
Datatype ornamentation and
the Dutch National Flag problem

Hsiang-Shang Ko

October 27, 2011

In his seminal book A Discipline of Programming [3], one of the concluding
remarks made by Dijkstra was:

[. . .] that it does not suffice to design a mechanism of which we hope
that it will meet its requirements, but that we must design it in such
a form that we can convince ourselves — and anyone else for that
matter — that it will, indeed, meet its requirements. And, therefore,
instead of first designing the program and then trying to prove its
correctness, we develop correctness proof and program hand in hand.
(In actual fact, the correctness proof is developed slightly ahead of
the program: after having chosen the form of the correctness proof
we make the program so that it satisfies the proof’s requirements.)

Dijkstra used the guarded command language for programming and predicate
logic for reasoning, relating them by the weakest precondition semantics. The
separation of programming language and reasoning language forced him to make
the distinction between programs and proofs, and talk indirectly about a pro-
gram satisfying a proof’s requirements. In contrast, in dependently typed pro-
gramming, which is based on Martin-Löf’s intuitionistic type theory [7], pro-
gramming and logic are coherently unified and expressed in one language. (For
a brief summary of how intuitionistic type theory unifies programming and logic,
see Section 1 of Appendix B.) Since programs and proofs have the same form,
it is even possible not to draw a distinct line between programming and rea-
soning: Ideally, dependently typed programs are not just developed with their
correctness proofs in mind — they are written such that they themselves serve
as proofs. Dependently typed programming thus has the potential to bring us
even closer to program correctness by construction.

In Sections 1 and 2, we briefly survey dependently typed programming in
Agda and datatype ornamentation. Section 3 develops a solution to the Dutch
National Flag problem, using algebraic ornamentation to reveal and propa-
gate datatype properties. Section 5 steps back, using this development and
the reusability problem pointed out in Section 4 to motivate a programme of
study in datatype ornamentation. Appendix A contains the final solution to
the Dutch National Flag problem, Appendix B an essay on some of the issues
encountered when moving from intuitionistic type theory towards dependently
typed programming, and Appendix C a paper on modularising inductive fami-
lies.

1

1 Dependently typed programming in Agda
There exist many dependently typed programming systems/proof assistants, ex-
amples including Agda [11], Epigram [9], Ωmega [13], Coq [2], Isabelle/HOL [10],
and Matita [1]. Among them, Agda is designed to be a programming language
with full dependent types and Haskell-like syntax, and is widely used by the
dependently typed programming community. Unlike proof assistants, in which
proofs are constructed using special “tactic” languages different from those in
which programs are written, in Agda both programs and proofs (if we wish to
distinguish them) look like ordinary functional programs. Agda is thus more
appropriate for experimenting with writing programs that are manifestly cor-
rect.

Agda data declarations employ the syntax of generalised algebraic datatypes
(GADTs), one notable feature being that the types of constructors are explicitly
written. For example, the type of natural numbers is defined by:

data Nat : Set where
0 : Nat
s : Nat→ Nat

and the type of lists by:

data List (A : Set) : Set where
[] : List A

:: : A→ List A→ List A

With this syntax, we can define inductive families: The members of an inductive
family of types are constructed simultaneously, and can refer to other members
when specified inductively. A typical example is vectors, i.e., lists indexed with
their length.

data Vec (A : Set) : Nat→ Set where
[] : Vec A 0

:: : A→ {n : Nat} → Vec A n → Vec A (s n)

The first line of the declaration says that Vec A is an inductive family of types
indexed by elements of Nat (hence the type Nat→ Set). The empty vector [] is
an element of the member type at index 0, and when a list xs is an element of
the member type at n (and x is of type A), the list x :: xs is an element of the
member type at s n. The type of lists is thus partitioned into a family of list
types, each member type containing only lists of a particular length. A list xs
moves from Vec A 0 to Vec A (length xs) as it is constructed; conversely, if xs
has type Vec A n, it must be the case that xs is constructed using n cons cells
— this is the only way to bring a list to the type Vec A n. In general, having the
power of defining inductive families allows us to partition a traditional algebraic
datatype into a family of types and specify how the elements move through the
family of types when they are constructed, so we can gain knowledge about how
an element is constructed by looking at the index of its type.

To define functions on vectors, we can use dependent pattern matching. For
example, vector append can be defined by:

2

++ : ∀ {A m n} → Vec A m → Vec A n → Vec A (m + n)
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

where natural number addition is defined by:

+ : Nat→ Nat→ Nat
0 + n = n
(s m) + n = s (m + n)

The vector append program looks exactly like one for list append, except for the
more informative type and the more sophisticated unification happening behind
the scenes: When the first input vector (of type Vec A m) is matched with [],
the variable m is unified with 0 and the result type Vec A (0 + n) computes
to Vec A n, which is exactly the type of ys. For the cons case, m must be of
the form s m ′ where m ′ is the index of the type of xs, so the result type is
Vec A ((s m ′) + n), which computes to Vec A (s (m ′ + n)) and matches the
type of x :: (xs ++ys). Thus the proof that the length of the output vector is the
sum of the lengths of the two input vectors is in effect encoded in the indices
and carried out implicitly. (For a more detailed explanation of how dependent
pattern matching works, see Section 2 of Appendix B.)

2 Datatype ornamentation
Lists are natural numbers decorated with elements, and vectors are elaborated
lists such that the added index in the type of a vector is always the length of the
underlying list. This addition of information to a raw datatype to form a fancier
datatype is called an ornamentation, and was first formulated by McBride using
datatype-generic techniques [8]. A particularly useful class of ornamentations is
algebraic ornamentations, which add an extra index to a datatype such that the
index in the type of an element is always the value computed by a particular
fold on that element. The vector datatype is a typical example — a vector is a
list whose type is indexed by its length, which is computed by a fold. Consider
how we might augment the list datatype to get the vector datatype: The type of
the empty list [] should get 0 as its new index because length [] = 0. For cons,
whenever we have a list xs whose type is indexed by n — to refer to n we need
to insert a field before the recursive node — we can inductively assume that n
is the length of xs, and subsequently the type of x :: xs should get the index s n
because length (x :: xs) = s (length xs) = s n. The algebraic ornamentation
of the list datatype that gives us the vector datatype is thus derived from the
definition of length, and this derivation can be naturally generalised to work for
all datatypes. (For a more detailed albeit condensed introduction to datatype
ornamentation, and algebraic ornamentation in particular, see Section 2 of Ap-
pendix C.) Algebraic ornamentation will play an important role in the following
incremental development of a dependently typed solution to the Dutch National
Flag problem.

3

i
↓

j
↓

k
↓

Figure 1: A Dutch vector. Pebbles of unknown colour are shown as grey.

3 The Dutch National Flag problem
Dijkstra introduced the Dutch National Flag problem [3, Chapter 14], asking
for a way to rearrange an array of pebbles of colour red, white, or blue in the
order of the Dutch National Flag using only swaps. He observed that we can
maintain the invariant that the array is divided into four sections containing
red, unknown, white, and blue pebbles respectively. In the following solution,
however, we adopt the order red, white, unknown, and blue for the four sections
(as illustrated in Figure 1), which is symmetric to Dijkstra’s version but more
convenient for our purpose. Initially the colours of the pebbles are all unknown,
and the algorithm proceeds by reducing the size of the unknown section. Tra-
ditionally, correctness of such a swapping algorithm is proved by reasoning in
terms of array indices (which we will call pointers below to avoid confusion with
type indices), which can be messy. However, it turns out that the invariant can
be formulated inductively and encoded as extra indices of the list datatype, and
the proofs that each reduction step maintains the invariant look essentially like
ordinary list programs. (See Appendix A for a sneak preview.)

First we define a three-element datatype for the three colours,

data Colour : Set where red white blue : Colour

and assume that there is a family of types Peb : Colour → Set where Peb c
is the type of pebbles of colour c. In the imperative solution, we maintain the
invariant with the help of three pointers i, j, and k for the position immediately
after the red, white, and unknown section of the array respectively. (Again see
Figure 1.) The invariant has an inductive structure if we regard the array as
a list: For example, when we add one more red pebble to the front of the list,
the invariant is still satisfied, and the new pointers are s i , s j , and s k . If we
use lists whose type is indexed by the three pointers — which we call the Dutch
vectors — as a representation of the arrays satisfying the invariant, then the
observation translates to a “red cons” constructor:

::r : Peb red→ ∀ {i j k} → DVec i j k → DVec (s i) (s j) (s k)

To add a white pebble to the front of a Dutch vector, however, first we must
ensure that the red section is empty, because a white pebble cannot appear to
the left of red pebbles. Fortunately, this prerequisite is easy to check, because
saying that the red section is empty is equivalent to saying that the position
immediately after the red section, i.e., the pointer i, is zero. After adding the
white pebble, both j and k increase by one while i remains zero. The “white
cons” constructor is thus:

::w : Peb white→ ∀ {j k} → DVec 0 j k → DVec 0 (s j) (s k)

4

Following the same line of reasoning, (the first version of) the definition of the
Dutch vector datatype can be completed. (We will revise the definition several
times in response to the needs for more precision later.)

data DVec : (i j k : Nat)→ Set where
[] : DVec 0 0 0

::r : Peb red →
∀ {i j k} → DVec i j k → DVec (s i) (s j) (s k)

::w : Peb white →
∀ { j k} → DVec 0 j k → DVec 0 (s j) (s k)

:: : ∀ {c} → Peb c →
∀ { k} → DVec 0 0 k → DVec 0 0 (s k)

::b : Peb blue →
DVec 0 0 0 → DVec 0 0 0

We can convince ourselves that a Dutch vector must satisfy the invariant by
merely looking at the indices: For example, if we use a red cons, then it is
impossible to use the other three kinds of conses afterwards, because the Dutch
vectors they receive must have 0 as the first index, whereas a red cons produces
a Dutch vector that has s i as the first index, and 0 is distinct from s i for any i .

We aim to show by actually programming on the Dutch vectors that the
unknown section can be reduced. Exactly how to reduce the unknown section
depends on the colour of the pebble in the unknown section we choose to look
at, a natural choice being the first (leftmost) one∗. However, the function that
computes the first unknown colour of a Dutch vector is not total, as the unknown
section can be empty. A solution is to wrap the output colour in the following
version of Maybe, which will take the length of the unknown section as its first
argument:

Maybe : Nat→ Set→ Set
Maybe 0 A = >
Maybe (s) A = A

where > is a one-element type whose only constructor is tt. So the first unknown
colour can be computed by the function

firstUnknownColour :
∀ {i j k} → (xs : DVec i j k)→ Maybe (lengthUnknown xs) Colour

firstUnknownColour [] = tt
firstUnknownColour (x ::r xs) = firstUnknownColour xs
firstUnknownColour (x ::w xs) = firstUnknownColour xs
firstUnknownColour (:: {c} x xs) = c
firstUnknownColour (x ::b xs) = tt

where lengthUnknown computes the length of the unknown section:

lengthUnknown : ∀ {i j k} → DVec i j k → Nat
lengthUnknown [] = 0
lengthUnknown (x ::r xs) = lengthUnknown xs
lengthUnknown (x ::w xs) = lengthUnknown xs

∗Dijkstra also gave an analysis indicating that such a choice leads to fewer swaps on average.

5

lengthUnknown (x :: xs) = s (lengthUnknown xs)
lengthUnknown (x ::b xs) = 0

We can use algebraic ornamentation to simplify the type of firstUnknownColour :
Instead of computing the length of the unknown section on the fly, we can expose
that length — i.e., the value of lengthUnknown, which is a fold — as a fourth
index in the type of the Dutch vectors.

data DVec : (i j k n : Nat)→ Set where
[] : DVec 0 0 0 0

::r : Peb red →
∀ {i j k n} → DVec i j k n → DVec (s i) (s j) (s k) n

::w : Peb white →
∀ { j k n} → DVec 0 j k n → DVec 0 (s j) (s k) n

:: : ∀ {c} → Peb c →
∀ { k n} → DVec 0 0 k n → DVec 0 0 (s k) (s n)

::b : Peb blue →
∀ { n} → DVec 0 0 0 n → DVec 0 0 0 0

This exposure of the length of the unknown section in the Dutch vector datatype
will also be useful later; in particular, the index will serve as an explicit termi-
nation measure. The type of firstUnknownColour thus becomes:

firstUnknownColour :
∀ {i j k n} → (xs : DVec i j k n)→ Maybe n Colour

Its definition remains unchanged.
Next we try to define

reduce : ∀ {i j k n} →
DVec i j k (s n)→ ∃3 (λ i ′ j ′ k ′ 7→ DVec i ′ j ′ k ′ n)

which reduces the unknown section by one pebble (as shown in the type†). We
need to do a case analysis on the first unknown colour:

reduce : ∀ {i j k n} →
DVec i j k (s n)→ ∃3 (λ i ′ j ′ k ′ 7→ DVec i ′ j ′ k ′ n)

reduce xs with firstUnknownColour xs

reduce xs | red = { }0
reduce xs | white = { }1
reduce xs | blue = { }2

†The function ∃3 computes a type from a predicate and is defined by

∃3 : {A : Set} {B : A → Set} {C : (a : A) → B a → Set} →
((a : A) (b : B a) (c : C a b) → Set) → Set

∃3 {A} {B} {C} p = Σ (Σ A (λ a 7→ Σ (B a) (λ b 7→ C a b)))
(λ abc 7→ p (π1 abc) (π1 (π2 abc)) (π2 (π2 abc)))

where Σ is the dependent pair type former and π1 and π2 are the projection functions. We
will use a family of such functions, which can be generated by “arity-generic” techniques [14]
if one wishes.

6

(The grey regions are holes left in the program to be filled out, or in different
words, programming “goals” to be solved interactively. See Section 2 of Ap-
pendix B.) Notice that, since we request a DVec i j k (s n), we are guaranteed
to get a Dutch vector that has a nonempty unknown section, so in particular
firstUnknownColour returns a proper Colour. Let us consider the white case at
goal 1 first, since it is the simplest case.

i
↓

j
↓

k
↓

s n

i
↓

s j
↓

k
↓

n

Since the first pebble in the unknown section — which should be white — is
immediately to the right of the white section, we can simply change the unknown
cons that adjoins that pebble to the rest of the vector to a white cons. To do so,
we might perform a second-level case analysis on xs, splitting goal 1 into goals
3–5:

reduce : ∀ {i j k n} →
DVec i j k (s n)→ ∃3 (λ i ′ j ′ k ′ 7→ DVec i ′ j ′ k ′ n)

reduce xs with firstUnknownColour xs

reduce xs | red = { }0
reduce (y ::r ys) | white = { }3
reduce (y ::w ys) | white = { }4
reduce (y :: ys) | white = { }5
reduce xs | blue = { }2

(Notice that we do not need to consider the two cases [] and y ::b ys, since the
two constructors cannot possibly deliver Dutch vectors with nonempty unknown
sections, i.e., of type DVec i j k (s n).) At goal 5, we wish to use y ::w ys,
thereby replacing the unknown cons with a white cons, but the expression does
not typecheck! Inspecting the context, we see that the type of y is still Peb c for
some c : Colour — Agda does not know that c must be white. This is reasonable,
though, since the case analysis on firstUnknownColour xs has nothing to do with
the type of xs, so Agda does not gain more knowledge about xs from the case
analysis. What we need to do is expose the first unknown colour as a fifth index
of the Dutch vector datatype:

data DVec : (i j k n : Nat)→ Maybe n Colour→ Set where
[] : DVec 0 0 0 0 tt

::r : Peb red →

7

∀ {i j k n u} → DVec i j k n u → DVec (s i) (s j) (s k) n u
::w : Peb white →

∀ { j k n u} → DVec 0 j k n u → DVec 0 (s j) (s k) n u
:: : ∀ {c} → Peb c →

∀ { k n u} → DVec 0 0 k n u → DVec 0 0 (s k) (s n) c
::b : Peb blue →

∀ { n u} → DVec 0 0 0 n u → DVec 0 0 0 0 tt

This is the algebraic ornamentation exposing the value of firstUnknownColour .
Now the case analysis on the first unknown colour can be performed on the fifth
index instead,

reduce : ∀ {i j k n u} →
DVec i j k (s n) u → ∃4 (λ i ′ j ′ k ′ u ′ 7→ DVec i ′ j ′ k ′ n u ′)

reduce {u = red } xs = { }0
reduce {u = white} (y ::r ys) = { }3
reduce {u = white} (y ::w ys) = { }4
reduce {u = white} (y :: ys) = { }5
reduce {u = blue } xs = { }2

and at goal 5 the type of y is Peb white, so the goal can be solved by (, y ::w ys).
Goal 4 presents another problem, however: We wish to use y ::w π2 (reduce ys),
i.e., skipping the white cons and proceeding with the rest of the vector, but to be
entitled to write the white cons, the first pointer in the type of π2 (reduce ys)
has to remain 0, which is not guaranteed by the type of reduce. Therefore
we need to be more specific about the pointer indices of the output vector by
writing a separate reduceWhite function (which corresponds to strengthening
the induction hypothesis).

reduceWhite : ∀ {i j k n} →
DVec i j k (s n) white→ ∃ (λ u ′ 7→ DVec i (s j) k n u ′)

reduceWhite (y ::r ys) = , y ::r π2 (reduceWhite ys)
reduceWhite (y ::w ys) = , y ::w π2 (reduceWhite ys)
reduceWhite (y :: ys) = , y ::w ys

The type of reduceWhite is informative enough to tell us that, if the three
pointers are i , j , and k originally and the first unknown colour is in fact white,
then the white section can be expanded by one pebble (hence the new pointer s j)
and the length of the unknown section decreases by one. The program says that
a way to achieve this is to skip red and white conses and replace the first
unknown cons with a white cons. Now in the white case of reduce, we simply
delegate the task to reduceWhite (instead of performing a second-level case
analysis on xs).

reduce : ∀ {i j k n u} →
DVec i j k (s n) u → ∃4 (λ i ′ j ′ k ′ u ′ 7→ DVec i ′ j ′ k ′ n u ′)

reduce {u = red } xs = { }0
reduce {u = white} xs = , π2 (reduceWhite xs)

reduce {u = blue } xs = { }2

8

Similarly we will define reduceRed and reduceBlue for the other two cases.
Remark. We are forced to write expressions like

, y ::r π2 (reduceWhite ys)

instead of simply
y ::r reduceWhite ys

because reduceWhite ys is a dependent pair — some of the indices of the re-
turned Dutch vector are existentially quantified and need to be paired with the
vector. We thus have to throw away the indices, produce the desired vector
and again pair it with its indices (which Agda can infer). This causes some
syntactic noise, which does not seem possible to be removed with the current
implementation of Agda, however. (End of remark.)

