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Abstract
Dependently typed programmers are encouraged to use inductive
families to integrate constraints with data construction. Different
constraints are used in different contexts, leading to different ver-
sions of datatypes for the same data structure. Modular implemen-
tation of common operations for these structurally similar datatypes
has been a longstanding problem. We propose a datatype-generic
solution based on McBride’s datatype ornaments [11], exploiting
an isomorphism whose interpretation borrows ideas from realis-
ability. Relevant properties of the operations are separately proven
for each constraint, and after the programmer selects several con-
straints to impose on a basic datatype and synthesises an inductive
family incorporating those constraints, the operations can be rou-
tinely upgraded to work with the synthesised inductive family.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

General Terms Design, Languages, Theory

Keywords Dependently Typed Programming, Inductive Families,
Datatype-Generic Programming

1. Introduction
Dependently typed programmers are encouraged to use inductive
families, i.e., datatypes with fancy indices, to integrate various
constraints with data construction. Correctness proofs are built into
and manipulated simultaneously with the data, and in ideal cases
correct programs can be written in blissful ignorance of the proofs.
We might characterise this approach as internalist, suggesting that
data constraints are internalised. In contrast, the more traditional
approach which favours using only basic datatypes and expressing
constraints through separate predicates on those datatypes might be
described as externalist.

The internalist approach easily leads to an explosion in differ-
ently indexed versions of the same data structure. For example, as
well as ordinary lists, in different contexts we may need vectors
(lists indexed with their length), sorted lists, or sorted vectors, end-
ing up with four slightly different but structurally similar datatypes.
The problem, then, is how the common operations are implemented
for these different versions of the datatype. Current practice is to
completely reimplement the operations for each version, causing
serious code duplication and dreadful reusability. The externalist
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approach, in contrast, responds to this problem very well. We would
have only one basic list type, with one predicate stating that a list
has a certain length and another predicate asserting that a list is
sorted. The list type is upgraded to the vector type, the sorted list
type, or the sorted vector type by simply pairing the list type with
the sortedness predicate, the length predicate, or the pointwise con-
junction of the two predicates. The common operations are imple-
mented for ordinary lists only, and their properties regarding or-
dering or length are separately proven and invoked when needed.
Can we somehow introduce this beneficial compositionality to in-
ternalism as well? Yes, we can! There is an isomorphism between
externalist and internalist datatypes to be exploited.

To illustrate, let us go through a small case study about upgrad-
ing a function on natural numbers. The internalists use the follow-
ing datatype to characterise the finite numbers, which are natural
numbers bounded above by a certain number.

data Fin : Nat→ Set where
fzero : {m : Nat}→ Fin (suc m)
fsuc : {m : Nat}→ Fin m→ Fin (suc m)

We can be explicit about how we regard finite numbers as natural
numbers by defining a forgetful map.

forgetF : ∀ {m}→ Fin m→ Nat
forgetF fzero = zero
forgetF (fsuc i) = suc ( forgetF i)

To represent the same type, externalists would first define a greater-
than relation for natural numbers,

data > : Nat→ Nat→ Set where
base : {m : Nat}→ suc m > zero
step : {m n : Nat}→ m > n→ suc m > suc n ,

and then use the dependent pair type Σ Nat (λn 7→m> n), an object
of which is a natural number n paired with a proof that m > n. We
have an isomorphism between the two types,

Fin m ∼= Σ Nat (λn 7→ m > n) ,

witnessed by

ℜF : ∀ {m}→ (i : Fin m)→ m > forgetF i
ℜF fzero = base
ℜF (fsuc i) = step (ℜF i)

and

ℜ
−1
F : ∀ {m}→ (n : Nat)→ m > n→ Fin m

ℜ
−1
F .zero base = fzero

ℜ
−1
F .(suc ) (step gt) = fsuc (ℜ−1

F gt) .

Now suppose that we have some function f ′ : Nat → Nat, and
additionally that we can prove externally that f ′ preserves upper
bounds (in other words, is non-increasing):

f ′-bound : ∀ {m n}→ m > n→ m > f ′ n .
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Then we can upgrade f ′ to work with finite numbers by exploiting
the isomorphism:

fF : ∀ {m}→ Fin m→ Fin m
fF i = ℜ

−1
F ( f ′ ( forgetF i)) ( f ′-bound (ℜF i)) .

