To prove that a program satisfies its specification, it is more intellectually manageable to construct the program such that its structure enables the programmer to "give convincing argument for its correctness" [2], or even serves as a proof by itself, making the program manifestly correct.

= tt $firstUnknownColour(x ::_b xs)$ Solving the Dutch National Flag problem via datatype ornamentation

Josh Ko (University of Oxford)

$\overset{i}{\downarrow}$	$ \stackrel{j}{\downarrow} \qquad \stackrel{k}{\downarrow} \qquad \stackrel{j}{\downarrow} \qquad \stackrel{k}{\downarrow} \qquad \stackrel{j}{\frown} \qquad \stackrel{k}{\frown} \qquad \stackrel{j}{\frown} \qquad \stackrel{j}{\frown} \qquad \stackrel{k}{\frown} \qquad \stackrel{j}{\frown} \qquad \stackrel{k}{\frown} \qquad \stackrel{j}{\frown} \qquad \stackrel{j}{\frown} \qquad \stackrel{k}{\frown} \qquad \stackrel{j}{\frown} \qquad \stackrel{k}{\frown} \qquad \stackrel{j}{\frown} \qquad \stackrel{j}{\frown} \qquad \stackrel{j}{\frown} \qquad \stackrel{k}{\frown} \qquad \stackrel{j}{\frown} i$			
data DVec : $(i j k : Nat) \rightarrow Set$ wherePeb c is the type of pebbles of colour c.[] : DVec 0 0 0 \neg $\forall \{i j k\} \rightarrow DVec i j k \rightarrow DVec (suc i) (suc j) (suc k)$ $_::_{w-}$: Peb red $\rightarrow \forall \{j k\} \rightarrow DVec 0 j k \rightarrow DVec 0 (suc j) (suc k)$ $_::_{w-}$: Peb white $\rightarrow \forall \{j k\} \rightarrow DVec 0 j k \rightarrow DVec 0 (suc j) (suc k)$ $_::_{b-}$: Peb blue \rightarrow $DVec 0 0 0 \rightarrow DVec 0 0 (suc k)$ $_::_{b-}$: Peb blue \rightarrow				
$\begin{array}{ll} lengthUnknown : \forall \{i \ j \ k\} \rightarrow DVec \ i \ j \ k \rightarrow Nat \\ lengthUnknown \left[\right] &= 0 \\ lengthUnknown \left(x ::_r \ xs \right) &= lengthUnknown \ xs \\ lengthUnknown \left(x ::_w \ xs \right) &= lengthUnknown \ xs \\ lengthUnknown \left(x :: \ xs \right) &= suc \ (lengthUnknown \ xs \\ lengthUnknown \ (x ::_b \ xs) &= 0 \end{array}$	To decide how tolength of the unknowwe need to know ththe first unknown p	reduce the wn section, ne colour of pebble.		
$\begin{array}{ll} firstUnknownColour : \forall \{i \ j \ k\} \rightarrow (xs : DVec \ i \ firstUnknownColour \ [] &= tt \\ firstUnknownColour \ (x ::_r \ xs) &= firstUnknown \\ firstUnknownColour \ (x ::_w \ xs) &= firstUnknown \\ firstUnknownColour \ (_:_ \{c\} \ x \ xs) &= c \end{array}$	$(k) \rightarrow Maybe \ (length Unknown \ x)$ $ownColour \ xs$ $ownColour \ xs$ $Maybe \ : Nather Maybe \ 0$ $Maybe \ (suc \ -$	$\begin{array}{c} (s) \text{ Colour} \\ t \to \text{Set} \to \text{Set} \\ A &= \top \\ A &= A \end{array}$		

UNIVERSITY OF OXFORD

The DNF problem, inductively

Dijkstra introduced the Dutch National Flag problem, asking for a way to rearrange an array of pebbles of colour red, white, or blue in the order of the Dutch National Flag using only swaps, and proposed an imperative solution [1]. The key invariant of the algorithm is that the array is divided into four sections containing red, white, "unknown," and blue pebbles respectively. Initially the colours of the pebbles are all regarded as unknown, and the algorithm proceeds by reducing the length of the unknown section. We formulate the invariant inductively and encode it in the list-like *Dutch vector* datatype DVec, which uses different conses for different sections and guarantees that the sections are ordered as specified. Subsequent programs are written on the Dutch vectors and thus necessarily maintain the invariant.