The red case is slightly more complex but still straightforward. The type of
reduceRed is:

reduceRed : ∀ {i j k n} →
DVec i j k (s n) red→ ∃ (λ u ′ 7→ DVec (s i) (s j) k n u ′)

because by swapping the first pebble in the unknown section — which is now
known to be red — with the first white pebble, the red section would be ex-
panded by one pebble (hence the new pointer s i) and, at the same time, the
white section would in effect be shifted to the right by one position (hence the
new pointer s j).

i
↓

j
↓

k
↓

s n

s i
↓

s j
↓

k
↓

n

We start by performing case analysis on the input vector.

reduceRed : ∀ {i j k n} →
DVec i j k (s n) red→ ∃ (λ u ′ 7→ DVec (s i) (s j) k n u ′)

reduceRed (y ::r ys) = { }0
reduceRed (y ::w ys) = { }1
reduceRed (y :: ys) = { }2

We skip all red conses, so goal 0 is solved by (, y ::r π2 (reduceRed ys)). At
goal 2, the vector starts with the unknown section, meaning that the red and
white sections are empty, so we can simply replace the unknown cons with a
red cons, solving the goal by (, y ::r ys). Goal 1 is the interesting case, at

9

which we encounter the first pebble y of the white section, which we need to
swap with the red pebble at the beginning of the unknown section, and then
we replace the white cons with a red cons. We retrieve the red pebble to be
swapped with y by the function

focus : ∀ {j k n} → DVec 0 j k (s n) red→ Peb red
focus (z ::w zs) = focus zs
focus (z :: zs) = z

and substitute y for the red one by the function

subst : ∀ {j k n} → Peb white→
DVec 0 j k (s n) red→ ∃ (λ u ′ 7→ DVec 0 (s j) k n u ′)

subst y (z ::w zs) = , z ::w π2 (subst y zs)
subst y (z :: zs) = , y ::w zs

Now goal 1 can be solved by (, focus ys ::r π2 (subst y ys)).
The blue case is the trickiest, in particular requiring another algebraic orna-

mentation of the Dutch vector datatype. The type of reduceBlue is:

reduceBlue : ∀ {i j k n} →
DVec i j (s k) (s n) blue→ ∃ (λ u ′ 7→ DVec i j k n u ′)

The third pointer decreases from s k to k because the blue section grows towards
the head of the vector by swapping the first pebble of the unknown section —
which is known to be blue — with the last one.

i
↓

j
↓

s k
↓

s n

i
↓

j
↓

k
↓

n

If we perform case analysis on the input vector and try to solve the goals,

reduceBlue : ∀ {i j k n} →
DVec i j (s k) (s n) blue→ ∃ (λ u ′ 7→ DVec i j k n u ′)

reduceBlue (y ::r ys) = { }0
reduceBlue (y ::w ys) = { }1
reduceBlue (y :: ys) = { }2

we would soon encounter some difficulties: At goals 0 and 1, we wish to skip
the red and white conses as before, but the expression reduceBlue ys does not
typecheck, because the third pointer in the type of ys is some arbitrary k whereas

10

reduceBlue requires that to be a successor. Nevertheless, we do know that k
must be a successor, because it is bounded below by s n. And at goal 2, we need
to do a second-level case analysis on n and simply replace the unknown cons
with a blue cons when n is 0, i.e., when y is the only pebble in the unknown
section. However, the expression y ::b ys does not typecheck either, because the
blue cons requires the third pointer in the type of ys to be 0, which is again just
some arbitrary k . Nevertheless, we do know that k has to be 0, because when
n is 0 it must be equal to j , which is 0 in this case. These difficulties suggest
that we did not express the connection between the three indices j , k , and n
precisely enough in the Dutch vector datatype — we need to say explicitly that
n is exactly k − j. A possibility is to use the following datatype to state that
the difference between k and j is n:

data − ≈ : (k j n : Nat)→ Set where
0 : ∀ {j} → j − j ≈ 0
s : ∀ {k j n} → k − j ≈ n → s k − j ≈ s n

We can write a function computing such a difference:

difference : ∀ {i j k n u} → DVec i j k n u → k − j ≈ n
difference [] = 0
difference (x ::r xs) = inj (difference xs)
difference (x ::w xs) = inj (difference xs)
difference (x :: xs) = s (difference xs)
difference (x ::b xs) = 0

where inj says that the difference is unchanged when both j and k are increased
by one:

inj : ∀ {k j n} → k − j ≈ n → s k − s j ≈ n
inj 0 = 0
inj (s d) = s (inj d)

The function difference is a fold, so again we can algebraically ornament the
Dutch vector datatype to expose its value.

data DVec : (i j k n : Nat)→
k − j ≈ n → Maybe n Colour→ Set where

[] : DVec 0 0 0 0 0 tt
::r : Peb red → ∀ {i j k n d u} →

DVec i j k n d u → DVec (s i) (s j) (s k) n (inj d) u
::w : Peb white → ∀ { j k n d u} →

DVec 0 j k n d u → DVec 0 (s j) (s k) n (inj d) u
:: : ∀ {c} → Peb c → ∀ { k n d u} →

DVec 0 0 k n d u → DVec 0 0 (s k) (s n) (s d) c
::b : Peb blue → ∀ { n d u} →

DVec 0 0 0 n d u → DVec 0 0 0 0 0 tt

(This is the final version of the Dutch vector datatype.) Back to reduceBlue,
now we have more type information to exploit.

reduceBlue : ∀ {i j k n d} →
DVec i j (s k) (s n) d blue→ ∃2 (λ d ′ u ′ 7→ DVec i j k n d ′ u ′)

11

reduceBlue (y ::r ys) = { }0
reduceBlue (y ::w ys) = { }1
reduceBlue (y :: ys) = { }2

At goals 0 and 1, we remind Agda that the index d in the type of ys can only
be of the form (s) by pattern matching. As a result, k must be a successor,
and we are cleared to call reduceBlue ys.

reduceBlue : ∀ {i j k n d} →
DVec i j (s k) (s n) d blue→ ∃2 (λ d ′ u ′ 7→ DVec i j k n d ′ u ′)

reduceBlue (::r y {d = s } ys) = , y ::r π2 (reduceBlue ys)
reduceBlue (::w y {d = s } ys) = , y ::w π2 (reduceBlue ys)

reduceBlue (y :: ys) = { }2

At goal 2, we replace the unknown cons with a blue cons if and only if y is
the only pebble in the unknown section; otherwise we swap the last pebble in
the unknown section with y and adjoin y to the blue section using a blue cons.
Asking whether y is the only pebble in the unknown section is equivalent to
asking whether the unknown section in ys is empty, and this question can be
answered by pattern matching on the index d in the type of ys again.

reduceBlue : ∀ {i j k n d} →
DVec i j (s k) (s n) d blue→ ∃2 (λ d ′ u ′ 7→ DVec i j k n d ′ u ′)

reduceBlue (::r y {d = s } ys) = , y ::r π2 (reduceBlue ys)
reduceBlue (::w y {d = s } ys) = , y ::w π2 (reduceBlue ys)

reduceBlue (:: y {d = 0 } ys) = { }3
reduceBlue (:: y {d = s } ys) = { }4

Goal 3 can be solved by (, y ::b ys). For goal 4, we need to retrieve the last
pebble of the unknown section by the function

focus : ∀ {k n d u} → DVec 0 0 k (s n) d u → ∃ (λ u ′ 7→ Peb u ′)
focus {n = 0 } (z :: zs) = , z
focus {n = s } (z :: zs) = focus zs

and then use the following function to substitute y for the last pebble and also
adjoin it to the blue section:

subst : ∀ {k n d u} → Peb blue→
DVec 0 0 (s k) (s n) (s d) u → ∃ (λ u ′ 7→ DVec 0 0 k n d u ′)

subst y (:: z {d = 0 } zs) = , y ::b zs
subst y (:: z {d = s } zs) = , z :: π2 (subst y zs)

Now goal 4 can be solved by (, π2 (focus ys) :: π2 (subst y ys)).
Having gone through the three cases, the reduce function can now be com-

pleted.

reduce : ∀ {i j k n d u} →
DVec i j k (s n) d u → ∃5 (λ i ′ j ′ k ′ d ′ u ′ 7→ DVec i ′ j ′ k ′ n d ′ u ′)

reduce {u = red } xs = , π2 (reduceRed xs)

12

reduce {u = white} xs = , π2 (reduceWhite xs)
reduce {d = s } {u = blue } xs = , π2 (reduceBlue xs)

In the blue case, again we need to remind Agda that k must be a successor by
pattern matching on the index d in the type of xs. The main program calls
reduce repeatedly until n decreases to 0, so it is an induction on n (and thus
obviously terminates).

elimUnknown : ∀ {i j k n d u} →
DVec i j k n d u → ∃4 (λ i ′ j ′ k ′ d ′ 7→ DVec i ′ j ′ k ′ 0 d ′ tt)

elimUnknown {n = 0 } xs = , xs
elimUnknown {n = s } xs = elimUnknown (π2 (reduce xs))

Since every list of pebbles can be cast as a Dutch vector by the function

initialise : (xs : List (Σ Colour Peb))→
let l = length xs in ∃ (λ u 7→ DVec 0 0 l l fuel u)

initialise [] = tt , []
initialise ((c , x) :: xs) = c , x :: π2 (initialise xs)

where

fuel : ∀ {k} → k − 0 ≈ k
fuel {0 } = 0
fuel {s } = s fuel

and we have an obvious forgetful function from the Dutch vectors to lists of
pebbles,

forget : ∀ {i j k n d u} → DVec i j k n d u → List (Σ Colour Peb)
forget [] = []
forget (x ::r xs) = (red , x) :: forget xs
forget (x ::w xs) = (white , x) :: forget xs
forget (x :: xs) = (, x) :: forget xs
forget (x ::b xs) = (blue , x) :: forget xs

the composite function

dutchFlag : List (Σ Colour Peb)→ List (Σ Colour Peb)
dutchFlag = forget ◦ π2 ◦ elimUnknown ◦ π2 ◦ initialise

solves the Dutch National Flag problem. It should be pointed out that the
solution was developed incrementally — several times we discovered that more
precision was needed to complete the program and refined the Dutch vector
datatype accordingly: Inspired by the invariant shown in Figure 1, we started
with a Dutch vector datatype indexed by the three pointers, and subsequently we
used algebraic ornamentation to expose the length n of the unknown section (to
serve as an explicit argument on which we can do induction), the first unknown
colour (to perform case analysis and decide how to reduce the unknown section),
and the proof that n is exactly the difference between the third pointer k and
the second pointer j (to give Agda more information about the indices in the
blue case). This is a development pattern we should strive to support. The final
version of the solution is listed in Appendix A.

13

4 Internalism and externalism
The programming style of the above solution to the Dutch National Flag prob-
lem might be characterised as internalist, suggesting that constraints are inter-
nalised in datatypes and proofs are manipulated simultaneously with data. A
more traditional style is the externalist one, in which we formulate properties
and write proofs about existing programs separately without modifying the ex-
isting programs. For example, to solve the Dutch National Flag problem in the
externalist way, we might write dutchFlag directly as an ordinary program on
List (Σ Colour Peb), formulate a predicate

IsDutch : List (Σ Colour Peb)→ Set

asserting that a list of pebbles is arranged as required, and then prove

dutchFlag-correctness :
(xs : List (Σ Colour Peb))→ IsDutch (dutchFlag xs)

with respect to the definitions of dutchFlag and IsDutch. The two styles serve
different purposes in the setting of correct-by-construction dependently typed
programming: Internalist programs aim to be manifestly correct by incorporat-
ing the essential properties into datatypes and programs, while externalist proofs
can show that existing programs satisfy additional properties in a modular fash-
ion. For example, we wrote the internalist solution to the Dutch National Flag
problem with the invariant in mind, but afterwards we might also wish to con-
firm that every reduction step only swaps the pebbles instead of tampering with
them in some way. Instead of redesigning the datatypes and programs to show
the property, which would be a large amount of work and, worse, complicate
the logic, it is much cleaner and easier to define a separate predicate

Swap : {A : Set} → List A→ List A→ Set

on plain lists such that Swap xs ys means ys is one swap away from xs, and
prove:

reduce-swapping : ∀ {i j k n d u} →
(xs : DVec i j k (s n) d u)→ Swap (forget xs)

(forget (π2 (reduce xs)))

The Dutch National Flag problem is thus a good example showing that both
internalism and externalism are indispensable. (For more discussion about the
two styles, see Section 3 of Appendix B.)

There is a great advantage of externalism over internalism, however, which is
the high composability of externalist structures. In externalism, since programs
carry only minimal type information, they can be used in as many contexts as
possible, and externalist proofs can be easily imposed on programs in a non-
intrusive way (using dependent pairs) when needed. In contrast, internalist pro-
grams — especially those with too specific types — are harder to reuse, although
they are often more concise than their externalist counterparts since proofs re-
quire no separate management. Recently we published a paper Modularising
Inductive Families [6] for the Workshop on Generic Programming (attached as
Appendix C) reporting an initial attempt to combine internalist clarity with

14

externalist composability. We identified a family of isomorphisms between in-
ternalist datatypes and simpler datatypes paired with externalist predicates,
which can help to structure libraries of internalist datatypes in a modular way.
The WGP paper is merely a starting point — there is still much to be investi-
gated about reusability and modularity of internalist programs, which is a main
issue that has to be resolved if dependently typed programming is to succeed.

5 Thesis proposal
The thesis will aim to show that dependently typed programs have composable
structures that allow modular library design and incremental program develop-
ment. The ability to structure programs in a modular fashion is essential to
reusability of library code, as useful components can be separately maintained
and later freely combined when needed, and the ability to develop programs in-
crementally enables programmers to focus on only one aspect of their programs
at a time and later integrate all the work together. In the dependently typed
setting, where proofs are manipulated along with programs, libraries keep not
only data structures and algorithms but also proofs about their various proper-
ties, and programmers write not only programs but also their various correctness
proofs. Dependently typed programmers thus should be able to request inter-
nalist data structures and algorithms carrying correctness proofs customised
for their needs from libraries as easily as combining externalist programs and
proofs, and move towards more precisely typed programs incrementally, adding
only the necessary information at each step. To achieve such goals, a study of
composable structures of dependently typed programs is necessary. I will aim
to study a particular approach based on McBride’s datatype ornamentation [8],
giving it both an intensional, type-theoretic implementation and an extensional,
category-theoretic characterisation. I will propose ways to structure internal-
ist libraries modularly and give examples of reusable components that can go
into such libraries, and explore mechanisms that help to upgrade programs to-
wards more precise types. A possible title for the thesis might be Composable
structures for dependently typed programming.

Chapter outline
1. Introduction. The introduction will argue that programs should be correct by

construction, echoing Dijkstra [3]. Dependently typed programming is one
promising way to such a goal. However, existing dependently typed libraries
are rigid and have dreadful reusability, and currently dependently typed pro-
gram development is largely monolithic and fails to achieve separation of
concerns. Both observations point to a study of the composable structure
of dependently typed programs, into which there has been no systematic
investigation.

2. Dependently typed programming. This chapter summarises the state of the
art in dependently typed programming, which might include foundational
theories, current implementations (mainly Agda, which will be the language
for carrying out experiments), common idioms, and illustrative examples (like
the Dutch National Flag problem).

15

3. Datatype ornamentation. The content of theWGP paper [6] (after completion
and revision) might go into this chapter, including a revised definition of or-
naments, ornamental-algebraic ornamentation, and ornament fusion (which
was called ornament composition in the WGP paper).

4. Canonical upgrade. Intuitively, it should be effortless to upgrade list append
to vector append, since in a language that supports implicit arguments (like
Agda) the two programs look exactly the same, and we know that the im-
plicitly added proof about length has “the same structure” as that of the list
append program. Similar things can be said about upgrading natural number
addition to list append. Also during our development of the internalist solu-
tion to the Dutch National Flag problem, we ornamented the Dutch vector
datatype several times without explicitly revisiting the programs previously
written. The types of those programs in fact need to be updated manually,
but the program texts remain the same. This is a hint that we should be
able to derive programs on an ornamented Dutch vector datatype automati-
cally from those on a simpler Dutch vector datatype. In general, this will be
about exploiting ornamental information to generate “canonical” programs
on fancier types from programs having simpler types. The work in the pre-
vious chapter might be described as reusing and extending datatypes, while
this chapter will be about reusing and extending program structures.

5. A category-theoretic characterisation. There is a category Desc with data-
type descriptions as objects and ornaments as arrows. It can be translated to
the category Fam(Set) by the contravariant functor which maps a description
to the decoded family of sets and an ornament to the induced forgetful map.
There is also a contravariant functor Desc→ Set mapping a description to
its index set and an ornament to its index erasure function.

I D µ D

J E µ E

e O forget O

Ornament fusion is a pushout‡: It contains the least information that covers
both O1 and O2. Correspondingly, the index set of bO1 ⊕O2c is a pullback,
as already pointed out in the WGP paper.

I J2 D E2

J1 e1 ⊗ e2 E1 bO1 ⊕O2c

O1

O2

e1

e2

π1

π2

Such a pushout in Desc is a coproduct in the coslice category D ↓ Desc,
and we have observed in the WGP paper that ornament fusion corresponds
‡In fact, ornament fusion in its present form is not yet a pushout. But it can be made a

genuine pushout if the ornament language is suitably expanded.

16

to pointwise conjunction of realisability predicates, i.e., a product in some
suitable category. Hence it is reasonable to expect that we can find a con-
travariant functor fromD ↓ Desc to a (presumably cartesian closed) category
of predicates. These preliminary observations show that the theory of orna-
ments potentially have interesting structures that can be concisely explained
by a fibrational analysis [4].

6. Case studies. I will experiment with designing a modular library of orna-
ments and proofs by reexamining and reimplementing data structures and
algorithms in, e.g., Okasaki’s book [12] and existing Agda libraries. A po-
tential library structure was proposed in the WGP paper. As for incremental
program development, an interesting case study might involve migrating the
proof of the Church-Rosser property for untyped λ-calculus (via parallel re-
duction) to one for simply typed λ-calculus à la Church (i.e., the λ-terms are
typed). It has been observed [5, p 80] that the proof for untyped λ-calculus
can be “adapted fairly easily” to work for simply typed λ-calculus à la Church.
Formally, how much do we need to fill in to get a proof for simply typed λ-
calculus from one for untyped λ-calculus? This can serve as an evaluation of
the degree of reusability achieved.

7. Discussion. Summary, overall discussion, future work, etc.

Research plan
The next step is to complete and revise the work in the WGP paper, i.e., adjust
the definition of ornaments so it is more amenable to a categorical treatment
and finish the implementation of ornament fusion. I will also start porting
data structures and algorithms to their dependently typed versions and try to
structure them as reusable components as proposed by the WGP paper. With
enough examples at hand, it will be easier to tackle the canonical upgrade
problem by generalising the patterns observed. And then I will try to do more
ambitious case studies like proving the Church-Rosser property. In parallel with
the type-theoretic path, I will familiarise myself with fibred category theory and
begin the categorical investigation of ornaments at a later time (say in the third
year).

References
[1] Andrea Asperti, Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zacchi-

roli. User interaction with the Matita proof assistant. Journal of Automated
Reasoning, 39(2):109–139, August 2007.

[2] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-
gram Development — Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. Springer-Verlag, 2004.

[3] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[4] Bart Jacobs. Categorical Logic and Type Theory. Number 141 in Studies
in Logic and the Foundations of Mathematics. Elsevier Science, 1999.

[5] Andrew D. Ker. Lambda calculus and types. Lecture notes, 2009.

17

[6] Hsiang-Shang Ko and Jeremy Gibbons. Modularising inductive families. In
Workshop on Generic Programming, WGP’11, September 2011. Attached
as Appendix C.

[7] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

[8] Conor McBride. Ornamental algebras, algebraic ornaments. To appear in
Journal of Functional Programming. Draft available at http://personal.
cis.strath.ac.uk/~conor/pub/OAAO/LitOrn.pdf.

[9] Conor McBride. Epigram: Practical programming with dependent types.
In Varmo Vene and Tarmo Uustalu, editors, Advanced Functional Program-
ming (AFP’04), volume 3622 of Lecture Notes in Computer Science, pages
130–170, 2004.

[10] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes
in Computer Science. Springer-Verlag, 2002.

[11] Ulf Norell. Dependently typed programming in Agda. In Pieter Koopman,
Rinus Plasmeijer, and Doaitse Swierstra, editors, Advanced Functional Pro-
gramming (AFP’08), volume 5832 of Lecture Notes in Computer Science,
pages 230–266. Springer-Verlag, 2009.

[12] Chris Okasaki. Purely functional data structures. Cambridge University
Press, 1999.

[13] Tim Sheard and Nathan Linger. Programming in Ωmega. In Zoltán
Horváth, Rinus Plasmeijer, Anna Soós, and Viktória Zsók, editors, Sec-
ond Central-European Functional Programming School (CEFP’07), vol-
ume 5161 of Lecture Notes in Computer Science, pages 158–227. Springer-
Verlag, 2007.

[14] Stephanie Weirich and Chris Casinghino. Arity-generic datatype-generic
programming. In Jean-Christophe Filliâtre and Cormac Flanagan, editors,
Programming Languages meets Program Verification, PLPV’10, pages 15–
26. ACM, 2010.