The input finite number i : Fin m is split into the underlying nat-
ural number forgetF i : Nat and a corresponding proof ℜF i : m >
forget i. The natural number is then processed by f ′ and the proof
by f ′-bound, before the results are integrated back into a finite num-
ber by way of ℜ

−1
F .

Further suppose that we need parity information about f ′. The
externalists would define a function to compute the parity of a
natural number,

parity : Nat→ Bool
parity zero = false
parity (suc n) = not (parity n) ,

and use the type Σ Nat (λn 7→ parity n ≡ b) (where ≡ is the
propositional equality type) for those natural numbers of parity b.
The internalists would define a new datatype

data PNat : Bool→ Set where
pzero : PNat false
psuc : {b : Bool}→ PNat b→ PNat (not b) ,

and use PNat b for the same set of natural numbers. Assume f ′
preserves parity, i.e., we can prove

f ′-parity : ∀ {n b}→ parity n≡ b→ parity ( f ′ n)≡ b .

Following the same recipe, by exploiting the isomorphism

PNat b ∼= Σ Nat (λn 7→ parity n≡ b)

witnessed by

forgetP : ∀ {b}→ PNat b→ Nat
forgetP pzero = zero
forgetP (psuc j) = suc ( forgetP j)

ℜP : ∀ {b}→ ( j : PNat b)→ parity (forgetP j)≡ b
ℜP pzero = refl
ℜP (psuc j) rewrite ℜP j = refl

and

ℜ
−1
P : ∀ {b}→ (n : Nat)→ parity n≡ b→ PNat b

ℜ
−1
P zero refl = pzero

ℜ
−1
P (suc n) refl = psuc (ℜ−1

P n refl) ,

we can again upgrade f ′ to work with PNat:

fP : ∀ {b}→ PNat b→ PNat b
fP j = ℜ

−1
P ( f ′ ( forgetP j)) ( f ′-parity (ℜP j)) .

Finally, consider finite numbers with parity information. The
externalists would simply put the two predicates together and get
the type Σ Nat (λn 7→ (m > n)× (parity n ≡ b)) for the natural
numbers bounded above by m and of parity b. The internalists
would define yet another datatype

data PFin : Nat→ Bool→ Set where
pfzero : ∀ {m}→ PFin (suc m) false
pfsuc : ∀ {m b}→ PFin m b→ PFin (suc m) (not b)

and use PFin m b for the same set of natural numbers. We still have
an isomorphism

PFin m b ∼= Σ Nat (λn 7→ (m > n)× (parity n≡ b))

witnessed by

forgetPF : ∀ {m b}→ PFin m b→ Nat
forgetPF pfzero = zero
forgetPF (pfsuc k) = suc ( forgetPF k)

ℜPF-l : ∀ {m b}→ (k : PFin m b)→ m > forgetPF k
ℜPF-l pfzero = base
ℜPF-l (pfsuc k) = step (ℜPF-l k)

ℜPF-r : ∀ {m b}→ (k : PFin m b)→ parity ( forgetPF k)≡ b
ℜPF-r pfzero = refl
ℜPF-r (pfsuc k) rewrite ℜPF-r k = refl

and

ℜ
−1
PF : ∀ {m b}→ (n : Nat)→ m > n→ parity n≡ b→ PFin m b

ℜ
−1
PF .zero base refl = pfzero

ℜ
−1
PF .(suc ) (step gt) refl = pfsuc (ℜ−1

PF gt refl) ,

and the isomorphism can again be used to upgrade f ′ to work
with PFin, but this time the proof part reuses the existing proofs
f ′-bound and f ′-parity:

fPF : ∀ {m b}→ PFin m b→ PFin m b
fPF k = ℜ

−1
PF ( f ′ ( forgetPF k))

( f ′-bound (ℜPF-l k)) ( f ′-parity (ℜPF-r k)) .

