
To decide how to reduce the
length of the unknown section,
we need to know the colour of
the first unknown pebble.

Peb c is the type of pebbles of colour c.

We can wrap the Dutch vector program in a list pro-
gram, localising the use of the Dutch vector datatype.

Now the blue case can be
completed by invoking the
fact that n is the difference
between k and j.

By algebraic ornamentation, the length of the unknown section
is integrated into the type of the Dutch vectors. This simplifies
the type of firstUnknownColour, and the length will serve as an
explicit termination measure. We then attempt to describe how
to reduce the length of the unknown section by one, which re-
quires a case analysis on the result of firstUnknownColour. The
case analysis does not directly reveal more information about
the input Dutch vector, however — to do so, that result has to be
exposed in the type by another algebraic ornamentation.

Now we can proceed with the case analysis. The white and red cases
are straightforward, but the blue case poses some problems.

At goals 3 and 4, we
cannot make recur-
sive calls because the
index k in the type
of ys is not a succes-
sor, and at goal 5 we
cannot use the blue
cons when solving
the base case of the
swap since k is not
zero. These prob-
lems are superficial,
however, and can be
overcome if we ex-
press the connection
between j, k, and n
more precisely.

--

To prove that a program satisfies
its specification, it is more intel-
lectually manageable to construct
the program such that its struc-
ture enables the programmer to
“give convincing argument for its
correctness” [2], or even serves as
a proof by itself, making the pro-
gram manifestly correct.

What properties to encode in datatypes are often discov-
ered only gradually during development. Ornamentation
suggests a way of supporting incremental specification
of precise datatypes to match our development patterns.

References
[1] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[2] E. W. Dijkstra. On the interplay between mathematics and programming. In Program Construction, LNCS 69, pp 35–46. Springer-Verlag, 1979.
[3] C. McBride. Ornamental algebras, algebraic ornaments. To appear in Journal of Functional Programming.
[4] U. Norell. Dependently typed programming in Agda. In Advanced Functional Programming, LNCS 5832, pp 230–266. Springer-Verlag, 2009.

In modern dependently typed
languages like Agda [4], data can
be specified such that they satisfy
certain properties by construc-
tion. Consequently, programs constructing those data are
manifestly correct without need for separate proofs, since
being able to construct the data implies that the properties
are indeed established.

Dijkstra introduced the Dutch National Flag problem, asking for a
way to rearrange an array of pebbles of colour red, white, or blue
in the order of the Dutch National Flag using only swaps, and
proposed an imperative solution [1]. The key invariant of the al-
gorithm is that the array is divided into four sections containing
red, white, “unknown,” and blue pebbles respectively. Initially
the colours of the pebbles are all regarded as unknown, and the
algorithm proceeds by reducing the length of the unknown sec-
tion. We formulate the invariant inductively and encode it in the
list-like Dutch vector datatype DVec, which uses different conses
for different sections and guarantees that the sections are ordered
as specified. Subsequent programs are written on the Dutch vec-
tors and thus necessarily maintain the invariant.

About the author Hsiang-Shang ‘Josh’ Ko (柯向上) is a DPhil student at Oxford supervised by Professor Jeremy Gibbons. He is working on modularity and reusability issues
in dependently typed programming, focusing particularly on ornamentation-based techniques. Previously he finished his undergraduate studies in Computer Science and
Information Engineering at National Taiwan University, Taiwan.
Acknowledgements The author would like to thank Yen-Chen Pan (潘彥丞) for offering very helpful suggestions and feedback. This work was completed through support of
the University of Oxford Clarendon Fund Scholarship and the UK Engineering and Physical Sciences Research Council project Reusability and Dependent Types.

What is algebraic ornamentation?

The DNF problem, inductively

An algebraic ornamentation adds an extra index to a datatype such that
the index in the type of an element is always the value computed by a
particular fold on that element. This technique was identified and for-
malised by McBride in a datatype-generic framework of ornaments for
expressing relationship between datatypes [3]. Algebraic ornamentation
allows some properties that can be established by simple induction to
be integrated into the data. Programs can then exploit those properties
directly, rather than having to manipulate separate proofs about them.

Solving the
Dutch National Flag problem
via datatype ornamentation
Josh Ko (University of Oxford)

Poster completed on 30 Oct 2011

