply ρ, i |=+f φ.
• ρ, i |=−f φ↔ ρ, i |=−f φ′:

Assume ρ, i |=−f φ. This holds if there is a witness in (a,∞) or ρ, i |=f Gϕ1.
In both cases we have ρ, i|=−f ϕ1Uϕ2. If there is no event in (τi, τi+a] then
we are done. If there is a witness, then for all such j that τj − τi ∈ (0, a]
we have ρ, j |=−f ϕ1 and ρ, j |=−f ϕ1 U ϕ2. If there is no witness then for
all such j we again have ρ, j |=−f ϕ1 and ρ, j |=−f ϕ1 U ϕ2. For the other
direction, if there is no event in (τi, τi+a] we are done. If there are event
in (τi, τi + a], all j such that τj − τj ∈ (0, a] will satisfy ρ, j |=−f ϕ1 and
ρ, j |=−f ϕ1 U ϕ2. This clearly gives ρ, i |=−f φ.

– ¬(ϕ1 U ϕ2)↔ G¬ϕ2 ∨
(
¬ϕ2 U (¬ϕ2 ∧ ¬ϕ1)

)
:

• ρ, i |=+f φ↔ ρ, i |=+f φ′:
Assume ρ, i |=+f φ ↔ ρ, i 6|=−f ϕ1 U ϕ2. This implies that ϕ1 fails to hold
before ϕ2 holds, and we have ρ, i |=+f ¬ϕ2 U (¬ϕ2 ∧ ¬ϕ1). For the other
direction note that ρ, i 6|=+f G¬ϕ2, the second disjunct must be satisfied,
and it is easy to see that ρ, i |=+f φ.

• ρ, i |=−f φ↔ ρ, i |=−f φ′:
Assume ρ, i |=−f ¬(ϕ1 U ϕ2) ↔ ρ, i 6|=+f ϕ1 U ϕ2. This implies either
ρ, j 6|=+f ϕ2 ↔ ρ, j |=−f ¬ϕ2 for all j > i in ρ (this gives ρ, i |=−f G¬ϕ2)
or ϕ1 fails to hold before ϕ2 holds—ρ, i |=−f ¬ϕ2 U (¬ϕ2 ∧ ¬ϕ1). For the
other direction, if ρ, i|=−f G¬ϕ2 ↔ ρ, i 6|=+f Fϕ2 then ρ, i|=+f ϕ1Uϕ2 cannot
hold. If ρ, i |=−f ¬ϕ2 U (¬ϕ2 ∧ ¬ϕ1) then either ρ, i |=−f G¬ϕ2 or there is
a witness, and it is easy to see that ρ, i |=+f ϕ1 U ϕ2 cannot hold.

–
(
(ϕ1 U ϕ2) ∨ χ

)
U(a,b) θ ↔

(
(ϕ1 U(0,2b) ϕ2) ∨ χ

)
U(a,b) θ

∨
(((

(ϕ1 U(0,2b) ϕ2) ∨ χ
)
U(0,b) (G(0,2b)ϕ1)

)
∧ F(a,b)θ ∧ ϕugb

)
:

• ρ, i |=+f φ↔ ρ, i |=+f φ′:
Assume ρ, i|=+f φ. It is obvious that ρ, i|=

+
f F(a,b)θ holds. If the first disjunct

of φ′ does not hold, then ρ, i |=+f
(
(ϕ1 U(0,2b) ϕ2) ∨ χ

)
U(0,b) (G(0,2b)ϕ1)

must hold. The last conjunct holds by an argument similar to the proof
of Proposition 4. For the other direction, if the first disjunct of φ′ holds
then we are done. If it does not hold, then there must be a witness (at
which ϕ2 holds) in [τi + 2b, τ|ρ|], and it is easy to see that ρ, i |=+f φ.