Had we implemented fF and fP directly instead of exploiting the
isomorphisms, it would have been much less straightforward to
synthesise fPF from them. It is thanks to the isomorphism maps
ℜ and ℜ−1 that we can routinely synthesise fF and fP from corre-
sponding externalist proofs, and — more interestingly — that we
can develop fPF modularly, reusing those externalist proofs. The
reusability problem is thus reduced to writing the isomorphisms,
and the good news is that the isomorphisms can be synthesised
datatype-generically. Acquiring the power of datatype-generic pro-
gramming, we can even synthesise PFin from the ingredients used
to make Fin and PNat out of Nat, revealing the same composi-
tional structure of the internalist types corresponding to that of their
externalist brethren.

Outline of this paper. Our work is heavily based on McBride’s
datatype ornaments [11], which provide a datatype-generic lan-
guage in which to talk about the relationship among structurally
similar datatypes. McBride’s work is summarised in Section 2. An
ornament describes how to upgrade a basic datatype to a fancier
one, often embedding some constraints into data construction. Then
an interpretation based on realisability is given in Section 3: Given
an ornament, objects of the basic datatype are considered as incom-
plete proofs of the fancier datatype, and the information needed to
restore a complete proof from an incomplete one is stated by the
realisability predicate induced by the ornament. With the interpre-
tation, we are enabled to think about composition of ornaments,
and thus indexed datatypes with multiple constraints, in terms of
pointwise conjunction of realisability predicates. As an initial ex-
periment, in Section 4 we consider the special case where one of
the two ornaments being composed is algebraic. We prove that
the pointwise conjunction of the realisability predicates induced by
the component ornaments is isomorphic to the realisability pred-
icate induced by the composite ornament, and demonstrate how
this helps to write functions on indexed datatypes incorporating
multiple constraints in a modular style. Section 5 discusses how
the interpretation connects internalism and externalism, and how
we might exploit this connection to structure our libraries. Sec-
tion 6 compares ours with previous work, and finally Section 7
presents some possible future directions. We have implemented our
ideas in Agda [14], source available at http://www.cs.ox.ac.
uk/people/hsiang-shang.ko/OAOAOO/.
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2. A recapitulation of datatype ornaments
To state the realisability interpretation generically, first we need a
datatype-generic framework for talking about the relationship be-
tween structurally similar datatypes. Central to datatype-generic
programming is the idea that the structure of datatypes can be
coded as first-class entities and thus become ordinary parameters to
programs. The same idea is also found in Martin-Löf’s Type The-
ory [10], in which a set of codes for datatypes is called a universe (à
la Tarski), and there is a decoding function translating codes to ac-
tual types. Type theory being the foundation of dependently typed
languages, universe construction can be implemented directly in
such languages, so datatype-generic programming becomes just or-
dinary programming in the dependently typed world [1].

McBride’s seminal work on datatype ornaments [11] is ideally
suited to our purposes. What he did was to construct a universe in
Agda, i.e., a datatype whose inhabitants are codes to be translated
into actual types, with generic fold and induction for decoded types,
and define another datatype whose inhabitants — called ornaments
— explain how to “patch” a code to a richer one but retaining the
basic structure. For example, a list is a Peano-style natural number
whose successor nodes are decorated with elements, and a vector is
a list whose type is indexed with its length. Ornaments are designed
to encode these two kinds of addition of information: decoration
(element insertion) and refinement (index upgrade). Consequently,
induced by every ornament is a forgetful map erasing the added
information from an object of the ornamented datatype and recov-
ering an object of the raw datatype. For example, the forgetful map
induced by the ornamentation from natural numbers to lists is just
length, which discards the elements associated with the cons nodes.
The forgetful map is a fold, and the algebra of the fold is called the
ornamental algebra, as it is induced by an ornament. Conversely,
every algebra induces an algebraic ornament, which provides a sys-
tematic way to index the type of an object with the result of the fold
of the algebra applied to that object. The vector type is a typical ex-
ample — it arises from the algebraic ornamentation of lists which
indexes the type of a list with its length.