	$ \begin{array}{c c} i & j & k \\ \downarrow & \downarrow & \downarrow \\ \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet &$		
	$= \text{data DVec} : (i j k n : \text{Nat}) \rightarrow \text{Set where}$		
	[] : DVec 0 0 0 0		
	$ \begin{array}{ccc} -::_{r-} &: \text{Peb red} & \rightarrow \forall \{i j k n\} \rightarrow \text{DVec} \ i j k n \rightarrow \text{DVec} \ (\text{suc } i) \ (\text{suc } j) \ (\text{suc } k) n \\ & \qquad \qquad$		
	$::_{w-} : \text{Peb white} \rightarrow \forall \{ j k n \} \rightarrow \text{Dvec } 0 j k n \rightarrow \text{Dvec } 0 (\text{suc } j) (\text{suc } k) n $ $::_{w-} : \forall \{ a \} \land \text{Peb } a \land \forall \{ k n \} \land \text{Dvec } 0 \land k n \land \text{Dvec } 0 (\text{suc } k) (\text{suc } n) $		
	$ \therefore : : : : : : : : : $		
$firstUnknownColour : \forall \{i j k n\} \rightarrow (xs : DVec i j k n) \rightarrow Maybe n Colour$			
reduce $: \forall \{i \ i \ k \ n\} \rightarrow DVec \ i \ i \ k \ (suc \ n) \rightarrow \exists^3 \ (\lambda \ i' \ i' \ k' \rightarrow DVec \ i' \ i' \ k' \ n)$			
	reduce xs with firstUnknownColour xs		
	reduce $rs \mid red = \{ \}_0 \exists a \in [A \cup Sat\} \{ B \cup A \cup Sat\} \{ C \cup (a \cup A) \cup B \in [Sat] \} \}$		
	$\exists^{-}: \{A: Set\} \{D: A \to Set\} \{C: (a:A) \to B \ a \to Set\} \to ((a:A) (b:B) \to Set) \to Set\} \to Set\}$		
	reduce $xs \mid white = \{ \}_1 \qquad ((a + A) (b + B $		

In modern dependently typed languages like Agda [4], data can be specified such that they satisfy certain properties by construc-

SUC n

SUC (

By algebraic ornamentation, the length of the unknown section is integrated into the type of the Dutch vectors. This simplifies the type of *firstUnknownColour*, and the length will serve as an explicit termination measure. We then attempt to describe how to reduce the length of the unknown section by one, which requires a case analysis on the result of *firstUnknownColour*. The case analysis does not directly reveal more information about the input Dutch vector, however — to do so, that result has to be exposed in the type by another algebraic ornamentation.

 $(\lambda \ abc \mapsto p \ (\pi_1 \ abc) \ (\pi_1 \ (\pi_2 \ abc)) \ (\pi_2 \ (\pi_2 \ abc)))$

tion. Consequently, programs constructing those data are manifestly correct without need for separate proofs, since being able to construct the data implies that the properties are indeed established.

reduce $xs \mid blue = \{ \}_2 \mid day = \{ \}_2 \mid d$

dutchFlag : List (Σ Colour Peb) \rightarrow List (Σ Colour Peb) $dutchFlag = forget \circ \pi_2 \circ elimUnknown \circ \pi_2 \circ initialise$ *forget* : $\forall \{i \ j \ k \ n \ d \ u\} \rightarrow \mathsf{DVec} \ i \ j \ k \ n \ d \ u \rightarrow \mathsf{List} \ (\Sigma \text{ Colour Peb})$ forget [] = ||forget $(x ::_r xs) = (red , x) :: forget xs$ forget $(x ::_w xs) = (white, x) :: forget xs$ forget (x :: xs) = (-, x) :: forget xsforget $(x ::_b xs) = (blue, x) :: forget xs$ *initialise* : (xs : List (Σ Colour Peb)) \rightarrow let l = length xs in \exists ($\lambda u \mapsto \mathsf{DVec} \ \mathsf{0} \ \mathsf{0} \ l \ l \ fuel \ u$) initialise [] = tt, [] initialise ((c, x) :: xs) = c, $x :: \pi_2$ (initialise xs) $fuel : \forall \{k\} \to k - \mathbf{0} \approx k$ We can wrap the Dutch vector program in a list profuel $\{0\} = 0$ gram, localising the use of the Dutch vector datatype. fuel {suc _} = suc fuel