18

http://personal.cis.strath.ac.uk/~conor/pub/OAAO/LitOrn.pdf
http://personal.cis.strath.ac.uk/~conor/pub/OAAO/LitOrn.pdf

Appendix A
The final version of the internalist solution

to the Dutch National Flag problem

data Colour : Set where red white blue : Colour

postulate Peb : Colour→ Set

Maybe : Nat→ Set→ Set
Maybe 0 A = >
Maybe (s) A = A

data − ≈ : Nat→ Nat→ Nat→ Set where
0 : ∀ {j} → j − j ≈ 0
s : ∀ {k j n} → k − j ≈ n → s k − j ≈ s n

inj : ∀ {k j n} → k − j ≈ n → s k − s j ≈ n
inj 0 = 0
inj (s d) = s (inj d)

fuel : ∀ {k} → k − 0 ≈ k
fuel {0 } = 0
fuel {s } = s fuel

data DVec : (i j k n : Nat)→ k − j ≈ n → Maybe n Colour→ Set where
[] : DVec 0 0 0 0 0 tt

::r : Peb red → ∀ {i j k n d u} →
DVec i j k n d u → DVec (s i) (s j) (s k) n (inj d) u

::w : Peb white → ∀ { j k n d u} →
DVec 0 j k n d u → DVec 0 (s j) (s k) n (inj d) u

:: : ∀ {c} → Peb c → ∀ { k n d u} →
DVec 0 0 k n d u → DVec 0 0 (s k) (s n) (s d) c

::b : Peb blue → ∀ { n d u} →
DVec 0 0 0 n d u → DVec 0 0 0 0 0 tt

reduceWhite : ∀ {i j k n d} →
DVec i j k (s n) d white→ ∃2 (λ d ′ u ′ 7→ DVec i (s j) k n d ′ u ′)

reduceWhite (y ::r ys) = , y ::r π2 (reduceWhite ys)
reduceWhite (y ::w ys) = , y ::w π2 (reduceWhite ys)
reduceWhite (y :: ys) = , y ::w ys

reduceRed : ∀ {i j k n d} →
DVec i j k (s n) d red→ ∃2 (λ d ′ u ′ 7→ DVec (s i) (s j) k n d ′ u ′)

reduceRed (y ::r ys) = , y ::r π2 (reduceRed ys)
reduceRed (y ::w ys) = , focus ys ::r π2 (subst y ys)
where focus : ∀ {j k n d} → DVec 0 j k (s n) d red→ Peb red

focus (z ::w zs) = focus zs
focus (z :: zs) = z
subst : ∀ {j k n d} → Peb white→

DVec 0 j k (s n) d red→ ∃2 (λ d ′ u ′ 7→ DVec 0 (s j) k n d ′ u ′)
subst y (z ::w zs) = , z ::w π2 (subst y zs)
subst y (z :: zs) = , y ::w zs

reduceRed (y :: ys) = , y ::r ys

reduceBlue : ∀ {i j k n d} →
DVec i j (s k) (s n) d blue→ ∃2 (λ d ′ u ′ 7→ DVec i j k n d ′ u ′)

reduceBlue (::r y {d = s } ys) = , y ::r π2 (reduceBlue ys)
reduceBlue (::w y {d = s } ys) = , y ::w π2 (reduceBlue ys)
reduceBlue (:: y {d = 0 } ys) = , y ::b ys
reduceBlue (:: y {d = s } ys) = , π2 (focus ys) :: π2 (subst y ys)
where focus : ∀ {k n d u} → DVec 0 0 k (s n) d u → ∃ (λ u ′ 7→ Peb u ′)

focus {n = 0 } (z :: zs) = , z
focus {n = s } (z :: zs) = focus zs
subst : ∀ {k n d u} → Peb blue→

DVec 0 0 (s k) (s n) (s d) u → ∃ (λ u ′ 7→ DVec 0 0 k n d u ′)
subst y (:: z {d = 0 } zs) = , y ::b zs
subst y (:: z {d = s } zs) = , z :: π2 (subst y zs)

reduce : ∀ {i j k n d u} →
DVec i j k (s n) d u → ∃5 (λ i ′ j ′ k ′ d ′ u ′ 7→ DVec i ′ j ′ k ′ n d ′ u ′)

reduce {u = red } xs = , π2 (reduceRed xs)
reduce {u = white} xs = , π2 (reduceWhite xs)
reduce {d = s } {u = blue } xs = , π2 (reduceBlue xs)

elimUnknown : ∀ {i j k n d u} →
DVec i j k n d u → ∃4 (λ i ′ j ′ k ′ d ′ 7→ DVec i ′ j ′ k ′ 0 d ′ tt)

elimUnknown {n = 0 } xs = , xs
elimUnknown {n = s } xs = elimUnknown (π2 (reduce xs))

initialise : (xs : List (Σ Colour Peb))→
let l = length xs in ∃ (λ u 7→ DVec 0 0 l l fuel u)

initialise [] = tt , []
initialise ((c , x) :: xs) = c , x :: π2 (initialise xs)

forget : ∀ {i j k n d u} → DVec i j k n d u → List (Σ Colour Peb)
forget [] = []
forget (x ::r xs) = (red , x) :: forget xs
forget (x ::w xs) = (white , x) :: forget xs
forget (x :: xs) = (, x) :: forget xs
forget (x ::b xs) = (blue , x) :: forget xs

dutchFlag : List (Σ Colour Peb)→ List (Σ Colour Peb)
dutchFlag = forget ◦ π2 ◦ elimUnknown ◦ π2 ◦ initialise

Appendix B
From intuitionistic type theory to dependently typed programming

This essay was submitted as part of a reading course undertaken in my first year.

From intuitionistic type theory

to dependently typed programming

Josh Ko

July 30, 2011

Contents

1 Notion of computation in type theory 1

2 Elimination vs. pattern matching 4

3 Datatype externalism vs. internalism 8

4 Intensional vs. extensional equality 12

1 Notion of computation in type theory

Mathematics is all about mental constructions, that is, the intuitive grasp and
manipulation of mental objects, the intuitionists say [5, 7]. Take the natural
numbers as an example. We have a distinct idea of how natural numbers are
built: Start from an origin 0, and form its successor 1, and then the successor
of 1, which is 2, and so on. In other words, it is in our nature to be able to
count, and counting is just the way the natural numbers are constructed. This
construction then gives a specification of when we can immediately recognise
a natural number, namely when it is 0 or a successor of some other natural
number, and this specification of immediately recognisable forms is one of the
conditions of forming the set of the natural numbers in Martin-Löf’s intuition-
istic type theory [12, 17]. Expressed in the style of Gentzen’s natural deduction
system, we are justified by our intuition to have the formation rule

N : Set

which says we can conclude (below the line) that N is a set from no assumptions
(above the line), and the two introduction rules

zero : N
n : N

suc n : N

1

specifying the canonical elements of N, i.e., those elements that are immediately
recognisable as belonging to N, namely zero and suc n whenever n is an element
of N. There are natural numbers not in canonical form, like 1010, but instead
encoding an effective method for computing a canonical element. We accept
them as noncanonical elements of N, as long as they compute to a canonical
form so we can see that they are indeed natural numbers. Thus, to form a
set, we should be able to recognise its elements, either directly or indirectly, as
bearing a certain form and thus belonging to the set, so the elements of the set
are intuitively clear to us as a certain type of mental constructions.

What is more characteristic of intuitionism is that the intuitionistic interpre-
tation of propositions, and in particular the logical constants, follows the same
line of thought as the formation of the set of natural numbers. A proposition is
an expression of its truth condition, and since intuitionistic truth follows from
proofs, a proposition is clearly specified if and only if what constitutes a proof
of it is determined [13]. What is a proof of a proposition, then? It is a piece of
mental construction such that, upon inspection, the truth of the proposition is
immediately recognised. For a simple example, in type theory we can formulate
the formation rule for disjunctions

A : Set B : Set
A ∨B : Set

and the introduction rules

a : A
inl a : A ∨B

b : B
inr b : A ∨B

saying that a proof (element) of A ∨ B is either a proof (element) of A tagged
with inl or a proof (element) of B tagged with inr. This is the intuitive (canon-
ical) way we admit as proving a disjunction, and any other (noncanonical) way
of proving a disjunction must effectively yield a proof in either of the two forms.
The relationship between a proposition and its proofs is thus exactly the same
as the one between a set and its elements, namely the proofs must be effectively
recognisable as proving the proposition. Hence type theory identifies proposi-
tions with sets and proofs with elements, which reflects the observation that
proofs are nothing but a certain kind of mental construction.

One notices that the notion of effective method, or computation, was pre-
sumed when the notion of set was introduced, and at some point we need to
concretely specify an effective method. Since the description of every set includes
an effective way to construct its canonical elements, it is possible to express an
effective method that mimics the construction of an element by saying that the
computation has the same shape as how the element is constructed. Again let
us look at the natural numbers. Suppose we have a family of sets P : N→ Set
indexed by elements of N. The elements of N are used as names for these sets,
and P n denotes the set referred to by the name n : N. If we have an element z
of P zero and a method s that, for any n : N, transforms an element of P n to
an element of P (suc n), then we can compute an element of P n for any given n
by essentially the same counting process with which we construct n, but the
counting now starts from z instead of zero and proceeds with s instead of suc.
For instance, if a proof of P 2 is required, we can simply apply s to z twice, just
like we apply suc to zero twice to form 2, so the computation was guided by the

2

shape of 2. This explanation justifies the following elimination rule

P : N→ Set z : P zero s : (n : N)→ P n→ P (suc n) n : N
elimN P z s n : P n

The symbol elimN symbolises the method described above, which, given P , z,
and s, transforms every natural number n into something else of type P n. If we
recall that propositions are identified with sets in type theory, then families of
sets like P correspond to predicates, and we see that elimN implements exactly
the induction principle for natural numbers, as it delivers a proof of P n for
every n : N if the base case and the inductive case can be proved. The actual
computation performed by elimN is stated as two computation rules in the form
of equality judgements:

P : N→ Set z : P zero s : (n : N)→ P n→ P (suc n)

elimN P z s zero = z ∈ P zero

P : N→ Set z : P zero s : (n : N)→ P n→ P (suc n) n : N
elimN P z s (suc n) = s n (elimN P z s n) ∈ P (suc n)

In general, judgemental equality is extended to a congruence relation, so sub-
stitutions of equal subterms can be done freely, in particular replacing compu-
tations with their results. (More on equality in Section 4.) Note that we only
specify how elimN computes when it is applied to zero or suc n, i.e., the canon-
ical elements, because we have assumed that we can compute a canonical form
for each noncanonical element.

We have specified the set of natural numbers by stating its

• formation rule,

• introduction rules,

• elimination rule, and

• computation rules.

The central roles in type theory are played by various sets specified in this man-
ner, corresponding to the various mental constructions we play with in mathe-
matics. Martin-Löf himself noted: “If programming is understood [. . .] as the
design of the methods of computation [. . .], then it no longer seems possible to
distinguish the discipline of programming from constructive mathematics” [11].
Indeed, sets are easily comparable with algebraic datatypes, which also play
the central roles in functional programming — the formation rule names the
datatype, the introduction rules list its constructors, and the elimination rule
and computation rules define the fold function. One can give concrete, compu-
tational explanations for all the entities appearing in type theory, as we have
done for the natural numbers, so type theory serves as a suitable foundation for
intuitionistic mathematics, which equates mathematical activities with mental
constructions.

For the programming side, type theory reveals a new possibility by incor-
porating logical entities, i.e., propositions and proofs, into the computational

3

world. Traditional theories employ a standalone logic language which is then
used to talk about some postulated objects. For example, Peano arithmetic is
set up by postulating axioms about natural numbers in the language of first-
order logic. Inside the postulated system of natural numbers, there is no knowl-
edge of logic formulas or proofs except via exotic encodings — logic is at a
higher level than the objects they are used to talk about. Programming sys-
tems based on such principle then need to have a meta-level logic language to
reason about properties of programs. In dependently typed programming lan-
guages based on type theory, however, proving a proposition P is the same as
regarding P as a type and then writing programs of that type. The two tra-
ditional levels are coherently integrated into one, so programs can be naturally
constructed along with their correctness proofs. For example, the proposition
∀(a : A). ∃(b : B). R a b is interpreted as the type of a function taking a : A to
a pair consisting of b : B and a proof of the proposition R a b. Once a program
typechecks against the type, we are sure that the input and (the first component
of) the output of the program are related by R, and the correctness proof is
embedded in the program, as opposed to being presented at a meta-level.

Dependently typed programming is thus regarded as a promising way to es-
tablish program correctness by construction, but the original formulation of type
theory does not offer a convenient language for practical programming. Below
we discuss several important revisions which have shown up on the route from
type theory to a practical programming language: the adaptation of pattern
matching for dependent types, the use of inductive families to manipulate data
and their invariants simultaneously, and the quest for a more liberal equality.

2 Elimination vs. pattern matching

The formation rule and the introduction rules for a set directly translate into an
algebraic datatype declaration in functional languages. For example, the type
of natural numbers is translated into Agda [18] (which will be our expository
dependently typed language in this essay) as

data N : Set where
zero : N
suc : N→ N .

Having a datatype, naturally we wish to write programs on that datatype. In
functional programming, the pattern matching syntax is widely used for defin-
ing programs. It is key to the clarity of functional programs because it not only
allows a function to be intuitively defined by several equations but also clearly
conveys the strategy of splitting a problem into subproblems by case analysis.
On the other hand, computations in type theory are specified using elimina-
tors. Besides keeping the basic theory simple, one reason is that programs in
type theory are demanded to be total, for a program must terminate if it is
intended as a proof, and using eliminators enforces totality. Pattern matching
and elimination are basically equivalent in expressive power, as eliminators can
be easily defined by dependent pattern matching, and conversely dependent pat-
tern matching can be reduced to elimination if uniqueness of identity proofs —

4

also known as the K rule [21] — is assumed [6]. Nevertheless, the use of pattern
matching together with an interactive development environment is more infor-
mative and helpful in dependently typed languages than in simply typed ones,
because splitting a problem into subproblems by case analysis in dependently
typed programming often leads to nontrivial refinement of the goal type and
even the context.

To illustrate, let us look at an example of interactive development in Agda,
whose design was inspired by McBride and McKinna [16]. Consider the following
inductively defined less-than-or-equal-to binary relation on natural numbers.

data ≤ (m : N) : N→ Set where
refl : m ≤ m
step : (n : N)→ m ≤ n→ m ≤ suc n

Suppose we are asked to prove that ≤ is transitive, i.e., the term

trans : (x y z : N)→ x ≤ y → y ≤ z → x ≤ z

can be constructed. We define trans interactively by first putting pattern vari-
ables for the arguments on the left of its defining equation and leaving an “inter-
action point” on the right. Agda then tells us a term of type x ≤ z is expected.

trans : (x y z : N)→ x ≤ y → y ≤ z → x ≤ z
trans x y z p q = {x ≤ z }0

We instruct Agda to perform case analysis on q, and there are two cases: refl
and step w r where r has type y ≤ w. The original goal 0 is split into two
subgoals, and unification is triggered for each subgoal.

trans : (x y z : N)→ x ≤ y → y ≤ z → x ≤ z

trans x .z z p refl = {x ≤ z ‖ p : x ≤ z in context }1
trans x y .(suc w) p (step w r) = {x ≤ suc w }2

In goal 1, the type of refl demands that y be unified with z, and hence the
pattern variable y is replaced with a “dot pattern” .z indicating that the value
of y is determined by unification to be z. Therefore, on enquiry, Agda tells us
that the type of p in the context is now x ≤ z (which was originally x ≤ y).
Similarly for goal 2, z is unified with suc w and the goal type is rewritten as
a consequence. We see that the case analysis has led to two subproblems with
different goal types and contexts, where goal 1 is easily solvable as there is a
term in the context with the right type, namely p.

trans : (x y z : N)→ x ≤ y → y ≤ z → x ≤ z
trans x .z z p refl = p

trans x y .(suc w) p (step w r) = {x ≤ suc w }2

The second goal type x ≤ suc w looks like the conclusion of step w : x ≤ w →
x ≤ suc w, so we use this term to reduce goal 2 to goal 3, which now requires a
term of type x ≤ w.

trans : (x y z : N)→ x ≤ y → y ≤ z → x ≤ z
trans x .z z p refl = p

trans x y .(suc w) p (step w r) = step w {x ≤ w }3

5

Now we see that the induction hypothesis term trans x y w p r : x ≤ w (note
that r is a subterm of step w r) has the right type. Filling the term into goal 3
completes the program.

trans : (x y z : N)→ x ≤ y → y ≤ z → x ≤ z
trans x .z z p refl = p
trans x y .(suc w) p (step w r) = step w (trans x y w p r)

In contrast, if we stick to the default elimination approach in type theory, we
would be given the eliminator

elim-≤ : (m : N) (P : (n : N)→ m ≤ n→ Set)→
((t : m ≤ m)→ P m t)→
((n : N) (t : m ≤ n)→ P n t→ P (suc n) (step n t))→

(n : N) (t : m ≤ n)→ P n t

and write

trans : (x y z : N)→ x ≤ y → y ≤ z → x ≤ z
trans x y z p q = elim-≤ y (λy′ 7→ x ≤ y → x ≤ y′)

(λ p′ 7→ p′) (λw r ih p′ 7→ step w (ih p′)) z q p .

We are forced to write the program in continuation passing style, where the two
continuations correspond to the two clauses in the pattern matching version and
likewise have more specific goal types, and the relevant context, p in this case,
must be explicitly passed into the continuations in order to be refined to a more
specific type. Comparing the two versions, we see that elimination is inherently
harder to write and understand, especially when complicated dependent types
are involved. If a function definition requires more than one level of elimination,
then the advantage of using pattern matching over using eliminators becomes
even more apparent.

It is often the case that we need to perform pattern matching not only
on an argument but also on some intermediate computation. In simply typed
languages this is usually achieved by case expressions, a special case being if-
then-else expressions for booleans. But again, pattern matching on intermediate
computation can make refinements to the goal type and the context in depen-
dently typed languages, so case expressions, being more like eliminators, become
less desirable. McBride and McKinna [16] thus proposed with-matching, which
generalises pattern guards and in effect shifts pattern matching on intermediate
computation from the right of an equation to the left, sitting along with the
arguments. For a plain example:

insert : N→ List N→ List N
insert y [] = [y]
insert y (x :: xs) with y ≤? x
insert y (x :: xs) | true = y ::x :: xs
insert y (x :: xs) | false = x :: insert y xs

This is essentially no different from a normal case expression, except that using
with renders the result of y ≤? x as an additional argument in the context,
which is then immediately matched with true or false. In this case, the original
context — y, x, and xs — is not affected by the pattern matching, but in more

6

interesting cases it can be. For example, Wadler’s views [22] can be adapted
to dependently typed programming in a more accurate manner, which are sup-
ported by with in Agda. Suppose we wish to implement a snoc-list view for
cons-lists. We define the following view type

data SnocView {A : Set} : ListA→ Set where
nil : SnocView []
snoc : (xs : ListA) (x : A)→ SnocView (xs ++ [x])

intending to say that a list is either empty or has the form xs ++ [x], which is
proved by the following covering function (whose accuracy is not possible in
languages with simpler type disciplines):

snocView : {A : Set} → (xs : ListA)→ SnocView xs
snocView [] = nil
snocView (x :: xs) with snocView xs
snocView (x :: .[]) | nil = snoc [] x
snocView (x :: .(ys ++ [y])) | snoc ys y = snoc (x :: ys) y

Then, for example, the function init which removes the last element (if any)
can be implemented simply as

init : {A : Set} → ListA→ ListA
init xs with snocView xs
init .[] | nil = []
init .(ys ++ [y]) | snoc ys y = ys .

We see that, in both snocView and init , performing pattern matching on the
result of snocView xs refines xs in the context to either [] or ys ++ [y] in the
two cases. The refined context can be shown explicitly for each case because
the matching on snocView xs is moved to the left, which is the same difference
between using pattern matching and using eliminators. Hence with-matching
is preferred to traditional case expressions for the same reason that pattern
matching is preferred to eliminators: The former clearly expresses context/goal
refinements in subproblems in an equational style that is easy to follow, espe-
cially when supported by an interactive development environment.

McBride and McKinna described how programs using pattern matching can
be translated into eliminator-based programs [16]. They in fact proposed a gen-
eral mechanism for invoking any programmer-defined eliminator using the pat-
tern matching syntax, so programmers can choose whichever problem-splitting
strategy they need and express that with pattern matching. For example, the
standard eliminator for N says that to solve a programming problem P n for
any n : N, it is sufficient to solve the more specialised subproblems P zero and
P (suc n) (assuming an answer of P n). This is not the only way to cover all
natural numbers, of course; for example, we might split the problem into the
two subproblems P i where i < k and P (j+k) where j : N, for some fixed k. We
should be able to match a natural number against such nonstandard patterns
if that is the strategy we use to divide and solve the problem. Problem specifi-
cations can be made more precise by using dependent types, but the solutions
would have to be equally precise as a result. Reintroducing pattern matching
into dependently typed languages is one step towards helping programmers to
describe such solutions naturally and clearly.