Datatype descriptions. Concretely, McBride used the datatype

data Desc (I : Set) : Set1 where
say : I→Desc I
σ : (S : Set)→ (S→Desc I)→Desc I
ask ∗ : I→Desc I→Desc I

as the universe. A term of type Desc I describes an inductive family
of type I → Set by specifying how its data are constructed: The
first constructor say i marks the end of a description and delivers
data at index i; the second constructor σ S D inserts an element of
type S on which the remaining description D may depend; the third
constructor ask i ∗D recursively requests data at index i and then
continues with D. For example, the code for the type of natural
numbers is

NatD : Desc>
NatD = σ Bool (false7→ say tt

true 7→ ask tt∗ say tt) ,

where > is a one-element type whose only constructor is tt, and
false7→ true 7→ is a function imitating dependent case expressions,

false7→ true7→ : {P : Bool→ Set1}→
P false→ P true→ (b : Bool)→ P b

(false 7→ p true7→ q) false = p
(false 7→ p true7→ q) true = q .

The description NatD describes exactly how to construct a Peano-
style natural number: We choose one constructor out of two by
giving a boolean value; if it is false, the construction is complete
and the result is delivered at the trivial index tt; otherwise it is

true, in which case we recursively ask for a natural number before
delivering the result.

To translate a description of type Desc I to an actual type, first
we decode it to an endofunctor on I→ Set.

[[ ]] : {I : Set}→Desc I→ (I→ Set)→ I→ Set
[[say i]] X i′ = i≡ i′
[[σ S D]] X i′ = Σ S λ s 7→ [[D s]] i′
[[ask i∗D]] X i′ = X i× [[D]] i′

Then we can take the least fixed point of the decoded functor by the
following native inductive datatype:

data µ {I : Set} (D : Desc I) : I→ Set where
〈 〉 : ∀ {i}→ [[D]] (µ D) i→ µ D i .

If we introduce a notation for functions on I→ Set,

⇒ : {I : Set}→ (I→ Set)→ (I→ Set)→ Set
X ⇒ Y = ∀ {i}→ X i→ Y i ,

we see that 〈 〉 : [[D]] (µ D) ⇒ µ D has the familiar form of an
algebra for the functor [[D]], which is in fact the initial algebra. So
the type of natural numbers, Nat, is obtained by decoding NatD.1

Nat : Set
Nat = µ NatD tt

The decoded type Nat being a native inductive type, we can define
functions on such natural numbers by pattern matching, albeit a bit
cryptically, like

pred : Nat→ Nat
pred 〈false, refl〉 = zero
pred 〈true,n, refl〉 = n

where zero = 〈false, refl〉 : Nat. But later when we need to define
operations and state properties for all the types encoded by the uni-
verse, it is necessary to have a generic fold operator parametrised
by the codes:

fold : {I X : Set} {D : Desc I}→ ([[D]] X ⇒ X)→ µ D⇒ X .

There is also a generic induction operator, which is more powerful
and subsumes generic fold, but fold is much easier to use when the
full power of induction is not required. The implementation details
of the two operators are not essential to our exposition and hence
are omitted from this paper.

Ornaments. Next we define the ornaments. An ornament is a
“relative” description which is written with respect to another de-
scription and marks changes relative to the latter. One of the two
kinds of information expressed in ornaments is refinement: how to
promote the I-indices in an I-description to J-indices with respect
to an index erasure function e : J→ I — the new J-indices appear-
ing in an ornament must be erasable by e to the original I-indices.
The following inverse-image datatype helps to enforce this require-
ment:

data −1 {I J : Set} (e : J→ I) : I→ Set where
ok : ( j : J)→ e −1 (e j) .

If we have a value of type e −1 i, then we are guaranteed to be
able to extract from it a value j such that e j is definitionally
equal to i. The ornaments are then defined as a datatype indexed
by descriptions of type Desc I. Its first three constructors mirror
those of Desc I, refining I-indices to J-indices, while the fourth
constructor ∆ provides the second kind of ornamental information

1 A typographical convention: Type and data constructors introduced by
native data declarations are typeset in sans serif, while other terms like
functions, variables, etc. are typeset in italics. So the Nat we saw in
Section 1 is a native datatype, whereas Nat here is a decoded datatype.



on decoration, signalling insertion of a new element on which the
trailing ornament may depend.

data Orn {I : Set} (J : Set) (e : J→ I) : Desc I→ Set1 where
say : {i : I}→ e −1 i→Orn J e (say i)
σ : (S : Set) {D : S→Desc I}→