ndata DVec : (i j k n : Nat) $(u : Maybe n Colour) \rightarrow Set where$: DVec 0 0 0 0 tt $_::_r_$: Peb red $\rightarrow \forall \{i \ j \ k \ n \ u\} \rightarrow \mathsf{DVec} \ i \ j \ k \ n \ u \rightarrow \mathsf{DVec} \ (\mathsf{suc} \ i) \ (\mathsf{suc} \ j) \ (\mathsf{suc} \ k) \ n$ $(\operatorname{suc} j) (\operatorname{suc} k) n$ $_::_w_$: Peb white $\rightarrow \forall \{ j k n u \} \rightarrow \mathsf{DVec} \ 0 j k n u \rightarrow \mathsf{DVec} \ 0$ $_::_ : \forall \{c\} \to \mathsf{Peb} \ c \to \forall \{ k \ n \ u\} \to \mathsf{DVec} \ 0 \ 0 \ k \ n \ u \to \mathsf{DVec} \ 0$ $(\operatorname{suc} k) (\operatorname{suc} n) c$ 0 0 $_::_{b-}$: Peb blue $\rightarrow \forall \{$ $n u \rightarrow DVec 0 0 0 n u \rightarrow DVec 0$ 0 0 tt $reduce : \forall \{i \ j \ k \ n \ u\} \to \mathsf{DVec} \ i \ j \ k \ (\mathsf{suc} \ n) \ u \to \exists^4 \ (\lambda \ i' \ j' \ k' \ u' \mapsto \mathsf{DVec} \ i' \ j' \ k' \ n \ u')$ reduce $\{u = \text{red} \} xs = -, \pi_2 (reduceRed xs)$ reduce $\{u = white\} xs = -, \pi_2 (reduce White xs)$ reduce $\{u = b \mid u = \} xs = \{\}_2$ *reduce White* : $\forall \{i \ j \ k \ n\} \rightarrow \mathsf{DVec} \ i \ j \ k \ (\mathsf{suc} \ n) \text{ white } \rightarrow \exists (\lambda \ u' \mapsto \mathsf{DVec} \ i \ (\mathsf{suc} \ j) \ k \ n \ u')$ reduce White $(y ::_r ys) = -, y ::_r \pi_2$ (reduce White ys) reduce White $(y ::_w ys) = -, y ::_w \pi_2$ (reduce White ys) Now we can proceed with the case analysis. The white and red cases reduce White $(y :: ys) = -, y ::_w ys$ are straightforward, but the blue case poses some problems. $reduceRed : \forall \{i \ j \ k \ n\} \rightarrow \mathsf{DVec} \ i \ j \ k \ (\mathsf{suc} \ n) \ \mathsf{red} \rightarrow \exists \ (\lambda \ u' \mapsto \mathsf{DVec} \ (\mathsf{suc} \ i) \ (\mathsf{suc} \ j) \ k \ n \ u')$ $reduceRed (y ::_r ys) = -, y ::_r \pi_2 (reduceRed ys)$ $reduceRed (y ::_w ys) = -, focus ys ::_r \pi_2 (subst y ys)$ where *focus* : $\forall \{j \ k \ n\} \rightarrow \mathsf{DVec} \ \mathsf{0} \ j \ k \ (\mathsf{suc} \ n) \ \mathsf{red} \rightarrow \mathsf{Peb} \ \mathsf{red}$ $focus (z ::_w zs) = focus zs$ focus (z :: zs) = z $subst : \forall \{j \ k \ n\} \rightarrow \mathsf{Peb} \text{ white } \rightarrow \mathsf{DVec} \ 0 \ j \ k \ (\mathsf{suc} \ n) \ \mathsf{red} \rightarrow \exists \ (\lambda \ u' \mapsto \mathsf{DVec} \ 0 \ (\mathsf{suc} \ j) \ k \ n \ u')$ $subst \ y \ (z ::_w zs) = -, \ z ::_w \pi_2 \ (subst \ y \ zs)$ $subst y (z :: zs) = -, y ::_w zs$ $reduceRed (y :: ys) = -, y ::_r ys$ *reduceBlue* : $\forall \{i j k n\} \rightarrow \mathsf{DVec} \ i j (\mathsf{suc} k) (\mathsf{suc} n) \mathsf{blue} \rightarrow \exists (\lambda u' \mapsto \mathsf{DVec} \ i j k n u')$ reduceBlue $(y ::_r ys) = \{ \}_3$ reduceBlue $(y ::_w ys) = \{ \}_4$ At goals 3 and 4, we reduceBlue $(y :: ys) = \{\}_5$ cannot make recursive calls because the index k in the type of *ys* is not a succesdata $_-_\approx_$: $(k j n : Nat) \rightarrow Set$ where sor, and at goal 5 we $0 \quad : \forall \{j\} \to j - j \approx 0$ suc i cannot use the blue $\operatorname{suc} : \forall \{k \ j \ n\} \rightarrow k - j \approx n \rightarrow \operatorname{suc} k - j \approx \operatorname{suc} n$ cons when solving $inj : \forall \{k \mid n\} \rightarrow k - j \approx n \rightarrow \operatorname{suc} k - \operatorname{suc} j \approx n$ the base case of the inj 0 = 0 swap since k is not