7

3 Datatype externalism vs. internalism

The use of “such that” to describe objects that have certain properties is uni-
versal in mathematics. If the objects in question have type A, then objects with
certain properties form a subset of A, and using “such that” to describe such
objects means that the subset is formed by specifying a suitable predicate on A.
In type theory, this can be modelled by the dependent pair type.

data Σ (A : Set) (B : A→ Set) : Set where
, : (x : A)→ B x→ ΣAB

When A is interpreted as a ground set and B as a predicate on A, an element
of ΣAB is an element x of A paired with a proof that B x holds. For example,
lists of A’s with a certain length n are specified by

Σ (ListA) (λxs 7→ length xs ≡ n) ,

where length : {A : Set} → ListA → N computes the length of a list and ≡
is the propositional equality type (see Section 4). This Σ-type can be naturally
read as “the lists xs such that the length of xs is n”, bearing some similarity
to the notation of set comprehension. Another example is natural numbers
bounded above by a certain number. We define a predicate

data > : N→ N→ Set where
base : {m : N} → sucm > zero
step : {m n : N} → m > n→ sucm > suc n

and use the type
Σ N (λn 7→ m > n)

to characterise those natural numbers bounded above by m. Besides being
deeply rooted in mathematical traditions, in practice this approach offers very
good compositionality: Whenever a new property is needed, the programmer
simply defines a new predicate and uses a Σ-type to impose that predicate on
an existing datatype. Predicates easily compose by pointwise conjunction, so
objects with two or more properties can be conveniently specified. When pro-
grams are the objects we reason about, this style naturally suggests a logical
distinction between programs and proofs: Programs are written in the first
place, and proofs are conducted afterwards with reference to existing programs
and do not interfere with their execution. Consequently, proofs may be erased
as they are irrelevant to the computational behaviour of programs. This con-
ception underlies many developments in type theory and theorem proving. For
example, Luo consistently argued in [10] that proofs should not be identified
with programs, one of the reasons being that logic should be regarded as inde-
pendent from the objects being reasoned about. A subset theory was described
by Nordström et al. [17] to suppress the second component, i.e., the proof part,
of Σ-types. The proof assistant Coq [3] is also designed to support this proving-
after-programming style, which is also famous for supporting program extraction
from proof scripts [19].

On the other hand, proponents of dependently typed programming believe
that, instead of regarding dependent types as yet another type system we impose

8

on existing programs, we should rethink about what programs can be written
in a dependently typed language. One such reconsideration is the movement
of using inductive families directly for representing data with constraints. The
classic example is vectors, which are lists indexed by their length.

data Vec (A : Set) : N→ Set where
[] : VecA zero
:: : A→ ∀ {n} → VecA n→ VecA (suc n)

A simple inductive argument shows that a vector of type VecA n must be of
length n. This fact holds for a vector by construction, in contrast to the previous
approach using Σ-types, where the length statement is made about a plain list
already constructed. In epistemology, a distinction is made between internalism
and externalism: An internalist insists that a subject must have justification for
a belief in order to call it knowledge, whereas an externalist admits a belief as
knowledge as long as there is justification for it, even when the justification
is not available to the subject. Since inductive families encode constraints in
themselves, we might characterise the way of programming which models data
with constraints using inductive families as internalist, suggesting data “know”
their own correctness by construction; the traditional approach, in contrast, may
be described as externalist, as proofs are constructed externally to the objects
which they talk about.

To illustrate why it can be beneficial to switch from externalism to inter-
nalism, suppose we wish to extract the head element from a nonempty list. In
more traditional functional languages like Haskell, the best we can do is to write

head : [a]→ a
head (x :: xs) = x
head [] = error "head: empty list" .

The type system cannot preclude the possibility that the input list is empty, so
we had better deal with it, but the only thing we can do in the empty-list case
is reporting an error. In dependently typed languages, however, we can require
that the input list must be nonempty. The externalists would impose a length
constraint on the input list and write

head : {A : Set} → (xs : ListA)→ (l : length xs > zero)→ A
head [] ()
head (x :: xs) = x .

We do pattern matching on the input list: If it is empty, then the type of l
becomes zero > zero, which cannot be unified with the type of either of the two
constructors. Thus in this case the proof l cannot possibly be given in the first
place if the program is well typed, which is indicated by the absurd pattern (),
and we can omit the definition for this case. If the input list is nonempty,
then we can deliver the head element; the proof is irrelevant in this case. The
internalists would use vectors and write

vhead : {A : Set} → ∀ {n} → VecA (suc n)→ A
vhead (x :: xs) = x .

We do pattern matching on the input vector: This time, however, the nil case
is impossible since suc n, the index of the type of the input vector, cannot be

9

unified with zero, which is the index of the type of the constructor []. This case
is thus (safely) omitted. The remaining case is cons, and again we can easily
deliver the head element. A more general example is safe lookup which extracts
from a list the element at a particular index. Externalists would use natural
numbers as indices and write

lookup : {A : Set} → (xs : ListA)→ (i : N)→ length xs > i→ A
lookup [] ()
lookup (x :: xs) zero = x
lookup (x :: xs) (suc i) (step l) = lookup xs i l .

Again proofs need to be manipulated explicitly. Internalists would first define
the finite numbers to represent the indices.

data Fin : N→ Set where
zero : {m : N} → Fin (sucm)
suc : {m : N} → Finm→ Fin (sucm)

A finite number of type Finm is a natural number bounded above by m. The
lookup function would then be defined on vectors.

vlookup : {A : Set} → ∀ {n} → VecA n→ Fin n→ A
vlookup (x :: xs) zero = x
vlookup (x :: xs) (suc i) = vlookup xs i

We first perform pattern matching on the index, which points out that n is non-
zero and thus the vector is nonempty, so next we only need to match the vector
with cons. In the suc case where we need to make the recursive call, the indices
in the type of xs and i match perfectly, so the recursive call can be made as if
we were writing a simply typed version. We see that, by exploiting inductive
families, correctness proofs are built into and manipulated simultaneously with
the data, allowing constraints to be expressed succinctly, and in ideal cases like
vlookup, programs can be written in blissful ignorance of the proofs. Of course,
this is possible because the program we write and the associated proof have
essentially the same structure; otherwise it would be more difficult to write the
program in the internalist way.

Perhaps not surprisingly, internalist reasoning is rarely seen in mathemat-
ics. Here are two possible explanations. The first, philosophical one is that
the platonist character of classical mathematics, i.e., the presupposition that
mathematical objects are independently existing entities, naturally leads to ex-
ternalism. The mathematical objects exist a priori, and then our proofs are
written about them. There is thus a clear “phase distinction,” which makes it
strange to mix proofs with objects. The second, practical explanation (which
also works for non-platonist mathematics) is that it is hard to justify the cor-
rectness of an internalist program in prose without silently converting the inter-
nalist program to an externalist one. For example, we would say “a vector of
length n” and go on about how its length relates to the result, etc., which is not
so different from saying “a list of length n” and so on — we still need to talk
and reason about the constraints separately, unlike how we write an internalist
program, which only manipulates data. It might be said that the correctness
proof of an internalist program is more syntactic in nature, which in general is

10

more suitable for being checked by machines, while mathematical writing aims
to describe the intuition behind so human readers can get the high-level ideas.
Even if correctness is implied by the syntactic structure, it is still desirable to
have an intuitive explanation of why it is so in prose. Therefore, as the same
degree of explanation is needed no matter whether constraints are integrated
into syntax or not, it is reasonable to just keep the syntax simple, refraining
from using internalist types in mathematical writing.

Recently, in the setting of dependently typed programming, the distinction
between externalism and internalism has been blurred [9]. Using datatype-
generic techniques [1], an internalist datatype can be expressed as an ornamen-
tation of a basic datatype, and every ornament induces a predicate on that
basic datatype. It then follows that the internalist datatype is isomorphic to
the basic datatype restricted by the induced predicate. For now, only those
predicates defined inductively on the basic datatype can be derived in this way,
but this has already captured the most commonly seen class of predicates. For
example, the predicate induced by the ornamentation from natural numbers to
finite numbers is the greater-than relation, and we have the isomorphism

Finm ∼= Σ N (λn 7→ m > n) .

Exploiting this isomorphism, dependently typed programmers are granted the
freedom to switch between externalism and internalism, whichever suits their
purpose best. One particular application is bringing externalist compositionality
into internalist datatypes: For internalists, the same data structure with differ-
ent constraints would be defined as different and formally unrelated datatypes,
for each of which the common operations need to be reimplemented in current
practice, resulting in dreadful reusability. However, thanks to the isomorphism,
programs written for a basic datatype can be upgraded to work with fancier
datatypes incorporating multiple constraints in a modular fashion by switching
to externalist datatypes for modular composition and then switching back to
internalist datatypes. Interestingly, it is argued that the use of externalist pred-
icates can actually be regarded as a standard internalist technique — exposing
information in the indices — to solve the longstanding reusability problem for
internalist programs. Internalism may not be a completely new idea after all.

Type theory makes it possible to mix programs with logic, and thus allows
us to bind and manipulate data and proofs together, which is quite different
from the programming styles we are used to. We do not know how much po-
tential internalism has, but as its possibility remains to be explored, it seems
premature to stick to the traditional, externalist approach that strictly separates
programming from logic. Another supporting example is that optimisation of
dependently typed programs may exploit value dependencies in types and elim-
inate a substantial portion of code [4] — the length of a vector does not need
to be actually stored, vhead can just assume that the input vector starts with a
cons node, etc. Program optimisation thus does not necessarily take the form
of program extraction, which is based on the distinction between programs and
proofs. As McBride said, “[t]here is a tendency to see programming as a fixed
notion, essentially untyped. In this view, we make sense of and organise pro-
grams by assigning types to them, the way a biologist classifies species, and in
order to classify more the exotic creatures, like printf or the zipWith family,

11

one requires more exotic types. This conception fails to engage with the full
potential of types to make a positive contribution to program construction” [15].
To support this belief, he presented a development of the first-order unification
algorithm, which has long been described using general recursion and required
separate termination and correctness proofs, as a structurally recursive, depen-
dently typed program which is correct by construction [14]. The moral is that,
to truly adopt internalism, we need to reconsider how we design datatypes and
write programs, so their correctness are simply manifested in their construc-
tion, reducing the need of external justification which can be more awkward to
produce.

4 Intensional vs. extensional equality

In logic, the intension of a concept is its internal, defining content, while the
extension of the concept is the range of objects it refers to. In mathematics,
for example, the intension of the set S = {x | x ∈ N is even } is the description
that the elements are even natural numbers, and the extension of the set is the
enumeration 0, 2, 4, 6, 8, Different intensions may nevertheless lead to
the same extension, for example T = {x − 1 | x ∈ N is odd } is intensionally
different from S, but they have the same extension. In other words, S and T
use different ways to describe the same range of objects. The axiom of exten-
sionality in set theory defines set equality to be extensional, so we consider S
and T to be the same set because the extension of S and T are the same, even
though they have different intensions. In intuitionistic mathematics, however,
the default, fundamental equality is intensional. The reason is that objects in
intuitionistic mathematics are given to us as mental constructions. For exam-
ple, the construction of S is to find all the even natural numbers, while the
construction of T is to find all the odd natural numbers and subtract 1 from
each of them. The two constructions, i.e., descriptions, are different. We can
still talk about extensional equality if needed, but that requires a separate def-
inition, which can be a complex proposition in general. For sets, the definition
would be ∀x. x ∈ S ⇔ x ∈ T , i.e., a bi-implication, and we can prove that
two sets are extensionally equal in intuitionistic mathematics by proving the
bi-implication as we do in classical mathematics. The difference is that in clas-
sical mathematics we talk exclusively about extensions and deliberately ignore
intensions, so for example “set equality” always refers to the extensional one,
whereas in intuitionistic mathematics intensions are also given emphasis. In
other words, whereas in both intuitionistic and classical mathematics one can
talk about extensionality, an intensional layer about syntactic descriptions of
objects is present in intuitionistic mathematics, which is transparent in classical
mathematics.

The fundamental equality is formulated as judgemental equality in type the-
ory. For intuitionistic mathematics it is the intensional, syntactic equality, also
known as definitional equality, whereas for classical mathematics it is extensional
equality. A characteristic feature of judgemental equality is that it is fully sub-
stitutive: Judgementally equal terms can be freely substituted for one another.
So after we prove that two sets are extensionally equal in classical mathematics,
we can simply substitute one for the other because they are judgementally equal

12

in the classical, extensional setting. Judgemental equality cannot be expressed
as propositions or have proofs inside the theory, though, since it is a meta-
theoretical concept, which, for example, is used in type checking in a language
implementation and hence is not an entity in the language. To state equality
between two objects as a proposition and have proof for that proposition inside
the theory, we need propositional equality, which can be defined by the following
inductive family.

data ≡ {A : Set} (x : A) : A→ Set where
refl : x ≡ x

The canonical way to prove an equality proposition x ≡ y is refl, which is per-
mitted when x and y are judgementally equal. In general, however, computation
may be required to prove an equality proposition. For example, the following
“catamorphic” identity function on natural numbers

idN : N→ N
idN zero = zero
idN (suc n) = suc (idN n)

can be shown to be extensionally equal to the polymorphic identity function

id : {A : Set} → A→ A
id x = x

by proving the proposition

(n : N)→ id n ≡ idN n ,

whose proof is by induction on n and thus requires computation. It might be
said that propositional equality is “delayed” judgemental equality in proposi-
tional form: The terms id n (which is definitionally just n) and idN n are not
judgementally equal, but they will compute to the same canonical term (and
hence become judgementally equal) after substituting a concrete natural num-
ber for n, allowing the computation to complete. Streicher suggested [21, p 19]
that we “consider the identity type [t ≡ s] as a proposition stating a relation
between the objects denoted by the terms t and s, respectively, whereas the
judgement t = s ∈ A is a statement of a relation between the terms t and s[.]”
Indeed, in an intensional setting, if we regard canonical terms to be the semantic
objects denoted by terms, then it might be said that two terms are judgemen-
tally equal if their normal forms are syntactically identical, while two terms are
propositionally equal if they can be proved to compute to the same canonical
term after instantiating the context to canonical terms, i.e., they denote the
same semantic object. Practically, when used for substitution, a proof of an
equality proposition needs to be eliminated by applying the following standard
eliminator commonly called J .

J : {A : Set} {x : A} (P : (y : A)→ x ≡ y → Set)→
P x refl→ ∀ {y} → (eq : x ≡ y)→ P y eq

A more convenient substitution operator can be defined in terms of J .

subst : {A : Set} (T : A→ Set)→ ∀ {x y} → x ≡ y → T x→ T y
subst T eq t = J (λz 7→ T z) t eq

13

It is like type-casting in programming languages and serves as an explicit proof
inside the theory that y can be regarded as x. On the other hand, judgemental
equality identifies terms at a more fundamental level and allows a term to be
directly substituted for any other term identified with it, without need of any
justification inside the theory.

The type of refl says that judgementally equal terms are propositionally
equal, so judgemental equality is embedded into propositional equality. If we
add the converse equality reflection rule

x : A y : A eq : x ≡ y
x = y ∈ A

to the theory, injecting propositional equality back into judgemental equal-
ity, then the resulting type theory is called extensional. Type theory with-
out the equality reflection rule is called intensional, indicating that its judge-
mental equality is syntactic. Extensional type theory gets the name because
merely syntactic comparison no longer suffices to determine whether two terms
are judgementally equal; extensional reasoning may be involved. For example,
extensionally equal functions become judgementally equal in extensional type
theory: Suppose f and g are functions of type A → B and we have a proof
f
.
=g : ∀ x→ f x ≡ g x. Then

f

= { η-expansion }
λx 7→ f x

= { equality reflection — f x = g x ∈ B since f
.
=g x : f x ≡ g x }

λx 7→ g x

= { η-contraction }
g ∈ A→ B .

In general, however, f and g may have very different intensions, so adopting
the equality reflection rule makes judgemental equality extensional. The inten-
sional layer present in intuitionistic mathematics thus collapses: The fundamen-
tal equality is extensional equality as in classical mathematics, so there is no
longer a separate notion of intensional equality. Having extensional equality as
judgemental equality makes extensional reasoning much easier because no justi-
fication is needed for substitution of extensionally equal terms inside the theory.
This is the norm in classical mathematics, where extensionality dominates. For
example, in category theory, a universal function (i.e., a universal arrow in the
category Set) is unique up to extensional equality, and category theorists sub-
stitute functions satisfying the same universal property for one another all the
time. For a language implementation, this means that the programmer can do
more than syntactic substitutions without need of explicitly specifying type casts
and what equality proofs to use. For example, to show that id is extensionally
equal to idN, we would write the following:

id
.
=idN : (n : N)→ id n ≡ idN n

id
.
=idN zero = refl

id
.
=idN (suc n) = { suc n ≡ suc (idN n) }

14

How the proof is completed depends on whether we are working intensionally
or extensionally. If we are working intensionally, the hole needs to be filled with
the term

cong suc (id
.
=idN n) : suc n ≡ suc (idN n)

where

cong : {AB : Set} → (f : A→ B)→ {x y : A} → x ≡ y → f x ≡ f y .

That is, we need to indicate explicitly that we are using an inductively computed
result id

.
=idN n : n ≡ idN n, which needs to be further modified by cong suc to

match the goal type. On the other hand, if we are working extensionally, a
simple refl suffices! The typechecker is told by our placement of refl that suc n
and suc (idN n) are actually judgementally equal, and has to somehow figure
out that there is a term that has type n ≡ idN n, so n and idN n are judge-
mentally equal by equality reflection, and thus suc n and suc (idN n) are indeed
judgementally equal by congruence. This example illustrates that type checking
in an extensional setting cannot simply resort to syntactic equality of normal
forms but needs to search for arbitrary equality proofs. The typechecker can ask
for hints from the programmer, like in Sheard’s Ωmega language [20, Section 6],
but type checking becomes undecidable in general. Another perspective to look
at this problem is that the rewriting system underlying judgemental equality
loses confluence, since different normal forms may be equated due to the equal-
ity reflection rule. Consequently, checking syntactic equality of normal forms is
no longer a sound way to do type checking. Losing confluence also means that
the computational meaning is disrupted since term reduction becomes nonde-
terministic. Therefore, the reasoning power offered by extensional type theory
may be tempting, but to preserve good computational behaviour we have to
stick to intensional type theory, namely giving up the equality reflection rule
and keeping judgemental equality intensional.

Notice that even though we have to stick to intensional type theory, we can
still reason about extensional properties, like in intuitionistic mathematics. It
is just inconvenient to do so. For example, we can always define an extensional
equivalence relation stating what it means for two functions to be extensionally
equal and use that relation throughout the proofs, but we are not entitled to
do substitution, since substitution does not necessarily respect any relation we
define. Losing the ability to do substitution, extensional reasoning soon become
too heavyweight and difficult to use. A classic example is W-types (for well
orderings) [12], which can be used to capture all inductive types naturally in
extensional type theory but much less conveniently in intensional type theory.

data W (A : Set) (B : A→ Set) : Set where
C : (a : A)→ (B a→W AB)→W AB

An element of W AB is a possibly infinitely branching tree but whose depth is
finite. The type of natural numbers, for example, can be defined by

Nat = W Bool (λb 7→ if b then > else ⊥)

where > is a one-element set whose only constructor is tt and ⊥ is a set with
no elements. Zero may be defined by

zero = false C λ() : Nat

15

where λ() stands for a function whose domain is empty. The successor function
may be defined by

suc = λn 7→ true C (λ 7→ n) : Nat → Nat .