(∀ s→Orn J e (D s))→Orn J e (σ S D)
ask ∗ : {i : I}→ e −1 i→

∀ {D}→Orn J e D→Orn J e (ask i∗D)
∆ : (S : Set) {D : Desc I}→

(S→Orn J e D)→Orn J e D

For example, the ornament

ListO : Set→Orn> id NatD
ListO A =

σ Bool (false7→ say (ok tt)
true 7→ ∆ A λ 7→ ask (ok tt)∗ say (ok tt))

describes the ornamentation from natural numbers to lists. It looks
very much like a description except that the indices are wrapped
in ok and the ∆ should have been σ . We get these differences
because ListO A is a description relative to NatD: The new indices
have to prove that they respect id by wrapping themselves in ok
and ∆ is used in place of σ to indicate that the element is not
originally in NatD. Generically, an ornament of type Orn J e D can
of course be decoded into an “absolute” description of type Desc J
by unwrapping the J-indices and translating ∆ to σ :

b c : ∀ {I J e} {D : Desc I}→Orn J e D→Desc J
bsay (ok j)c = say j
bσ S Oc = σ S λ s 7→ bO sc
bask (ok j)∗Oc = ask j ∗bOc
b∆ S Oc = σ S λ s 7→ bO sc .

So the decoded description bListO Ac expands to

σ Bool (false7→ say tt
true 7→ σ A λ 7→ ask tt∗ say tt)

as expected, which can then be decoded to the list type List A =
µ bListO Ac tt.

An ornament O : Orn J e D gives rise to an ornamental algebra
ornAlg O : [[bOc]] (µ D ·e)⇒ (µ D ·e) which erases elements added
by ∆ and demotes the indices. (The · operator is function compo-
sition.) First we define a polymorphic restructuring map erasing
information added by ∆,

erase : ∀ {I J e} {D : Desc I} (O : Orn J e D) {X}→
[[bOc]] (X · e)⇒ [[D]] X · e

erase (say (ok j)) refl = refl
erase (σ S O) (s, ds) = s, erase (O s) ds
erase (ask (ok j)∗O) (d,ds) = d, erase O ds
erase (∆ S O) (s, ds) = erase (O s) ds ,

and then the ornamental algebra is defined by

ornAlg : ∀ {I J e} {D : Desc I} (O : Orn J e D)→
[[bOc]] (µ D · e)⇒ (µ D · e)

ornAlg O ds = 〈erase O ds〉 .

Folding with the ornamental algebra gives us the forgetful map

forget : ∀ {I J e} {D : Desc I} (O : Orn J e D)→
µ bOc ⇒ (µ D · e)

forget O = fold (ornAlg O) .

For example, the length of a list is computed by

length : ∀ {A}→ List A→ Nat
length {A} = forget (ListO A) .

Algebraic ornaments. Being first-class data, ornaments can be
generated systematically. McBride proposed a class of ornaments

induced by algebras: Given D : Desc I and an algebra φ : [[D]] J⇒ J,
the algebraic ornament induced by φ is defined by

algOrn : {I : Set} {J : I→ Set}→
(D : Desc I) (φ : [[D]] J⇒ J)→Orn (Σ I J) proj1 D

algOrn (say i) φ = say (ok (i,φ refl))
algOrn (σ S D) φ = σ S λ s 7→ algOrn (D s) (Λ φ s)
algOrn {J = J} (ask i∗D) φ =

∆ (J i) λ j 7→ ask (ok (i, j))∗algOrn D (Λ φ j) ,

where Λ is the currying operator. It is perhaps easier to understand
algebraic ornaments in a specialised scenario. Suppose we are
given f : A→ B→ B and e : B, which constitute an algebra for
folding a list of type List A. The algebraic ornamentation of List A
induced by that algebra would lead to the following datatype, where
the new indices and elements are framed.

data AlgList : B → Set where
[] : AlgList e

:: : (x : A) {b : B} (xs : AlgList b )→ AlgList ( f x b)

If we temporarily ignore the framed parts, we see that an AlgList is
basically still a list. The difference is that the index of an AlgList
is guaranteed to be the result of folding the underlying list using
the given algebra: The new index for the type of [] is e, which is
the result of folding []; for :: , a new element b : B is inserted
before the recursive node xs for storing the index which has been
inductively computed for xs and can be assumed to be the result
of folding xs, so the final index f x b is the result of folding x ::xs.
In the generic implementation of algOrn, the tuple to be fed to the
algebra φ is revealed one component at a time in each step of the
case analysis, so φ acts as an accumulating parameter, accepting the
component revealed in each step with the help of Λ, and emitting
the final result when the say case is reached and the final component
of the tuple, refl, is fed to it. Additionally, in the ask case where
we encounter a recursive node, a new element is inserted by ∆

for storing the index j that has been inductively computed for that
node.