difference : $\forall \{i \ j \ k \ n \ u\} \rightarrow \mathsf{DVec} \ i \ j \ k \ n \ u \rightarrow k - j \approx n$ difference [] = 0

difference $(x ::_r xs) = inj$ (difference xs) difference $(x ::_w xs) = inj$ (difference xs) difference (x :: xs) = suc (difference xs)difference $(x ::_b xs) = 0$

inj (suc d) = suc (inj d)

What is algebraic ornamentation?

An algebraic ornamentation adds an extra index to a datatype such that the index in the type of an element is always the value computed by a data List (A : Set) : Set where particular fold on that element. This technique was identified and for-malised by McBride in a datatype-generic framework of ornaments for expressing relationship between datatypes [3]. Algebraic ornamentation data Vec (A : Set) : Nat \rightarrow Set where allows some properties that can be established by simple induction to be integrated into the data. Programs can then exploit those properties directly, rather than having to manipulate separate proofs about them.

suc n

suc j

suc k

 $\bigcirc \bigcirc$

 \bigcirc

What properties to encode in datatypes are often discovered only gradually during development. Ornamentation suggests a way of supporting incremental specification of precise datatypes to match our development patterns.

zero. These problems are superficial,

however, and can be

overcome if we ex-

more precisely.

About the author Hsiang-Shang 'Josh' Ko (柯向上) is a DPhil student at Oxford supervised by Professor Jeremy Gibbons. He is working on modularity and reusability issues in dependently typed programming, focusing particularly on ornamentation-based techniques. Previously he finished his undergraduate studies in Computer Science and Information Engineering at National Taiwan University, Taiwan.

Acknowledgements The author would like to thank Yen-Chen Pan (潘彦丞) for offering very helpful suggestions and feedback. This work was completed through support of the University of Oxford Clarendon Fund Scholarship and the UK Engineering and Physical Sciences Research Council project Reusability and Dependent Types.