In intensional type theory, however, we run into trouble when we try to define
the elimination principle for Nat .

elimNat : (P : Nat → Set)→
P zero → (∀ n→ P n→ P (suc n))→ ∀ n→ P n

elimNat P pz ps (false C f) = {P (false C f) }0
elimNat P pz ps (true C f) = {P (true C f) }1

In goal 0 we wish to fill in pz : P (falseCλ()) to satisfy the goal type P (falseCf),
but the two types are not the same because f is not necessarily intensionally
equal to λ(). Goal 1 has a similar problem. We get the problem because we
claim that zero and suc n cover all the elements in Nat , but intensionally that
is not the case, since zero and suc are just a specific implementation of the
extensional zero and successor function; there are other intensionally different
implementations, leading to elements which we cannot generate from zero and
suc. We might instead formulate the elimination principle as

elimNat ′ : (P : Nat → Set)→
(∀ f → P (false C f) ≡ P zero)→ (∀ f → P (true C f) ≡ P (suc (f tt)))→
P zero → (∀ n→ P n→ P (suc n))→ ∀ n→ P n

elimNat ′ P cz cs pz ps (false C f) rewrite cz f = pz
elimNat ′ P cz cs pz ps (true C f) rewrite cs f =

ps (f tt) (elimNat ′ P cz cs pz ps (f tt)) ,

requiring that P respects extensional equality,1 or as

elimNat ′′ : (P : Nat → Set)→
(∀ f → P (false C f))→ (∀ f → P (f tt)→ P (true C f))→ ∀ n→ P n

elimNat ′′ P pz ps (false C f) = pz f
elimNat ′′ P pz ps (true C f) = ps f (elimNat ′′ P pz ps (f tt)) ,

explicitly requiring that P holds for all intensional elements of Nat . But both
approaches are rather inconvenient and the premises quickly become tedious to
specify when we move on to more complicated types.

Fortunately, having to stick to intensional type theory does not imply that
we have to give up the substitutive power of extensional type theory entirely. Al-
tenkirch, McBride, and Swierstra proposed observational type theory [2], which
integrates extensional propositional equality into intensional type theory and al-
lows extensional substitutions. The new propositional equality is defined to be
extensional by induction on the syntax of the types. For example, for functions
f, g : A → B the proposition f ≡ g specialises to ∀ x y → x ≡ y → f x ≡ g y.
This is just using datatype-generic techniques to generate extensional equality
propositions automatically; more interesting modifications to the theory need to

1Here propositional equality between sets is used, which in fact requires another definition
of ≡ which is a level higher in the universe hierarchy.

16

be introduced to allow substitution of extensionally equal terms. Instead of the
equality reflection rule, which allows silent substitutions, Altenkirch et al. in-
troduced an explicit piece of syntax for coercing values between propositionally
equal sets:

x : S Q : S ≡ T
x [q : S ≡ T 〉 : T

The coercion operator [q : S ≡ T 〉 is equipped with suitable computational rules
also defined by induction on the syntax of the types such that it vanishes when
all the terms involved are canonical. Now for any predicate P over A → B
and functions f, g : A → B, P f and P g are not judgementally equal, but we
can postulate that they are propositionally equal without losing consistency [8].
This means that in general we have another constant:

S : Set T : S → Set
[Rx : S. T x] : ∀ x y → x ≡ y → T x ≡ T y

For example, the two added premises of elimNat ′ regarding extensionality of P
can be directly discharged using this constant, so elimNat ′ reduces to elimNat ,
as we originally desired. The substitution operator can then be defined:

subst : {S : Set} (T : S → Set)→ ∀ {x y} → x ≡ y → T x→ T y
subst {S} T {x} {y} eq t = t [[Rz : S. T z] x y eq : T x ≡ T y〉

How does subst compute, however? We abandoned extensional type theory be-
cause good computational behaviour was lost, so we had better be sure that it
is preserved in observational type theory. The constant R does not have asso-
ciated computation rules, so the reduction of the whole term can get stuck at
the constant and cannot be brought into canonical form if at some point we try
to compute the equality proof. Losing canonicity, i.e., not every term reduces
to canonical form, again would mean that the computational meaning of the
theory is disrupted. But in fact we do not need to inspect the proof! All we
need to know is that there is a proof that T x ≡ T y, and then the coercion
operator necessarily acts like an identity function — the content of the proof
cannot affect computation in any way and therefore does not matter. Since the
computational behaviour of the coercion operator does not depend on equality
proofs, these proofs can be safely erased at runtime, and we can postulate any
laws about equality as long as consistency is not broken, which justifies our in-
troduction of the constant R without saying how it computes. The judgemental
equality needs to be modified accordingly, but it remains decidable — and so
does type checking. We thus obtain an extensional substitution mechanism in
an intensional setting. The datatype-generically generated extensional proposi-
tional equality is just one of the possible kinds of equality we use in practice; it
is hoped that the theory can be extended so programmers can supply their own
equivalence relation — forming quotient types — and some guarantees that the
relation is respected, and then enjoy the convenience of reasoning offered by the
substitution mechanism of observational type theory.

Summary

We have seen that intuitionistic type theory is based on a notion of computation
and thereby integrates mathematical objects and logical proofs coherently in one

17

theory, recognising that they are of the same nature intuitionistically. It serves
as a suitable foundation for both intuitionistic mathematics and dependently
typed programming, although facilities need to be developed to make a practi-
cal programming language: Nontrivial extensions of the theory are needed, e.g.,
introducing observational equality to make extensional reasoning more conve-
nient; language and tool support are needed, e.g., providing dependent pattern
matching and an interactive development environment to help programmers to
deal with a more complicated type system; new programming techniques and
paradigms are needed, e.g., programming with internalist datatypes so that the
correctness of programs are manifested in their construction, reducing the need
for separate proofs.

References

[1] Thorsten Altenkirch and Conor McBride. Generic programming within de-
pendently typed programming. In IFIP TC2/WG2.1 Working Conference
on Generic Programming, pages 1–20. Kluwer, B.V., 2003.

[2] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational
equality, now! In Programming Languages meets Program Verification,
PLPV ’07, pages 57–68. ACM, 2007.

[3] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-
gram Development — Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. Springer-Verlag, 2004.

[4] Edwin Brady, Conor McBride, and James McKinna. Inductive families need
not store their indices. In Stefano Berardi, Mario Coppo, and Ferruccio
Damiani, editors, Types for Proofs and Programs, volume 3085 of Lecture
Notes in Computer Science, pages 115–129. Springer-Verlag, 2004.

[5] Michael Dummett. Elements of Intuitionism. Clarendon Press, 1977.

[6] Healfdene Goguen, Conor McBride, and James McKinna. Eliminating de-
pendent pattern matching. In Kokichi Futatsugi, Jean-Pierre Jouannaud,
and José Meseguer, editors, Algebra, Meaning, and Computation: Essays
dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday, vol-
ume 4060 of Lecture Notes in Computer Science, pages 521–540. Springer-
Verlag, 2006.

[7] Arend Heyting. Intuitionism: An Introduction. Amsterdam: North-
Holland Publishing, third revised edition, 1971.

[8] Martin Hofmann. Extensional concepts in intensional type theory. PhD
thesis, University of Edinburgh, 1995.

[9] Hsiang-Shang Ko and Jeremy Gibbons. Modularising inductive families.
In Workshop on Generic Programming, WGP ’11, September 2011. To
appear.

[10] Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer
Science. Clarendon Press, 1994.

18

[11] Per Martin-Löf. Constructive mathematics and computer programming.
Philosophical Transactions of the Royal Society of London, 312(1522):501–
518, October 1984.

[12] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

[13] Per Martin-Löf. Truth of a proposition, evidence of a judgement, validity
of a proof. Synthese, 73(3):407–420, December 1987.

[14] Conor McBride. First-order unification by structural recursion. Journal of
Functional Programming, 13(6):1061–1075, 2003.

[15] Conor McBride. Epigram: Practical programming with dependent types.
In Advanced Functional Programming, pages 130–170, 2004.

[16] Conor McBride and James McKinna. The view from the left. Journal of
Functional Programming, 14(1):69–111, January 2004.

[17] Bengt Nordström, Kent Peterson, and Jan M. Smith. Programming in
Martin-Löf ’s Type Theory: An Introduction. Oxford University Press,
1990.

[18] Ulf Norell. Dependently typed programming in Agda. In Pieter Koopman,
Rinus Plasmeijer, and Doaitse Swierstra, editors, Advanced Functional Pro-
gramming (AFP 2008), volume 5832 of Lecture Notes in Computer Science,
pages 230–266. Springer-Verlag, 2009.

[19] Christine Paulin-Mohring. Extracting Fω’s programs from proofs in the
Calculus of Constructions. In Principles of Programming Languages, pages
89–104. ACM, January 1989.

[20] Tim Sheard and Nathan Linger. Programming in Ωmega. In Zoltán
Horváth, Rinus Plasmeijer, Anna Soós, and Viktória Zsók, editors, Sec-
ond Central-European Functional Programming School (CEFP ’07), vol-
ume 5161 of Lecture Notes in Computer Science, pages 158–227. Springer-
Verlag, 2007.

[21] Thomas Streicher. Investigations into intentional type theory. Habilitation
thesis, Ludwig Maximilian Universität, November 1993.

[22] Philip Wadler. Views: A way for pattern matching to cohabit with data
abstraction. In Principles of Programming Languages, pages 307–313, 1987.

19

Appendix C
Modularising inductive families

This paper has been accepted for publication at the ACM Workshop on Generic Pro-
gramming in Tokyo, 18th September 2011. It was co-authored with Jeremy Gibbons,
although the technical contributions are mine.

Modularising Inductive Families

Hsiang-Shang Ko Jeremy Gibbons
Department of Computer Science, University of Oxford
{Hsiang-Shang.Ko, Jeremy.Gibbons}@cs.ox.ac.uk

Abstract
Dependently typed programmers are encouraged to use inductive
families to integrate constraints with data construction. Different
constraints are used in different contexts, leading to different ver-
sions of datatypes for the same data structure. Modular implemen-
tation of common operations for these structurally similar datatypes
has been a longstanding problem. We propose a datatype-generic
solution based on McBride’s datatype ornaments [11], exploiting
an isomorphism whose interpretation borrows ideas from realis-
ability. Relevant properties of the operations are separately proven
for each constraint, and after the programmer selects several con-
straints to impose on a basic datatype and synthesises an inductive
family incorporating those constraints, the operations can be rou-
tinely upgraded to work with the synthesised inductive family.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

General Terms Design, Languages, Theory

Keywords Dependently Typed Programming, Inductive Families,
Datatype-Generic Programming

1. Introduction
Dependently typed programmers are encouraged to use inductive
families, i.e., datatypes with fancy indices, to integrate various
constraints with data construction. Correctness proofs are built into
and manipulated simultaneously with the data, and in ideal cases
correct programs can be written in blissful ignorance of the proofs.
We might characterise this approach as internalist, suggesting that
data constraints are internalised. In contrast, the more traditional
approach which favours using only basic datatypes and expressing
constraints through separate predicates on those datatypes might be
described as externalist.

The internalist approach easily leads to an explosion in differ-
ently indexed versions of the same data structure. For example, as
well as ordinary lists, in different contexts we may need vectors
(lists indexed with their length), sorted lists, or sorted vectors, end-
ing up with four slightly different but structurally similar datatypes.
The problem, then, is how the common operations are implemented
for these different versions of the datatype. Current practice is to
completely reimplement the operations for each version, causing
serious code duplication and dreadful reusability. The externalist

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WGP’11, September 18, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0861-8/11/09. . . $10.00

approach, in contrast, responds to this problem very well. We would
have only one basic list type, with one predicate stating that a list
has a certain length and another predicate asserting that a list is
sorted. The list type is upgraded to the vector type, the sorted list
type, or the sorted vector type by simply pairing the list type with
the sortedness predicate, the length predicate, or the pointwise con-
junction of the two predicates. The common operations are imple-
mented for ordinary lists only, and their properties regarding or-
dering or length are separately proven and invoked when needed.
Can we somehow introduce this beneficial compositionality to in-
ternalism as well? Yes, we can! There is an isomorphism between
externalist and internalist datatypes to be exploited.

To illustrate, let us go through a small case study about upgrad-
ing a function on natural numbers. The internalists use the follow-
ing datatype to characterise the finite numbers, which are natural
numbers bounded above by a certain number.

data Fin : Nat→ Set where
fzero : {m : Nat}→ Fin (suc m)
fsuc : {m : Nat}→ Fin m→ Fin (suc m)

We can be explicit about how we regard finite numbers as natural
numbers by defining a forgetful map.

forgetF : ∀ {m}→ Fin m→ Nat
forgetF fzero = zero
forgetF (fsuc i) = suc (forgetF i)

To represent the same type, externalists would first define a greater-
than relation for natural numbers,

data > : Nat→ Nat→ Set where
base : {m : Nat}→ suc m > zero
step : {m n : Nat}→ m > n→ suc m > suc n ,

and then use the dependent pair type Σ Nat (λn 7→m> n), an object
of which is a natural number n paired with a proof that m > n. We
have an isomorphism between the two types,

Fin m ∼= Σ Nat (λn 7→ m > n) ,

witnessed by

ℜF : ∀ {m}→ (i : Fin m)→ m > forgetF i
ℜF fzero = base
ℜF (fsuc i) = step (ℜF i)

and

ℜ
−1
F : ∀ {m}→ (n : Nat)→ m > n→ Fin m

ℜ
−1
F .zero base = fzero

ℜ
−1
F .(suc) (step gt) = fsuc (ℜ−1

F gt) .

Now suppose that we have some function f ′ : Nat → Nat, and
additionally that we can prove externally that f ′ preserves upper
bounds (in other words, is non-increasing):

f ′-bound : ∀ {m n}→ m > n→ m > f ′ n .

http://www.cs.ox.ac.uk/people/hsiang-shang.ko/
http://www.cs.ox.ac.uk/people/jeremy.gibbons/
http://www.cs.ox.ac.uk/
http://www.ox.ac.uk/
mailto:Hsiang-Shang.Ko@cs.ox.ac.uk
mailto:Jeremy.Gibbons@cs.ox.ac.uk

Then we can upgrade f ′ to work with finite numbers by exploiting
the isomorphism:

fF : ∀ {m}→ Fin m→ Fin m
fF i = ℜ

−1
F (f ′ (forgetF i)) (f ′-bound (ℜF i)) .

The input finite number i : Fin m is split into the underlying nat-
ural number forgetF i : Nat and a corresponding proof ℜF i : m >
forget i. The natural number is then processed by f ′ and the proof
by f ′-bound, before the results are integrated back into a finite num-
ber by way of ℜ

−1
F .

Further suppose that we need parity information about f ′. The
externalists would define a function to compute the parity of a
natural number,

parity : Nat→ Bool
parity zero = false
parity (suc n) = not (parity n) ,

and use the type Σ Nat (λn 7→ parity n ≡ b) (where ≡ is the
propositional equality type) for those natural numbers of parity b.
The internalists would define a new datatype

data PNat : Bool→ Set where
pzero : PNat false
psuc : {b : Bool}→ PNat b→ PNat (not b) ,

and use PNat b for the same set of natural numbers. Assume f ′
preserves parity, i.e., we can prove

f ′-parity : ∀ {n b}→ parity n≡ b→ parity (f ′ n)≡ b .

Following the same recipe, by exploiting the isomorphism

PNat b ∼= Σ Nat (λn 7→ parity n≡ b)

witnessed by

forgetP : ∀ {b}→ PNat b→ Nat
forgetP pzero = zero
forgetP (psuc j) = suc (forgetP j)

ℜP : ∀ {b}→ (j : PNat b)→ parity (forgetP j)≡ b
ℜP pzero = refl
ℜP (psuc j) rewrite ℜP j = refl

and

ℜ
−1
P : ∀ {b}→ (n : Nat)→ parity n≡ b→ PNat b

ℜ
−1
P zero refl = pzero

ℜ
−1
P (suc n) refl = psuc (ℜ−1

P n refl) ,

we can again upgrade f ′ to work with PNat:

fP : ∀ {b}→ PNat b→ PNat b
fP j = ℜ

−1
P (f ′ (forgetP j)) (f ′-parity (ℜP j)) .

Finally, consider finite numbers with parity information. The
externalists would simply put the two predicates together and get
the type Σ Nat (λn 7→ (m > n)× (parity n ≡ b)) for the natural
numbers bounded above by m and of parity b. The internalists
would define yet another datatype

data PFin : Nat→ Bool→ Set where
pfzero : ∀ {m}→ PFin (suc m) false
pfsuc : ∀ {m b}→ PFin m b→ PFin (suc m) (not b)

and use PFin m b for the same set of natural numbers. We still have
an isomorphism

PFin m b ∼= Σ Nat (λn 7→ (m > n)× (parity n≡ b))

witnessed by

forgetPF : ∀ {m b}→ PFin m b→ Nat
forgetPF pfzero = zero
forgetPF (pfsuc k) = suc (forgetPF k)

ℜPF-l : ∀ {m b}→ (k : PFin m b)→ m > forgetPF k
ℜPF-l pfzero = base
ℜPF-l (pfsuc k) = step (ℜPF-l k)

ℜPF-r : ∀ {m b}→ (k : PFin m b)→ parity (forgetPF k)≡ b
ℜPF-r pfzero = refl
ℜPF-r (pfsuc k) rewrite ℜPF-r k = refl

and

ℜ
−1
PF : ∀ {m b}→ (n : Nat)→ m > n→ parity n≡ b→ PFin m b

ℜ
−1
PF .zero base refl = pfzero

ℜ
−1
PF .(suc) (step gt) refl = pfsuc (ℜ−1

PF gt refl) ,

and the isomorphism can again be used to upgrade f ′ to work
with PFin, but this time the proof part reuses the existing proofs
f ′-bound and f ′-parity:

fPF : ∀ {m b}→ PFin m b→ PFin m b
fPF k = ℜ

−1
PF (f ′ (forgetPF k))

(f ′-bound (ℜPF-l k)) (f ′-parity (ℜPF-r k)) .

Had we implemented fF and fP directly instead of exploiting the
isomorphisms, it would have been much less straightforward to
synthesise fPF from them. It is thanks to the isomorphism maps
ℜ and ℜ−1 that we can routinely synthesise fF and fP from corre-
sponding externalist proofs, and — more interestingly — that we
can develop fPF modularly, reusing those externalist proofs. The
reusability problem is thus reduced to writing the isomorphisms,
and the good news is that the isomorphisms can be synthesised
datatype-generically. Acquiring the power of datatype-generic pro-
gramming, we can even synthesise PFin from the ingredients used
to make Fin and PNat out of Nat, revealing the same composi-
tional structure of the internalist types corresponding to that of their
externalist brethren.

Outline of this paper. Our work is heavily based on McBride’s
datatype ornaments [11], which provide a datatype-generic lan-
guage in which to talk about the relationship among structurally
similar datatypes. McBride’s work is summarised in Section 2. An
ornament describes how to upgrade a basic datatype to a fancier
one, often embedding some constraints into data construction. Then
an interpretation based on realisability is given in Section 3: Given
an ornament, objects of the basic datatype are considered as incom-
plete proofs of the fancier datatype, and the information needed to
restore a complete proof from an incomplete one is stated by the
realisability predicate induced by the ornament. With the interpre-
tation, we are enabled to think about composition of ornaments,
and thus indexed datatypes with multiple constraints, in terms of
pointwise conjunction of realisability predicates. As an initial ex-
periment, in Section 4 we consider the special case where one of
the two ornaments being composed is algebraic. We prove that
the pointwise conjunction of the realisability predicates induced by
the component ornaments is isomorphic to the realisability pred-
icate induced by the composite ornament, and demonstrate how
this helps to write functions on indexed datatypes incorporating
multiple constraints in a modular style. Section 5 discusses how
the interpretation connects internalism and externalism, and how
we might exploit this connection to structure our libraries. Sec-
tion 6 compares ours with previous work, and finally Section 7
presents some possible future directions. We have implemented our
ideas in Agda [14], source available at http://www.cs.ox.ac.
uk/people/hsiang-shang.ko/OAOAOO/.

http://www.cs.ox.ac.uk/people/hsiang-shang.ko/OAOAOO/
http://www.cs.ox.ac.uk/people/hsiang-shang.ko/OAOAOO/

2. A recapitulation of datatype ornaments
To state the realisability interpretation generically, first we need a
datatype-generic framework for talking about the relationship be-
tween structurally similar datatypes. Central to datatype-generic
programming is the idea that the structure of datatypes can be
coded as first-class entities and thus become ordinary parameters to
programs. The same idea is also found in Martin-Löf’s Type The-
ory [10], in which a set of codes for datatypes is called a universe (à
la Tarski), and there is a decoding function translating codes to ac-
tual types. Type theory being the foundation of dependently typed
languages, universe construction can be implemented directly in
such languages, so datatype-generic programming becomes just or-
dinary programming in the dependently typed world [1].