• ρ, i |=−f φ↔ ρ, i |=−f φ′:
Assume ρ, i |=−f φ. If the first disjunct of φ′ does not hold then there must
be events in [τi+2b, τ|ρ|]. It follows that ρ, i |=−f

(
(ϕ1U(0,2b)ϕ2)∨χ

)
U(0,b)

(G(0,2b)ϕ1) and ρ, i |=−f F(a,b)θ must hold. The rest is similar to the proof
to Proposition 4. For the other direction, if the first disjunct of φ′ holds
then we are done. Otherwise if τ|ρ| < b, it is easy to see that ρ, i |=−f φ. If
this is not the case then the proof closely follows Proposition 4.

ut

B Proof of Remark 1

Consider Safety-MTL with past: when written in negation normal form, all UI

are bounded while there are no restrictions on SI .

Proposition 7 (Safety). η, i 6|= ϕ implies that there is a prefix ρ of η s.t. for
any ζ, ρζ, i 6|= ϕ.

Proof. Simple induction on the structure of ϕ. ut

Proposition 8 (Non-pathological safety). For a prefix ρ, if ρζ, i 6|= ϕ for
all ζ, then for any ζ there exists a prefix ρ′ of ρζ s.t. ρ′, i |=+f ¬ϕ.

Proof. We prove this by structural induction. The base step is trivial. For the
induction step:

– ϕ1 ∨ ϕ2:
For arbitrary ζ we have ρζ, i 6|= ϕ1 and ρζ, i 6|= ϕ2. Hence for any ζ there is a
ρ′ such that ρ′, i |=+f ¬ϕ1 and ρ′, i |=+f ¬ϕ2 (by IH and Proposition 3). We then
have ρ′, i |=+f ¬ϕ1 ∧ ρ′, i |=+f ¬ϕ2 ↔ ρ′, i |=+f (¬ϕ1 ∧¬ϕ2)↔ ρ′, i |=+f ¬(ϕ1 ∨ϕ2).

– ϕ1 ∧ ϕ2:
For arbitrary ζ we have ρζ, i 6|= ϕ1 and ρζ, i 6|= ϕ2. Hence for any ζ there
is a ρ′ such that ρ′, i |=+f ¬ϕ1 or ρ′, i |=+f ¬ϕ2 (by IH). We then have ρ′ 6|=−f
ϕ1 ∨ ρ′ 6|=−f ϕ2 ↔ ρ′ 6|=−f ϕ1 ∧ ϕ2 ↔ ρ′ |=+f ¬(ϕ1 ∧ ϕ2).

– ϕ1 UI ϕ2:
ρζ, i 6|= ϕ1 UI ϕ2 for any ζ iff for any ζ, ϕ1 fails to hold before ϕ2 holds
or there is no ϕ2 (later than τi) in I. By non-Zenoness and the fact that
I is bounded, in the first case we have, for a given ζ, a prefix ρ′ of ρζ s.t.
∃j ∈ (i, |ρ′|]

(
τj − τi ≤ I ∧ ρ′, j |=+f ¬ϕ1 ∧ ∀l ∈ (i, j] (ρ′, l |=+f ¬ϕ2)

)
by IH. In

the second case we have ρ′ s.t. ∀j ∈ (i, |ρ′|] (τj − τi ∈ I → ρ′, j |=+f ¬ϕ2). In
either case it is easy to see that ρ′, i |=+f ¬(ϕ1 UI ϕ2).

– ϕ1ŨIϕ2: ρζ, i 6|= ϕ1ŨIϕ2 for arbitrary ζ iff for any ζ, we have ¬ϕ1 UI

¬ϕ2 holds at i. We have, for a given ζ, a prefix ρ′ of ρζ such that ∃j ∈
(i, |ρ′|]

(
τj − τi ∈ I ∧ ρ′, j |=+f ¬ϕ2 ∧ ∀l ∈ (i, j) (ρ′, l |=+f ¬ϕ1)

)
by IH. Now, of

course, ρ′, i |=+f ¬ϕ1 UI ¬ϕ2 ↔ ρ′, i |=+f ¬(ϕ1ŨIϕ2).

The cases for ϕ1 SI ϕ2 and ϕ1S̃Iϕ2 are exactly similar. ut