data DVec : $(i j k n : Nat) (d : k - j \approx n) (u : Maybe n Colour) \rightarrow Set where$				
[] : DVec 0 0 0 0 0 tt	(aua i) (aua b) = (imi d) u			
$ = ::_{r-} : \text{Peb red} \longrightarrow \forall \{i j k n d u\} \rightarrow \text{DVec} \ i j k n d u \rightarrow \text{DVec} \ (\text{suc} i) $ $ = ::_{w-} : \text{Peb white} \longrightarrow \forall \{i j k n d u\} \rightarrow \text{DVec} \ 0 \ i \ k n d u \rightarrow \text{DVec} \ 0$	$(\operatorname{suc} i) (\operatorname{suc} k) n$ $(\operatorname{inj} d) u$ $(\operatorname{suc} i) (\operatorname{suc} k) n$ $(\operatorname{inj} d) u$			
$_::_ : \forall \{c\} \rightarrow Peb \ c \rightarrow \forall \{ k \ n \ d \ u \} \rightarrow DVec \ 0 \ 0 \ k \ n \ d \ u \rightarrow DVec \ 0$	0 (suc k) (suc n) (suc d) c			
$ -::_{b-} : \text{Peb blue} \qquad \rightarrow \forall \{ n \ d \ u \} \rightarrow \text{DVec } 0 \ 0 \ 0 \ n \ d \ u \rightarrow \text{DVec } 0 $	0 0 0 <mark>0 </mark> tt			
$\begin{array}{ll} reduce : \forall \{i \ j \ k \ n \ d \ u\} \rightarrow DVec \ i \ j \ k \ (suc \ n) \ d \ u \rightarrow \exists^5 \ (\lambda \ i' \ j' \ k' \ d' \ u' \mapsto DVec \ reduce & \{u = red \ \} \ xs \ = \ _, \ \pi_2 \ (reduceRed \ xs) \\ reduce & \{u = white\} \ xs \ = \ _, \ \pi_2 \ (reduceWhite \ xs) \\ reduce \ \{d = suc \ _\} \ \{u = blue \ \} \ xs \ = \ _, \ \pi_2 \ (reduceBlue \ xs) \end{array}$	c i' j' k' n <mark>d'</mark> u')			
$reduce White : \forall \{i \ j \ k \ n \ d\} \to DVec \ i \ j \ k \ (suc \ n) \ d \text{ white } \to \exists^2 \ (\lambda \ d' \ u' \mapsto DVec \ i \ (suc \ j) \ k \ n \ d' \ u')$				
$reduceRed : \forall \{i \ j \ k \ n \ d\} \rightarrow DVec \ i \ j \ k \ (suc \ n) \ d \ red \rightarrow \exists^2 \ (\lambda \ d' \ u' \mapsto DVec \ (suc \ i) \ (suc \ j) \ k \ n \ d' \ u')$				
$reduceBlue : \forall \{i j k n d\} \rightarrow DVec \ i j (suc k) (suc n) d blue \rightarrow \exists^2 (\lambda d' u' \mapsto DVec \ i j k n d' u')$ $reduceBlue (_::_r u \{d = suc _\} us) = _, u ::_r \pi_2 (reduceBlue us)$				
$reduceBlue (_::_w - y \{d = suc _\} ys) = _, y ::_w \pi_2 (reduceBlue ys)$	Now the blue case can be			
$reduceBlue (_::_ y \{d = 0 \} ys) = _, y ::_b ys$	completed by invoking the			
where focus: $\forall \{u = \text{suc} = \} \forall ys\} = [-, \pi_2 (focus \forall ys) :: \pi_2 (subst \forall ys)]$ where focus: $\forall \{k \ n \ d \ u\} \rightarrow DVec \ 0 \ 0 \ k (suc \ n) \ d \ u \rightarrow \exists (\lambda \ u' \mapsto Peb \ u')]$	fact that n is the difference			
focus $\{n = 0 \}$ $(z :: zs) = -, z$	between k and j .			
$focus \{n = suc _\} (z :: zs) = focus zs$				
subst : $\lor \{k \ n \ a \ u\} \rightarrow Peb \ blue \rightarrow Dvec \ 0 \ 0 \ (suc \ k) \ (suc \ a) \ u \rightarrow \exists (\lambda \ u \ \mapsto Dvec \ 0 \ 0 \ k \ n \ a \ u)$ subst $u \ (_:_z \ \{d = 0 \ \} \ zs) = _, u ::_b \ zs$				
$subst \ y \ (_::_ z \ \{d = suc _\} \ zs) \ = \ _, \ z \ :: \pi_2 \ (subst \ y \ zs)$				
$\textit{elimUnknown} \ : \ \forall \ \{i \ j \ k \ n \ d \ u\} \rightarrow DVec \ i \ j \ k \ n \ d \ u \rightarrow \exists^4 \ (\lambda \ i' \ j' \ k' \ d' \ \mapsto \ DVec \ i' \ j' \ k' \ 0 \ d' \ tt)$				
$\begin{array}{l} elimUnknown \{n = 0 \} xs = _, xs \\$				
$elimUnknown \{n = suc \} xs = elimUnknown (\pi_2 (reduce xs))$				

References

[1] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

- [2] E. W. Dijkstra. On the interplay between mathematics and programming. In *Program Construction*, LNCS 69, pp 35–46. Springer-Verlag, 1979.
- [3] C. McBride. Ornamental algebras, algebraic ornaments. To appear in *Journal of Functional Programming*.

```
[4] U. Norell. Dependently typed programming in Agda. In Advanced Functional Programming, LNCS 5832, pp 230–266. Springer-Verlag, 2009.
```