McBride’s seminal work on datatype ornaments [11] is ideally
suited to our purposes. What he did was to construct a universe in
Agda, i.e., a datatype whose inhabitants are codes to be translated
into actual types, with generic fold and induction for decoded types,
and define another datatype whose inhabitants — called ornaments
— explain how to “patch” a code to a richer one but retaining the
basic structure. For example, a list is a Peano-style natural number
whose successor nodes are decorated with elements, and a vector is
a list whose type is indexed with its length. Ornaments are designed
to encode these two kinds of addition of information: decoration
(element insertion) and refinement (index upgrade). Consequently,
induced by every ornament is a forgetful map erasing the added
information from an object of the ornamented datatype and recov-
ering an object of the raw datatype. For example, the forgetful map
induced by the ornamentation from natural numbers to lists is just
length, which discards the elements associated with the cons nodes.
The forgetful map is a fold, and the algebra of the fold is called the
ornamental algebra, as it is induced by an ornament. Conversely,
every algebra induces an algebraic ornament, which provides a sys-
tematic way to index the type of an object with the result of the fold
of the algebra applied to that object. The vector type is a typical ex-
ample — it arises from the algebraic ornamentation of lists which
indexes the type of a list with its length.

Datatype descriptions. Concretely, McBride used the datatype

data Desc (I : Set) : Set1 where
say : I→Desc I
σ : (S : Set)→ (S→Desc I)→Desc I
ask ∗ : I→Desc I→Desc I

as the universe. A term of type Desc I describes an inductive family
of type I → Set by specifying how its data are constructed: The
first constructor say i marks the end of a description and delivers
data at index i; the second constructor σ S D inserts an element of
type S on which the remaining description D may depend; the third
constructor ask i ∗D recursively requests data at index i and then
continues with D. For example, the code for the type of natural
numbers is

NatD : Desc>
NatD = σ Bool (false7→ say tt

true 7→ ask tt∗ say tt) ,

where > is a one-element type whose only constructor is tt, and
false7→ true 7→ is a function imitating dependent case expressions,

false7→ true7→ : {P : Bool→ Set1}→
P false→ P true→ (b : Bool)→ P b

(false 7→ p true7→ q) false = p
(false 7→ p true7→ q) true = q .

The description NatD describes exactly how to construct a Peano-
style natural number: We choose one constructor out of two by
giving a boolean value; if it is false, the construction is complete
and the result is delivered at the trivial index tt; otherwise it is

true, in which case we recursively ask for a natural number before
delivering the result.

To translate a description of type Desc I to an actual type, first
we decode it to an endofunctor on I→ Set.

[[]] : {I : Set}→Desc I→ (I→ Set)→ I→ Set
[[say i]] X i′ = i≡ i′
[[σ S D]] X i′ = Σ S λ s 7→ [[D s]] i′
[[ask i∗D]] X i′ = X i× [[D]] i′

Then we can take the least fixed point of the decoded functor by the
following native inductive datatype:

data µ {I : Set} (D : Desc I) : I→ Set where
〈 〉 : ∀ {i}→ [[D]] (µ D) i→ µ D i .

If we introduce a notation for functions on I→ Set,

⇒ : {I : Set}→ (I→ Set)→ (I→ Set)→ Set
X ⇒ Y = ∀ {i}→ X i→ Y i ,

we see that 〈 〉 : [[D]] (µ D) ⇒ µ D has the familiar form of an
algebra for the functor [[D]], which is in fact the initial algebra. So
the type of natural numbers, Nat, is obtained by decoding NatD.1

Nat : Set
Nat = µ NatD tt

The decoded type Nat being a native inductive type, we can define
functions on such natural numbers by pattern matching, albeit a bit
cryptically, like

pred : Nat→ Nat
pred 〈false, refl〉 = zero
pred 〈true,n, refl〉 = n

where zero = 〈false, refl〉 : Nat. But later when we need to define
operations and state properties for all the types encoded by the uni-
verse, it is necessary to have a generic fold operator parametrised
by the codes:

fold : {I X : Set} {D : Desc I}→ ([[D]] X ⇒ X)→ µ D⇒ X .

There is also a generic induction operator, which is more powerful
and subsumes generic fold, but fold is much easier to use when the
full power of induction is not required. The implementation details
of the two operators are not essential to our exposition and hence
are omitted from this paper.

Ornaments. Next we define the ornaments. An ornament is a
“relative” description which is written with respect to another de-
scription and marks changes relative to the latter. One of the two
kinds of information expressed in ornaments is refinement: how to
promote the I-indices in an I-description to J-indices with respect
to an index erasure function e : J→ I — the new J-indices appear-
ing in an ornament must be erasable by e to the original I-indices.
The following inverse-image datatype helps to enforce this require-
ment:

data −1 {I J : Set} (e : J→ I) : I→ Set where
ok : (j : J)→ e −1 (e j) .

If we have a value of type e −1 i, then we are guaranteed to be
able to extract from it a value j such that e j is definitionally
equal to i. The ornaments are then defined as a datatype indexed
by descriptions of type Desc I. Its first three constructors mirror
those of Desc I, refining I-indices to J-indices, while the fourth
constructor ∆ provides the second kind of ornamental information

1 A typographical convention: Type and data constructors introduced by
native data declarations are typeset in sans serif, while other terms like
functions, variables, etc. are typeset in italics. So the Nat we saw in
Section 1 is a native datatype, whereas Nat here is a decoded datatype.

on decoration, signalling insertion of a new element on which the
trailing ornament may depend.

data Orn {I : Set} (J : Set) (e : J→ I) : Desc I→ Set1 where
say : {i : I}→ e −1 i→Orn J e (say i)
σ : (S : Set) {D : S→Desc I}→

(∀ s→Orn J e (D s))→Orn J e (σ S D)
ask ∗ : {i : I}→ e −1 i→

∀ {D}→Orn J e D→Orn J e (ask i∗D)
∆ : (S : Set) {D : Desc I}→

(S→Orn J e D)→Orn J e D

For example, the ornament

ListO : Set→Orn> id NatD
ListO A =

σ Bool (false7→ say (ok tt)
true 7→ ∆ A λ 7→ ask (ok tt)∗ say (ok tt))

describes the ornamentation from natural numbers to lists. It looks
very much like a description except that the indices are wrapped
in ok and the ∆ should have been σ . We get these differences
because ListO A is a description relative to NatD: The new indices
have to prove that they respect id by wrapping themselves in ok
and ∆ is used in place of σ to indicate that the element is not
originally in NatD. Generically, an ornament of type Orn J e D can
of course be decoded into an “absolute” description of type Desc J
by unwrapping the J-indices and translating ∆ to σ :

b c : ∀ {I J e} {D : Desc I}→Orn J e D→Desc J
bsay (ok j)c = say j
bσ S Oc = σ S λ s 7→ bO sc
bask (ok j)∗Oc = ask j ∗bOc
b∆ S Oc = σ S λ s 7→ bO sc .

So the decoded description bListO Ac expands to

σ Bool (false7→ say tt
true 7→ σ A λ 7→ ask tt∗ say tt)

as expected, which can then be decoded to the list type List A =
µ bListO Ac tt.

An ornament O : Orn J e D gives rise to an ornamental algebra
ornAlg O : [[bOc]] (µ D ·e)⇒ (µ D ·e) which erases elements added
by ∆ and demotes the indices. (The · operator is function compo-
sition.) First we define a polymorphic restructuring map erasing
information added by ∆,

erase : ∀ {I J e} {D : Desc I} (O : Orn J e D) {X}→
[[bOc]] (X · e)⇒ [[D]] X · e

erase (say (ok j)) refl = refl
erase (σ S O) (s, ds) = s, erase (O s) ds
erase (ask (ok j)∗O) (d,ds) = d, erase O ds
erase (∆ S O) (s, ds) = erase (O s) ds ,

and then the ornamental algebra is defined by

ornAlg : ∀ {I J e} {D : Desc I} (O : Orn J e D)→
[[bOc]] (µ D · e)⇒ (µ D · e)

ornAlg O ds = 〈erase O ds〉 .

Folding with the ornamental algebra gives us the forgetful map

forget : ∀ {I J e} {D : Desc I} (O : Orn J e D)→
µ bOc ⇒ (µ D · e)

forget O = fold (ornAlg O) .

For example, the length of a list is computed by

length : ∀ {A}→ List A→ Nat
length {A} = forget (ListO A) .

Algebraic ornaments. Being first-class data, ornaments can be
generated systematically. McBride proposed a class of ornaments

induced by algebras: Given D : Desc I and an algebra φ : [[D]] J⇒ J,
the algebraic ornament induced by φ is defined by

algOrn : {I : Set} {J : I→ Set}→
(D : Desc I) (φ : [[D]] J⇒ J)→Orn (Σ I J) proj1 D

algOrn (say i) φ = say (ok (i,φ refl))
algOrn (σ S D) φ = σ S λ s 7→ algOrn (D s) (Λ φ s)
algOrn {J = J} (ask i∗D) φ =

∆ (J i) λ j 7→ ask (ok (i, j))∗algOrn D (Λ φ j) ,

where Λ is the currying operator. It is perhaps easier to understand
algebraic ornaments in a specialised scenario. Suppose we are
given f : A→ B→ B and e : B, which constitute an algebra for
folding a list of type List A. The algebraic ornamentation of List A
induced by that algebra would lead to the following datatype, where
the new indices and elements are framed.

data AlgList : B → Set where
[] : AlgList e

:: : (x : A) {b : B} (xs : AlgList b)→ AlgList (f x b)

If we temporarily ignore the framed parts, we see that an AlgList is
basically still a list. The difference is that the index of an AlgList
is guaranteed to be the result of folding the underlying list using
the given algebra: The new index for the type of [] is e, which is
the result of folding []; for :: , a new element b : B is inserted
before the recursive node xs for storing the index which has been
inductively computed for xs and can be assumed to be the result
of folding xs, so the final index f x b is the result of folding x ::xs.
In the generic implementation of algOrn, the tuple to be fed to the
algebra φ is revealed one component at a time in each step of the
case analysis, so φ acts as an accumulating parameter, accepting the
component revealed in each step with the help of Λ, and emitting
the final result when the say case is reached and the final component
of the tuple, refl, is fed to it. Additionally, in the ask case where
we encounter a recursive node, a new element is inserted by ∆

for storing the index j that has been inductively computed for that
node.

An example is vectors, which are lists indexed by the result of
length, which is a fold whose algebra is ornAlg (ListO A), so the
ornamentation from lists to vectors is algebraic:

VecO : (A : Set)→Orn (>×Nat) proj1 bListO Ac
VecO A = algOrn bListO Ac (ornAlg (ListO A)) .

It expands to

σ Bool (false7→ say (ok (tt, zero))
true7→ σ A λ 7→ ∆ Nat λn 7→

ask (ok (tt, n))∗ say (ok (tt, suc n)))

where suc = λn 7→ 〈true,n, refl〉 : Nat → Nat. The decoded type
Vec A n = µ bVecO Ac (tt, n) is essentially the same datatype deliv-
ered by the following native data declaration:2

data Vec (A : Set) : Nat→ Set where
[] : Vec A zero
:: : (x : A) {n : Nat} (xs : Vec A n)→ Vec A (suc n) .

An algebraically ornamented datatype does not carry more in-
formation than the raw datatype, but simply exposes some known
knowledge in the index, namely the value obtained by folding the

2 Frequently we translate decoded datatypes into native data declarations
in this paper, but it is only for the purpose of exposition — the decoded
datatypes have no formal connection with the natively declared datatypes
in Agda (as suggested by the use of different fonts). It is hoped that in
future dependently typed languages, native data declarations will become
syntactic sugar for codes for datatypes, so the distinction between native
datatypes and decoded datatypes will disappear [6].

underlying data. Hence there is not only a forgetful map from the
ornamented datatype to the raw datatype, as induced by any orna-
ment, but also a remembering map converting the raw datatype to
the ornamented datatype, computing the index on the fly. The two
maps are inverse to each other, meaning that the algebraically or-
namented datatype and the raw datatype really are isomorphic. The
remembering map can be defined generically,

remember :
∀ {I J} (D : Desc I) (φ : [[D]] J⇒ J)
{i} (x′ : µ D i)→ µ balgOrn D φc (i, fold φ x′) ,

whose implementation is by generic induction and is omitted here.
The type of remember states what the index would be when raw

data are converted to algebraically ornamented data, namely the
result of folding the raw data. Conversely, when algebraically or-
namented data are converted to raw data, the recomputation lemma
states that the forgotten index can be recovered by folding the raw
data.

recomputation :
∀ {I J} (D : Desc I) (φ : [[D]] J⇒ J)
{ij : Σ I J} (x : µ balgOrn D φc ij)→

fold φ (forget (algOrn D φ) x)≡ proj2 ij

The implementation is again by generic induction and is omitted.
Algebraically ornamented datatypes provide an internalist way

of constructing an object specified by requiring the result of folding
that object to be a predetermined value. Suppose we are asked to
construct

x′ : µ D i such that fold φ x′ ≡ j .

Instead of constructing x′ directly and proving afterwards that the
specification is satisfied, we can construct an ornamented object

x : µ balgOrn D φc (i, j)

and set

x′ = forget (algOrn D φ) x : µ D i .

Then the recomputation lemma says exactly that x′ satisfies the
specification. This construction method is central to the realisability
interpretation we are proposing.

3. A realisability interpretation of
ornamental-algebraic ornaments

From now on, we focus on what we might call ornamental-
algebraic ornaments, i.e., algebraic ornaments induced by alge-
bras that are themselves ornamental algebras; these can be given
an intuitive interpretation, taking inspiration from the theory of re-
alisability. In the Curry-Howard world, we are familiar with what
it means for a proof term to prove a proposition, i.e., to inhabit a
type — the term is related to the type by the typing meta-relation.
Compare this with the realisability view, under which we say a
term x′ realises (instead of proves) a proposition ϕ when x′ is re-
lated to ϕ by some relation defined in the language, traditionally
written x′ ϕ . The predicate λx′ 7→ x′ ϕ is called the realis-
ability predicate for ϕ , so saying that x′ realises ϕ is equivalent
to saying that x′ satisfies the realisability predicate for ϕ . When
x′ ϕ holds, the term x′ is called a realiser of the proposition ϕ .
The relation being defined in the language, a proof of x′ ϕ

exists as a proof term, which we call a realisability proof. In his
original realisability paper [9], Kleene hinted that a realiser is “an
incomplete communication of a more specific statement,” and a
realisability proof provides “items as may be necessary to com-
plete the communication.” This is close to our interpretation: A
realiser is an incomplete proof that can somehow be derived from
a complete proof without losing the basic structure of the latter. A

realisability predicate states what information needs to be supplied
if we wish to augment an incomplete proof to a complete one, and
a realisability proof provides the missing information.

For example, let us consider lists as realisers of the vector type.
That is, lists are incomplete vectors, in the sense that a list is a
vector whose length information is forgotten. To synthesise a vector
of length n out of a list, we need to prove that the list has length n.
One way to state this is to use the inductively defined relation

data Length {A : Set} : Nat→ List A → Set where
nil : Length zero []

cons : ∀ {x n xs }→

Length n xs → Length (suc n) (x ::xs) .

The predicate Length n on lists is the realisability predicate which,
when satisfied by a list, states that the list can be upgraded to a
vector of length n. That is, we can establish an isomorphism

Vec A n ∼= Σ (List A) (Length n)

which allows a list that can be proved to have length n to be con-
verted to a vector of length n or vice versa. If we temporarily ignore
the framed parts of Length, we see that it is just the vector type, so
an inhabitant of Length n xs is actually a vector of length n whose
type is indexed by the underlying list xs. Since the underlying list
is computed by the forgetful map, we see that Length is the alge-
braic ornamentation of Vec A using the ornamental algebra from
vectors to lists. The use of the ornament language here is a hint of
datatype-genericity.

So let us go generic: An ornament O : Orn J e D of a description
D : Desc I states how to augment the datatype µ D : I → Set to
a richer datatype µ bOc : J → Set, and induces a forgetful map
forget O : µ bOc ⇒ µ D · e. If we regard µ bOc as the complete
type, then µ D is incomplete with respect to µ bOc and serves as
the type of potential realisers of µ bOc.3 A complete object of type
µ bOc j can be compressed by forget O to an incomplete one of
type µ D (e j) but retaining the basic structure. Conversely, given
an incomplete object x′ : µ D (e j), can we reconstruct a complete
object x : µ bOc j such that x has the same basic structure as x′,
i.e., forget O x ≡ x′ is provable? This is exactly the scenario where
the construction method supported by algebraically ornamented
datatypes can be applied, since forget O = fold (ornAlg O). So the
answer is: Yes, if we can construct

r : µ balgOrn bOc (ornAlg O)c (j, x′) ,

then by setting

x = forget (algOrn bOc (ornAlg O)) r : µ bOc j

we are assured by the recomputation lemma that

forget O x
≡ fold (ornAlg O) x
≡ fold (ornAlg O) (forget (algOrn bOc (ornAlg O)) r)
≡ {- recomputation bOc (ornAlg O) r -}

proj2 (j, x′)
≡ x′ .

3 A µ D object is not necessarily a realiser of µ bOc, as it may not satisfy
the realisability predicate. We will nevertheless simply call µ D the realiser
type, instead of the “potential realiser type.”

The predicate λx′ 7→ µ balgOrn bOc (ornAlg O)c (j, x′) thus acts
as the realisability predicate. Consequently we define

rpOrn : ∀ {I J e} {D : Desc I} (O : Orn J e D)→
Orn (Σ J (µ D · e)) proj1 bOc

rpOrn O = algOrn bOc (ornAlg O)

and
[] : ∀ {I J e} {D : Desc I}→

(j : J) (x′ : µ D (e j)) (O : Orn J e D)→ Set
[j] x′ O = µ brpOrn Oc (j, x′) .

This is interpreted as the type of a proof that x′ can be completed
to yield an object of µ bOc. We also define x′ O = [] x′ O so
the index j can be omitted when it can be inferred.

Since a realisability predicate is implemented as an algebraic or-
namentation of the complete type, it is isomorphic to the complete
type — more precisely, to be called a type a realisability predicate
needs to be applied to a realiser, so the complete type is isomor-
phic to the dependent pair of the realiser type and the realisability
predicate. The isomorphism can be nicely interpreted in terms of
realisability: Given a complete object, a realiser can be obtained by
applying forget O to the object, and the corresponding realisability
proof is produced by

ℜ : ∀ {I J e} {D : Desc I} (O : Orn J e D)
{ j} (x : µ bOc j)→ forget O x O

ℜ O x = remember bOc (ornAlg O) x .

We call this direction of the isomorphism the realisability transfor-
mation, because it helps to switch from the “proving” view to the
“realising” view. The inverse transformation metaphorically com-
bines a realiser and its realisability proof, whose computation de-
pends only on the latter:

ℜ−1 : ∀ {I J e} {D : Desc I} (O : Orn J e D)
{ j} (x′ : µ D (e j)) (r : x′ O)→ µ bOc j

ℜ−1 O x′ r = forget (rpOrn O) r .

That ℜ and ℜ−1 are indeed inverse to each other can be proven by
recomputation and the fact that forget and remember are inverses.
For example, one inverse property we will need is

realiser-recovery :
∀ {I J e} {D : Desc I} (O : Orn J e D)→
(x′ : µ D (e j)) (r : x′ O)→ forget O (ℜ−1 O x′ r)≡ x′

realiser-recovery O x′ r = recomputation bOc (ornAlg O) r ,

which says that the realiser extracted from a complete object syn-
thesised from a realiser x′ is just x′ again.

To recap: By defining an ornament, we specify a complete type
relative to a realiser type, and the corresponding realisability predi-
cate can be immediately derived from that ornament. From this fol-
low the realisability transformation and its inverse transformation
that allow us to break a complete object into a realiser and a cor-
responding realisability proof, or recover a complete object from a
realisability proof, which depends on a realiser.

Examples. Let us turn back to the example in which lists are
viewed as realisers of the vector type, which arises from the or-
nament VecO A. The derived realisability predicate is

Length : ∀ {A}→ Nat→ List A→ Set
Length {A} n xs = [tt, n] xs VecO A ,

which translates to the Length datatype given previously.
A slightly confusing but classic example is given by the or-

nament ListO A. The complete type specified by this ornament is
List A, and the realiser type is Nat — a natural number is an in-
complete list, with the elements missing. The derived realisability
predicate n ListO A is just Vec A n, meaning that to augment a

natural number n to a list of A’s we need to supply a vector of type
Vec A n, i.e., n elements of type A. It may seem strange at first that
to construct a list, we end up constructing a vector, which is “heav-
ier” than a list. But in fact we are asking not just for any list, but a
list whose length is n. By constructing the list as a vector indexed
by n, the requirement that the list constructed should have length n,
i.e., that it has the same basic structure as n, is met by construction.
A metaphor for this is that n is scaffolding to guide the construction
of a list, and a vector is the finished construction still with the scaf-
fold. To get the list constructed, we remove the scaffold by ℜ−1,
i.e., forget.

For an example other than vectors, assume that a less-than-or-
equal-to relation ≤ on natural numbers is suitably defined, and
consider the following datatype for sorted lists of natural numbers
indexed by a lower bound:

data SList : Nat→ Set where
snil : ∀ {b}→ SList b
scons : (x : Nat)→∀ {b}→ b≤ x→ SList x→ SList b .

Coding sorted lists as an ornamentation of lists,

SListO : Orn Nat ! bList Natc
SListO = σ Bool (false7→ ∆ Nat (λb 7→ say (ok b))

true 7→ σ Nat (λx 7→
∆ Nat (λb 7→ ∆ (b≤ x) (λ 7→

ask (ok x)∗ say (ok b))))) ,

where != λ 7→ tt : ∀ {A}→A→>, we obtain SList = µ bSListOc.
The derived realisability predicate is

Sorted : Nat→ List Nat→ Set
Sorted n xs = [n] xs SListO Nat ,

which translates to
data Sorted : Nat→ List Nat→ Set where

nil : ∀ {b}→ Sorted b []
cons : ∀ {x b}→ b≤ x→

∀ {xs}→ Sorted x xs→ Sorted b (x ::xs) .

It is an inductively defined predicate stating that a list is sorted and
bounded below by a number. If we can prove that a list satisfies this
predicate, then the list can be cast as a sorted list bounded below.

For an example other than lists, recall the finite numbers pre-
sented in Section 1, which can be coded as an ornamentation of
natural numbers:

FinO : Orn Nat ! NatD
FinO =

σ Bool (false7→ ∆ Nat (λn 7→ say (ok (suc n)))
true7→ ∆ Nat (λn 7→ ask (ok n)∗ say (ok (suc n)))) .

The decoded type of finite numbers is thus Fin = µ bFinOc. The
derived realisability predicate translates to the greater-than relation
also presented in Section 1 — to say a natural number n is a finite
number bounded by m, what we need to prove is exactly m > n.

Realisability predicates for algebraic ornaments. The example
regarding lists as realisers of the vector type may have made the
reader feel uneasy — the derived realisability predicate Length
looks rather heavyweight. Given that an algebraic ornament does
not add extra information to a datatype, shouldn’t the realisability
predicate be more lightweight and sometimes even trivially satisfi-
able? Indeed, the realisability predicate for an algebraic ornament
should simply amount to an equality, e.g., length xs≡ n for the or-
nament VecO A instead of Length n xs, and this can be proved gener-
ically.

For one direction, we wish to prove

AOE : ∀ {I J} (D : Desc I) (φ : [[D]] J⇒ J)
{ij : Σ I J} {x′ : µ D (proj1 ij)}→
(r : [ij] x′ algOrn D φ)→ fold φ x′ ≡ proj2 ij .

Note that the realiser x′ is ornamentally two levels away from the
realisability proof r, but since the two ornaments involved are both
algebraic, x′ and r really are isomorphic. The goal type looks quite
similar to the conclusion of the recomputation lemma at the first
level, so we try to apply recomputation to a complete object, the
natural choice being ℜ−1 (algOrn D φ) x′ r. We supply the proof
term

recomputation D φ (ℜ−1 (algOrn D φ) x′ r) (1)

as the result, whose type

fold φ (forget (algOrn D φ) (ℜ−1 (algOrn D φ) x′ r))≡ proj2 ij

requires a bit of tweaking, though: The argument to fold φ should
be just x′ to match the goal type, which is achieved by rewriting
with

realiser-recovery (algOrn D φ) x′ r . (2)

In Agda, we first use with to put the term (1) into the context
and then rewrite the context with (2) before delivering the term
left in the context as the result, whose type has been appropriately
rewritten. This programming pattern will be used a lot.

The other direction requires us to prove

AOE−1 : ∀ {I J} (D : Desc I) (φ : [[D]] J⇒ J)
{ij : Σ I J} {x′ : µ D (proj1 ij)}→
fold φ x′ ≡ proj2 ij→ [ij] x′ algOrn D φ .

Promoting x′ two levels up should do the job, so we give the term

ℜ (algOrn D φ) (remember D φ x′)

as the result after tweaking its type, which is originally

[proj1 ij, fold φ x′]

forget (algOrn D φ) (remember D φ x′) algOrn D φ .

Since forget is a left inverse to remember and we have an assump-
tion fold φ x′ ≡ proj2 ij, the type can be rewritten as our goal.

Incidentally, implementation of remember and recomputation
can be made symmetric under the realisability view, i.e., if the
combinators ℜ, ℜ−1, AOE, and AOE−1 are taken as primitives.
First consider remember: To promote x′ : µ D i to an object of type

µ balgOrn D φc (i, fold φ x′) ,

we apply the inverse realisability transformation ℜ−1 to x′ and a
corresponding realisability proof, which can simply be a proof of
fold φ x′ ≡ fold φ x′ because of AOE−1.

remember :
∀ {I J} (D : Desc I) (φ : [[D]] J⇒ J)
{i} (x′ : µ D i)→ µ balgOrn D φc (i, fold φ x′)

remember D φ x′ = ℜ−1 (algOrn D φ) x′ (AOE−1 D φ refl)

As for recomputation, we are given a complete object x and asked
to produce the equality form of a realisability proof, which we can
easily obtain by applying the realisability transformation ℜ to x and
then resorting to AOE.

recomputation :
∀ {I J} (D : Desc I) (φ : [[D]] J⇒ J)
{ij : Σ I J} (x : µ balgOrn D φc ij)→

fold φ (forget (algOrn D φ) x)≡ proj2 ij
recomputation D φ x = AOE D φ (ℜ (algOrn D φ) x)

We see that remember is ℜ−1 whose argument is produced by
AOE−1, while recomputation is ℜ whose result is modified by
AOE. Hence recomputation and remember are actually the realis-
ability transformation and the inverse transformation, specialised
for algebraic ornaments.

Function upgrade. After we define an ornament to get a fancier
type, naturally we want to port functions working on the original
type to the fancier type. For example, we should be able to upgrade
list append to vector append. Our strategy is based on realisers and
realisability predicates for function types. In type theory, a proof of
an implication ϕ → ψ takes a proof of ϕ to a proof of ψ , while in
the realisability world the role of proofs are taken by realisers, so a
realiser of ϕ → ψ takes a realiser of ϕ to a realiser of ψ , i.e., it is
a function f ′ : ϕ ′ → ψ ′ where ϕ ′ and ψ ′ are the type of potential
realisers of ϕ and ψ . But in order to justify that f ′ really takes
realisers to realisers, we need to prove that when an input x′ : ϕ ′ is
a realiser, i.e., we are given a proof of x′ ϕ , the output f ′ x′ : ψ ′

is also a realiser, i.e., we can produce a proof of f ′ x′ ψ . This
justification is thus a proof of type

(x′ : ϕ
′)→ x′ ϕ → f ′ x′ ψ ,

which is defined to be the realisability predicate for ϕ → ψ . Back
in the context of ornaments, this suggests that to upgrade a func-
tion, we can consider it as a realiser of a function type between
ornamented types, and obtain a complete function by supplying a
suitable realisability proof.

For the example of upgrading list append to vector append, our
goal is to write the append function for vectors

vappend : ∀ {A m n}→ Vec A m→ Vec A n→ Vec A (m+n)

in terms of list append

++ : ∀ {A}→ List A→ List A→ List A .

Given xs : Vec A m and ys : Vec A n, to produce a vector of type
Vec A (m + n), we invoke ℜ−1 and thereby split the goal into
two parts — the realiser and the realisability proof. The realiser,
which is a list, is obtained by extracting the two underlying lists
xs′ = forget (VecO A) xs and ys′ = forget (VecO A) ys and append-
ing them. For the realisability proof, because of AOE−1, the proof
obligation is reduced to the equality

length (xs′++ys′)≡ m+n .

We know length is a list homomorphism, i.e.,

length (xs′++ys′)≡ length xs′+ length ys′ for all xs′ and ys′ .

The type of the realisability proof for list append is merely a
restatement of the fact above:
append-length :
∀ {A} (xs′ ys′ : List A) {m n}→
length xs′ ≡ m→ length ys′ ≡ n→ length (xs′++ys′)≡ m+n .

And the two equality premises of append-length are discharged by
applying ℜ and AOE to xs and ys. The whole Agda translation is
shown below.

vappend : ∀ {A m n}→ Vec A m→ Vec A n→ Vec A (m+n)
vappend {A} xs ys = ℜ−1 (VecO A) (xs′++ys′)

(AOE−1 bListO Ac φ (append-length xs′ ys′ eq1 eq2))
where xs′ = forget (VecO A) xs

ys′ = forget (VecO A) ys
φ = ornAlg (ListO A)
eq1 = AOE bListO Ac φ (ℜ (VecO A) xs)
eq2 = AOE bListO Ac φ (ℜ (VecO A) ys)

4. A first step towards ornament composition
The inverse realisability transformation combines a realisability
proof with a realiser to get a complete object. For example, we
combine length information with a list to get a vector, or we com-
bine a proof of the Sorted predicate with a list to get a sorted list.
It is then natural to ask: Can we combine both the length infor-
mation and the sortedness proof with a list, to get a sorted vector?

To clarify, the datatypes involved are shown in the following di-
agram, ornaments drawn as double-headed arrows and the realis-
ability predicates framed. It can be read as “the datatype List Nat is
revised to the datatype SList b by the ornament SListO” and so on.

List Nat

SList b SVec b n Vec Nat n

Sorted b SLen b n Length n

SListO

SVecO

VecO Nat

We know that to promote a list xs to a sorted vector, we need
to provide a realisability proof of type SLen b n xs, but what we
are given are proofs of Sorted b xs and Length n xs. Nevertheless,
intuitively we see that Sorted b xs× Length n xs is isomorphic to
SLen b n xs, i.e., the realisability predicate for the ornament SVecO
is the composition (pointwise conjunction) of the realisability pred-
icates for SListO and VecO Nat. Since realisability predicates are
derived from ornaments, we are led to seeking a way of regarding
SVecO as the composition of SListO and VecO Nat. Our hypothe-
sis, then, is that the realisability predicate for a composite ornament
amounts to the composition (pointwise conjunction) of the realis-
ability predicates for the component ornaments.

As an initial experiment, in this paper we consider only com-
position of two ornaments one of which is algebraic, which has
a simpler implementation. Let D : Desc I, O : Orn J e D, and φ :
[[D]] K ⇒ K. The composition of O and algOrn D φ will be called
algOrn′ O φ . The datatypes involved are shown in the following
diagram. We omit the names of ornaments on the arrows that rep-
resent them, because the names are shown in the datatypes at the
end of the arrows. A dashed arrow indicates an algebraic ornament.

µ D

µ bOc µ balgOrn D φc

µ balgOrn′ O φc

The function algOrn′ does the same thing as algOrn except that it
works on an ornament — algOrn′ O φ patches O algebraically so
the resulting ornament on D has new indices which are the result
of folding with φ . We call it an algebraic ornament-ornament.
(Fortunately this rather ugly name will appear only once more.)

algOrn′ : {I J : Set} {K : I→ Set} {e : J→ I} {D : Desc I}
(O : Orn J e D) (φ : [[D]] K⇒ K)→
Orn (Σ J (K · e)) (e ·proj1) D

algOrn′ (say (ok j)) φ = say (ok (j,φ refl))
algOrn′ (σ S O) φ = σ S λ s 7→ algOrn′ (O s) (Λ φ s)
algOrn′ {K = K} {e} (ask (ok j)∗O) φ =

∆ (K (e j)) λk 7→ ask (ok (j,k))∗algOrn′ O (Λ φ k)
algOrn′ (∆ S O) φ = ∆ S λ s 7→ algOrn′ (O s) φ .

Each of the three ornaments appearing in the diagram induces its
own realisability predicate, and we are going to show that a real-
isability proof for algOrn′ O φ can be projected to a realisability
proof for O or for algOrn D φ , or synthesised by integrating realis-
ability proofs for O and algOrn D φ .

Projections. First we deal with the left and right projection,

project-l :
∀ {I J K e} {D : Desc I} (O : Orn J e D) (φ : [[D]] K⇒ K)
{jk : Σ J (K · e)} {x′ : µ D (e (proj1 jk))}→
(r : [jk] x′ algOrn′ O φ)→ [proj1 jk] x′ O

project-r :
∀ {I J K e} {D : Desc I} (O : Orn J e D) (φ : [[D]] K⇒ K)
{jk : Σ J (K · e)} {x′ : µ D (e (proj1 jk))}→
(r : [jk] x′ algOrn′ O φ)→ [(e× id) jk] x′ algOrn D φ ,

where × is overloaded to mean (f × g) (x, y) = (f x, g y). It is
difficult to prove the projections directly by generic induction on r.
Rather, we will first complete the ornament diagram by defining
two difference ornaments from which the decoded datatypes are
isomorphic to µ balgOrn′ O φc (the isomorphisms are shown as
two-way arrows below),

µ D

µ bOc µ balgOrn D φc

µ bdiffOrn-l O φc µ balgOrn′ O φc µ bdiffOrn-r O φc

and then route a realisability proof through the appropriate forgetful
maps, isomorphisms, and remembering maps to get the proof we
want. Let us look at the left part of the completed diagram, to which
the induced realisability predicates have been added.

µ D

 O µ bOc

µ bdiffOrn-l O φc µ balgOrn′ O φc

 algOrn′ O φ

The left difference ornament is an algebraic ornament defined by

diffOrn-l : ∀ {I J K e} {D : Desc I}
(O : Orn J e D) (φ : [[D]] K⇒ K)→
Orn (Σ J (K · e)) proj1 bOc

diffOrn-l O φ = algOrn bOc (φ · erase O) .

One direction of the isomorphism between µ bdiffOrn-l O φc and
µ balgOrn′ O φc is iso1,

iso1 : ∀ {I J K e} {D : Desc I}
(O : Orn J e D) (φ : [[D]] K⇒ K)→
µ balgOrn′ O φc ⇒ µ bdiffOrn-l O φc

iso1 O φ = fold (〈 〉 · iso1-cast O φ) ,

where iso1-cast is a polymorphic restructuring map like erase,
which is actually just an identity map.

iso1-cast : ∀ {I J K e} {D : Desc I}
(O : Orn J e D) (φ : [[D]] K⇒ K) {X}→
[[balgOrn′ O φc]] X ⇒ [[bdiffOrn-l O φc]] X

iso1-cast (say (ok j)) φ refl = refl
iso1-cast (σ S O) φ (s, xs) = s, iso1-cast (O s) (Λ φ s) xs
iso1-cast (ask (ok j)∗O) φ (k, x, xs) = k, x,

iso1-cast O (Λ φ k) xs
iso1-cast (∆ S O) φ (s, xs) = s, iso1-cast (O s) φ xs

The other direction of the isomorphism, iso2, has the same imple-
mentation. Each ornament induces a forgetful map, and addition-
ally a remembering map if it is algebraic, as shown in Figure 1.

µ D

r1 : O µ bOc

µ bdiffOrn-l O φc µ balgOrn′ O φc

r : algOrn′ O φ

forget

forget

forget

remember

ℜ−1
ℜ

ℜ

ℜ−1

iso1

iso2

Figure 1. (Commutative) diagram of ornament-induced maps and
the isomorphism maps iso1 and iso2.

In the diagram there is a path of maps along which we can take
a realisability proof for algOrn′ O φ to one for O: Starting from a
composite realisability proof

r : [jk] x′ algOrn′ O φ ,

the term

r1 = ℜ O (forget (diffOrn-l O φ) (iso1 O φ

(ℜ−1 (algOrn′ O φ) x′ r)))

is the desired left-component realisability proof, but its type again
needs tweaking. Its original type is

[proj1 jk]

forget O (forget (diffOrn-l O φ) (iso1 O φ

(ℜ−1 (algOrn′ O φ) x′ r))) O ,

while our goal type is

[proj1 jk] x′ O .

The composition of the two forgets and iso1, however, can be
reduced to just one big forget (algOrn′ O φ). This can be proved
by two applications of fold fusion [5], and ultimately reduces to
naturality [16] of the underlying restructuring maps — erase and
iso1-cast — and the fact that

erase O (erase (diffOrn-l O φ) (iso1-cast O φ xs))

≡ erase (algOrn′ O φ) xs

holds for all xs, which can be easily proved by induction on O. Thus
the type we are left with is

[proj1 jk] forget (algOrn′ O φ) (ℜ−1 (algOrn′ O φ) x′ r)O ,

and realiser-recovery says that the realiser is just x′. Thus we reach
our goal type and finish the implementation of the left projection.

As for the right projection, after defining the right difference
ornament,

diffOrn-r : ∀ {I J K e} {D : Desc I}
(O : Orn J e D) (φ : [[D]] K⇒ K)→
Orn (Σ J (K · e)) (e× id) balgOrn D φc

diffOrn-r (say (ok j)) φ = say (ok (j, refl))
diffOrn-r (σ S O) φ = σ S λ s 7→ diffOrn-r (O s) (Λ φ s)
diffOrn-r {K = K} {e} (ask (ok j)∗O) φ =

σ (K (e j)) λk 7→ ask (ok (j, k))∗diffOrn-r O (Λ φ k)
diffOrn-r (∆ S O) φ = ∆ S λ s 7→ diffOrn-r (O s) φ ,

the implementation is completely symmetric and is omitted here.

Integration. Now we look at integration:

integrate :
∀ {I J K e} {D : Desc I} (O : Orn J e D) (φ : [[D]] K⇒ K)
{jk} {x′ : µ D (e (proj1 jk))}→
(r1 : [proj1 jk] x′ O) (r2 : [(e× id) jk] x′ algOrn D φ)→
[jk] x′ algOrn′ O φ .

Had we considered general ornament composition, integration
would have been much harder to implement, because ingredients
from both component realisability proofs are essential and really
need to be integrated by hard work. But since we are considering
algebraic ornament-ornaments, the left difference ornament is al-
gebraic and thus induces a remembering map, completing a path
of maps along which we can smuggle a realisability proof for O as
one for algOrn′ O φ — again see Figure 1. (A realisability proof
for algOrn D φ is nevertheless still needed, which provides infor-
mation about the index, as we will see later.) Starting from the
left-component realisability proof

r1 : [proj1 jk] x′ O ,

the composite realisability proof we deliver is

r = ℜ (algOrn′ O φ) (iso2 O φ

(remember bOc (φ · erase O) (ℜ−1 O x′ r1))) ,

which has type

[proj1 jk, fold (φ · erase O) (ℜ−1 O x′ r1)]

forget (algOrn′ O φ) (iso2 O φ

(remember bOc (φ ·erase O) (ℜ−1 O x′ r1))) algOrn′ O φ ,

while our goal type is

[jk] x′ algOrn′ O φ .

Comparing the two types, we see that we need to establish two
equalities,

fold (φ · erase O) (ℜ−1 O x′ r1)≡ proj2 jk (3)

and

forget (algOrn′ O φ) (iso2 O φ

(remember bOc (φ · erase O) (ℜ−1 O x′ r1)))≡ x′ . (4)

The left-hand side of the first equality (3) looks like the left-hand
side of realiser-recovery, but instead of fold (φ · erase O) what we
wish to see is forget O. Nevertheless, we see that fold (φ ·erase O) is
just fold φ lifted to work with µ bOc, so we can perform fission [8]
— the conceptual opposite of fusion — by proving that

fold (φ · erase O) x≡ fold φ (forget O x) for all x .

Hence the forget O coming out of the fission cancels out the ℜ−1

by realiser-recovery, reducing (3) to

fold φ x′ ≡ proj2 jk . (5)

This is where we need a realisability proof for algOrn D φ . In
the beginning we were also given the right-component realisability
proof

r2 : [(e× id) jk] x′ algOrn D φ .

Notice that r2 is a realisability proof for an algebraic ornament,
so it can be transformed by AOE to a proof of an equality, which
is exactly (5). So the first equality is successfully discharged. As
for the second equality (4), we perform fission again to exchange
the big forget (algOrn′ O φ) composed with iso2 for two smaller
forgets, one of which cancels out the remember. The equality is

thus reduced to

forget O (ℜ−1 O x′ r1)≡ x′ ,

which is just an instance of realiser-recovery.

Example. Consider the function

insert : Nat→ List Nat→ List Nat
insert y 〈false, refl〉= y ::[]
insert y 〈true,x,xs, refl〉 with y≤? x
. . . | yes = y ::x ::xs
. . . | no = x :: insert y xs ,

which is used, for example, in insertion sort. (The function ≤?
compares two natural numbers, returning as a result either yes eq
or no neq where eq and neq are proof terms justifying the result.
Neither of the two proof terms is used in this basic version of insert,
however.) We know that insert y xs has one more element than xs,
i.e., we can prove

insert-length :
∀ y xs {n}→ length xs≡ n→ length (insert y xs)≡ suc n .

This is the realisability proof for upgrading insert to work with
vectors, i.e., to the function

vinsert : Nat→∀ {n}→ Vec Nat n→ Vec Nat (suc n) .

Also we know that insert produces a sorted list if the input list is
sorted, i.e., we can prove

insert-sorted :
∀ y xs {b}→ Sorted b xs→ Sorted (bu y) (insert y xs)

where bu y is the minimum of b and y. Again this serves as a
realisability proof for upgrading insert to work with sorted lists,
i.e., to the function

sinsert : (y : Nat)→∀ {b}→ SList b→ SList (bu y) .

Now suppose we wish to upgrade it to work with sorted vectors,

data SVec : Nat→ Nat→ Set where
nil : ∀ {b}→ SVec b zero
cons : (x : Nat)→∀ {b}→ b≤ x→

∀ {n}→ SVec x n→ SVec b (suc n) ,

which is described by the ornament

SVecO : Orn (Nat×Nat) ! bListO Natc
SVecO = algOrn′ SListO (ornAlg (ListO Nat)) .

This time, however, we do not need to prove repetitively and mono-
lithically that insert y xs is sorted and has length suc n if xs is
sorted and has length n; instead, we can reuse insert-length and
insert-sorted with the help of project-l, project-r, and integrate.
The function we wish to write is

svinsert :
(y : Nat)→∀ {b n}→ SVec b n→ SVec (bu y) (suc n) .

Assume that y : Nat and xs : SVec b n are given. We invoke the
inverse realisability transformation and supply insert y xs′, where
xs′ = forget SVecO xs, as the realiser, and we need to produce a cor-
responding realisability proof of type insert y xs′ SVecO from a
realisability proof of type xs′ SVecO. Since SVecO is a compos-
ite ornament, we can break the given composite realisability proof
into two component proofs with project-l and project-r, use them to
build two required component proofs independently, and integrate
the two independently built proofs to get the required composite
proof. The program is shown below.

svinsert : (y : Nat)→∀ {b n}→ SVec b n→ SVec (bu y) (suc n)
svinsert y xs = ℜ−1 SVecO (insert y xs′)

(integrate SListO φ

(insert-sorted y xs′ r1)
(AOE−1 bListO Natc φ

(insert-length y xs′ (AOE bListO Natc φ r2))))
where xs′ = forget SVecO xs

φ = ornAlg (ListO Nat)
r = ℜ SVecO xs
r1 = project-l SListO φ r
r2 = project-r SListO φ r

5. Discussion
The realisability interpretation in fact works for general algebraic
ornaments, ornamental-algebraic ornaments being a special case:
Given a description D : Desc I and an algebra φ : [[D]] J ⇒ J, the
type µ D is interpreted as the complete type, J as the realiser type,
and µ balgOrn D φc as the realisability predicate. Assuming that
x : µ D i is a complete object, the type of remember says that
fold φ x : J i satisfies the realisability predicate, so remember is
the realisability transformation, while the inverse transformation is
forget. ℜ and ℜ−1 are just remember and forget specialised for or-
namental algebras. The reason we introduced the realisability trans-
formation based on ornaments instead of algebras is that ultimately
we use the transformation to talk about ornament composition. It
is convenient to have the intuition that every ornament expresses
the relationship between a realiser type and a complete type and in-
duces a corresponding realisability predicate. Subsequently, com-
posing ornaments gives rise to a new and richer complete type, and
the induced realisability predicate can be decomposed into realis-
ability predicates for the component ornaments. Algebra-based in-
terpretation does not offer this intuition, because algebras do not
compose: For example, we can fold both a list and a tree to a nat-
ural number, say computing the number of elements, but it is not
obvious what composite datatype would arise in this situation.

More importantly, introducing the realisability interpretation in
terms of ornamental-algebraic ornaments brings out the correspon-
dence between internalism and externalism regarding constraint
composition. Under the realisability view, data and constraints are
separated into realisers and realisability predicates. This is exactly
externalism — realisers do not carry with them proofs that they are
indeed realisers. Multiple constraints simply correspond to multiple
realisability predicates applied to the same piece of data. For inter-
nalism, constraints are encoded in ornaments, and to express mul-
tiple constraints we use ornament composition. The realisability
transformation points out the correspondence between the two dif-
ferent ways of expressing constraints — ornaments for internalism
and realisability predicates for externalism: An ornament induces a
realisability predicate, which is the manifestation of the ornament
in the world of decoded datatypes, and moreover, composition of
realisability predicates mirrors composition of ornaments. A bridge
is thus formed between externalism and internalism, and subse-
quently, externalist modularity is brought into internalist datatypes.

It is worth noting that upgrading a function using the realisabil-
ity transformation does not really exempt us from reimplementing
the logic. For example, when we upgrade insert to work with sorted
lists, the realisability proof we need to supply is insert-sorted,
which takes one Sortedness proof and produces another. Sorted be-
ing isomorphic to SList, implementing insert-sorted is not so dif-
ferent from reimplementing insert for sorted lists. So what is the
difference? Let us temporarily change our perspective and consider
how we might synthesise svinsert from sinsert and vinsert, without
the help of the realisability transformation. We would get a sorted
list and a vector from the input sorted vector, feed them to sinsert

and vinsert separately, and combine the outputs to get a sorted vec-
tor as the final result. The main obstacle is that we cannot freely
integrate a sorted list with a vector to get a sorted vector, because
the underlying list of the sorted list may not be the same as that
of the vector. If we are able to guarantee that the sorted list and
the vector have the same underlying list, however, then the inte-
gration goes through, but it is awkward to express the guarantee.
It is by employing realisability predicates that this awkwardness
can be overcome. A realisability predicate exposes the underlying
data in the index, so by taking proofs of realisability predicates ap-
plied to the same index, our integrate function gets precisely the
guarantee that it needs. The ability to express the guarantee in this
elegant manner is a demonstration of the strength of internalism.
Thus the use of realisability predicates, which is central to exter-
nalist compositionality, can in fact be regarded as an application of
an internalist technique to solve the compositionality problem of
internalist datatypes.

Practically, how do we structure our libraries with the realisabil-
ity transformation for better reusability? As McBride suggested,
the datatypes should be delivered as codes and ornaments. The
datatypes on which an operation is defined should be as general
as possible, and other versions of the operation on more specialised
types should be implemented in the form of realisability proofs. For
example, insert should be defined for plain lists, and implemented
for sorted lists and vectors as a function on sortedness proofs and
length equalities respectively. Delivered in this way, then, insert
for sorted lists, vectors, and sorted vectors can all be derived rou-
tinely by the realisability transformation as we have seen. This is
the reusability and modularity offered by externalism. On the other
hand, some operations are best defined on more specialised types,
so preconditions can be cleanly expressed and manipulated. An ex-
ample is the safe lookup function

lookup : {A : Set}→ ∀ {n}→ Fin n→ Vec A n→ A
lookup fzero (x ::xs) = x
lookup (fsuc i) (x ::xs) = lookup i xs .

It is natural to define this function on vectors (instead of lists) and
use Fin (instead of Nat) as the index type, as the length constraint
is embedded in the indices of the types of the data and requires no
extra management, which is the advantage offered by internalism.
So here is the development pattern we have in mind: Once a rich
collection of ornaments are provided, programmers will have the
freedom to choose which constraints they wish to impose on a ba-
sic type, compose the relevant ornaments and decode the composite
ornament to a suitable inductive family T . Existing operations are
upgraded to work with T routinely by the realisability transforma-
tion. And then, operations specific to T can be programmed directly
on T , benefiting from the precision and convenience of program-
ming with inductive families.

6. Related work
Section 2 is a faithful albeit condensed summary of McBride’s orig-
inal implementation of ornaments [11], except for a few notational
changes. Our work is heavily based on algebraic ornaments and the
associated construction method. Ornamental-algebraic ornaments
have already appeared in McBride’s original paper, and in partic-
ular, the Length predicate was derived from the ornament VecO A,
which was one of our motivating examples. Also, a variant of less-
than-or-equal-to relation on natural numbers was derived using an
algebraic ornament by McBride, which led us to notice the similar-
ity between Fin and > .

The idea of viewing vectors as realisability predicates was pro-
posed by Bernardy [3, p 82], which refers to the realisability trans-
formation defined for pure type systems by Bernardy and Las-
son [4]. He started with the list type in which the element-type

parameter is marked as “first-level,” whereas the list type itself
is “second-level.” Applying the “projecting transformation,” which
removes first-level terms and demotes second-level terms to first-
level, the second-level type of lists is transformed to the first-
level type of natural numbers. And then, applying their realisability
transformation, the list type is transformed to a second-level vector
type indexed by first-level natural numbers. Our realisability inter-
pretation can be seen as a translation of his idea into the language of
ornaments without introducing levels: Our notion of complete ob-
jects and types would be second-level in Bernardy’s system, while
realisers and their types would be first-level. When applied to pro-
grams, their projecting transformation corresponds to our ornamen-
tal forgetful map. Due to the syntax-generic character of his trans-
formations, Bernardy was able to derive vector append effortlessly
from list append, and in particular deduce that, in the type of vector
append, the index of the resulting vector is the sum of the indices of
the two input vectors, because natural number addition is the (func-
tional) realiser extracted from list append. Extraction of functional
realisers from complete functions is not, and should not be, possi-
ble in our framework, however: The behaviour of a function taking
a complete object may depend essentially on the added informa-
tion, which is not available to a function taking only a realiser. For
example, a function of type List Nat→ List Nat may be defined to
compute the sum s of the input list and emit a list of length s whose
elements are all zero. We cannot hope to write a function of type
Nat→ Nat that reproduces the corresponding behaviour on natural
numbers. On the other hand, it is reasonable to project list append
to natural number addition, because list append is polymorphic and
cannot inspect the elements. Indeed, in Bernardy and Lasson’s sys-
tem, it is impossible to produce second-level terms by induction on
first-level terms, as the first-level terms are designed to be “compu-
tationally irrelevant” to second-level terms. This could be overcome
by, for example, employing singleton types [12] to link different
levels, but it can be inconvenient to do so explicitly. Our framework
does not embody computational irrelevance, and trades the ability
to derive polymorphic programs for simplicity and convenience.

The classic application of realisability in computing is program
extraction, e.g., in Coq [15]. Terms are marked either as “infor-
mative” or “non-informative,” and the non-informative terms, i.e.,
the proof terms irrelevant to computation, are removed during ex-
traction, leaving the informative terms as the extracted program. It
should be noted that our inverse transformation is not in general
possible for other realisability systems, e.g., the one for the Calcu-
lus of Constructions in [15]. That is, it is not the case in general
that having a realiser of a proposition implies that the proposition
has a proof. Realisability in such systems can be used to show con-
sistency of axioms — a proposition may not be provable, but can
be postulated as an axiom consistently if it can be shown to be
realisable. Our use of realisability terminology reflects that our de-
velopment started from applying the notion to interpret ornamental-
algebraic ornaments, but our development does not intend to follow
faithfully those of the existing realisability theories and clearly de-
viates from those systems.

7. Future work
General ornament composition is a natural goal to pursue. A quick
example that requires general ornament composition is finite lists,
which are lists guaranteed to be shorter than a certain length:

data FList (A : Set) : Nat→ Set where
fnil : ∀ {m}→ FList (suc m)
fcons : A→∀ {m}→ FList m→ FList (suc m) .

The datatype comes out of composing the ornaments ListO A and
FinO, neither of which is algebraic. One particular difficulty we
encounter when trying to define general ornament composition is

that the new index set is a pullback, which is awkward to deal
with. Also the implementation of integrate for general ornament
composition is conceivably more complex. These should just be
technical difficulties, though, and do not seem to detract from the
feasibility of general ornament composition.

Before we commit ourselves to the implementation of general
ornament composition, we may first consider increasing the expres-
sive power of datatype descriptions and ornaments. For example, to
define sorted lists without also indexing the type with a lower bound
requires induction-induction [13]:

mutual
data SList′ : Set where

snil′ : SList′

scons′ : (x : Nat) (xs : SList′)→ x� xs→ SList′

data � (y : Nat) : SList′→ Set where
nil : y� snil′

cons : ∀ {x xs b}→ y≤ x→ y� scons′ x xs b .

To talk about this and other similar datatypes, first we need to
expand the universe to include codes for datatypes defined by
induction-induction (or induction-recursion [7]). Another example
is lists indexed with one of their prefixes:

data PList (A : Set) : List A→ Set where
pnil : PList []
pcons-[] : (x : A)→∀ {xs}→ PList xs→ PList []
pcons-:: : (x : A)→∀ {xs}→ PList xs→ PList (x ::xs) .

It is possible to use the ornament

PListO : (A : Set)→Orn (List A) ! bListO Ac
PListO A =

σ Bool (false7→ say (ok [])
true 7→ σ A λx 7→ ∆ (List A) λxs 7→

ask (ok xs)∗
∆ Bool (false7→ say (ok [])

true 7→ say (ok (x ::xs))))

which, in the cons case, inserts a boolean just before saying the
index, which can be either [] or x ::xs, depending on the boolean.
However, it is desirable to make the ornament reflect the fact that
the native declaration has three constructors rather than two. To do
so, we need to be able to refine the type Bool for the outermost σ to
some three-element type. This requires expansion of the ornament
language.

As with McBride’s implementation of ornaments, we imple-
ment the realisability transformation in Agda just for experiment-
ing with the idea, and do not intend to actually structure Agda pro-
grams with the combinators. To make the realisability transforma-
tion practically usable, it may have to be built into the language
(along with ornaments) and supported by the development environ-
ment, allowing, e.g., automatic insertion of the transformation and
inference of the datatype-generic parameters, or at least providing
specific interactive commands to invoke the transformation, so the
programmer need not bother with the details.

Theoretically, we may wish to get rid of the implementation
details of datatype descriptions and ornaments, and examine all the
concepts in terms of a cleaner mathematical semantics, like the one
presented by Atkey, Johann, and Ghani [2]. Ornaments themselves
now have an interesting compositional structure, so it is possible
to develop an algebra of ornaments. Moreover, the correspondence
between ornaments and realisability predicates looks like a subject
ideally deserving a categorical treatment. We hope that our work
will someday find a counterpart in the mathematical theory of
datatypes, so it can be better characterised and understood.

Acknowledgements
We would like to thank Pierre-Évariste Dagand for referring us to
Bernardy’s idea, Shin-Cheng Mu for having the first discussion
on this work with the first author, Liang-Ting Chen for suggest-
ing the example of prefix-indexed lists, Jean-Philippe Bernardy and
Fredrik Nordvall Forsberg for providing invaluable comments, and
especially Conor McBride for sharing with us in the first place his
unpublished work on ornaments. Meetings of the Reusability and
Dependent Types project and Algebra of Programming research
group greatly helped the development of our ideas. The first author
is supported by the University of Oxford Clarendon Fund Schol-
arship, and both authors by the UK Engineering and Physical Sci-
ences Research Council project Reusability and Dependent Types.

References
[1] T. Altenkirch and C. McBride. Generic programming within depen-

dently typed programming. In IFIP TC2/WG2.1 Working Conference
on Generic Programming, pages 1–20. Kluwer, B.V., 2003.

[2] R. Atkey, P. Johann, and N. Ghani. When is a type refinement an
inductive type? In M. Hofmann, editor, Foundations of Software
Science and Computational Structures, volume 6604 of Lecture Notes
in Computer Science, pages 72–87. Springer-Verlag, 2011.

[3] J.-P. Bernardy. A Theory of Parametric Polymorphism and an Appli-
cation. PhD thesis, Chalmers University of Technology, 2011.

[4] J.-P. Bernardy and M. Lasson. Realizability and parametricity in
pure type systems. In M. Hofmann, editor, Foundations of Software
Science and Computation Structures, volume 6604 of Lecture Notes
in Computer Science, pages 108–122. Springer-Verlag, 2011.

[5] R. Bird and O. de Moor. Algebra of Programming. Prentice-Hall,
1997.

[6] J. Chapman, P.-É. Dagand, C. McBride, and P. Morris. The gentle
art of levitation. In International Conference on Functional Program-
ming, ICFP ’10, pages 3–14. ACM, 2010.

[7] P. Dybjer. A general formulation of simultaneous inductive-recursive
definitions in type theory. Journal of Symbolic Logic, 65(2):525–549,
June 1998.

[8] J. Gibbons. Fission for program comprehension. In T. Uustalu, editor,
Mathematics of Program Construction, volume 4014 of Lecture Notes
in Computer Science, pages 162–179. Springer-Verlag, July 2006.

[9] S. C. Kleene. On the interpretation of intuitionistic number theory.
Journal of Symbolic Logic, 10(4):109–124, December 1945.

[10] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
[11] C. McBride. Ornamental algebras, algebraic ornaments. To appear in

Journal of Functional Programming.
[12] S. Monnier and D. Haguenauer. Singleton types here, singleton types

there, singleton types everywhere. In Programming Languages meets
Program Verification, PLPV ’10, pages 1–8. ACM, 2010.

[13] F. Nordvall Forsberg and A. Setzer. Inductive-inductive definitions.
In A. Dawar and H. Veith, editors, Computer Science Logic, volume
6247 of Lecture Notes in Computer Science, pages 454–468. Springer-
Verlag, 2010.

[14] U. Norell. Dependently typed programming in Agda. In P. Koopman,
R. Plasmeijer, and D. Swierstra, editors, Advanced Functional Pro-
gramming (AFP 2008), volume 5832 of Lecture Notes in Computer
Science, pages 230–266. Springer-Verlag, 2009.

[15] C. Paulin-Mohring. Extracting Fω ’s programs from proofs in the
Calculus of Constructions. In Principles of Programming Languages,
pages 89–104. ACM, Jan. 1989.

[16] P. Wadler. Theorems for free! In Functional Programming Languages
and Computer Architecture, pages 347–359. ACM, 1989.

	1 Dependently typed programming in Agda
	2 Datatype ornamentation
	3 The Dutch National Flag problem
	4 Internalism and externalism
	5 Thesis proposal
	Appendix A The final version of the internalist solution to the Dutch National Flag problem
	Appendix B From intuitionistic type theory to dependently typed programming
	1 Notion of computation in type theory
	2 Elimination vs. pattern matching
	3 Datatype externalism vs. internalism
	4 Intensional vs. extensional equality

	Appendix C Modularising inductive families
	1. Introduction
	2. A recapitulation of datatype ornaments
	3. A realisability interpretation of ornamental-algebraic ornaments
	4. A first step towards ornament composition
	5. Discussion
	6. Related work
	7. Future work