An example is vectors, which are lists indexed by the result of
length, which is a fold whose algebra is ornAlg (ListO A), so the
ornamentation from lists to vectors is algebraic:

VecO : (A : Set)→Orn (>×Nat) proj1 bListO Ac
VecO A = algOrn bListO Ac (ornAlg (ListO A)) .

It expands to

σ Bool (false7→ say (ok (tt, zero))
true7→ σ A λ 7→ ∆ Nat λn 7→

ask (ok (tt, n))∗ say (ok (tt, suc n)))

where suc = λn 7→ 〈true,n, refl〉 : Nat → Nat. The decoded type
Vec A n = µ bVecO Ac (tt, n) is essentially the same datatype deliv-
ered by the following native data declaration:2

data Vec (A : Set) : Nat→ Set where
[] : Vec A zero
:: : (x : A) {n : Nat} (xs : Vec A n)→ Vec A (suc n) .

An algebraically ornamented datatype does not carry more in-
formation than the raw datatype, but simply exposes some known
knowledge in the index, namely the value obtained by folding the

2 Frequently we translate decoded datatypes into native data declarations
in this paper, but it is only for the purpose of exposition — the decoded
datatypes have no formal connection with the natively declared datatypes
in Agda (as suggested by the use of different fonts). It is hoped that in
future dependently typed languages, native data declarations will become
syntactic sugar for codes for datatypes, so the distinction between native
datatypes and decoded datatypes will disappear [6].



underlying data. Hence there is not only a forgetful map from the
ornamented datatype to the raw datatype, as induced by any orna-
ment, but also a remembering map converting the raw datatype to
the ornamented datatype, computing the index on the fly. The two
maps are inverse to each other, meaning that the algebraically or-
namented datatype and the raw datatype really are isomorphic. The
remembering map can be defined generically,

remember :
∀ {I J} (D : Desc I) (φ : [[D]] J⇒ J)
{i} (x′ : µ D i)→ µ balgOrn D φc (i, fold φ x′) ,

whose implementation is by generic induction and is omitted here.
The type of remember states what the index would be when raw

data are converted to algebraically ornamented data, namely the
result of folding the raw data. Conversely, when algebraically or-
namented data are converted to raw data, the recomputation lemma
states that the forgotten index can be recovered by folding the raw
data.

recomputation :
∀ {I J} (D : Desc I) (φ : [[D]] J⇒ J)
{ij : Σ I J} (x : µ balgOrn D φc ij)→

fold φ (forget (algOrn D φ) x)≡ proj2 ij

The implementation is again by generic induction and is omitted.
Algebraically ornamented datatypes provide an internalist way

of constructing an object specified by requiring the result of folding
that object to be a predetermined value. Suppose we are asked to
construct

x′ : µ D i such that fold φ x′ ≡ j .

Instead of constructing x′ directly and proving afterwards that the
specification is satisfied, we can construct an ornamented object

x : µ balgOrn D φc (i, j)

and set

x′ = forget (algOrn D φ) x : µ D i .

Then the recomputation lemma says exactly that x′ satisfies the
specification. This construction method is central to the realisability
interpretation we are proposing.

3. A realisability interpretation of
ornamental-algebraic ornaments

From now on, we focus on what we might call ornamental-
algebraic ornaments, i.e., algebraic ornaments induced by alge-
bras that are themselves ornamental algebras; these can be given
an intuitive interpretation, taking inspiration from the theory of re-
alisability. In the Curry-Howard world, we are familiar with what
it means for a proof term to prove a proposition, i.e., to inhabit a
type — the term is related to the type by the typing meta-relation.
Compare this with the realisability view, under which we say a
term x′ realises (instead of proves) a proposition ϕ when x′ is re-
lated to ϕ by some relation defined in the language, traditionally
written x′ 
 ϕ . The predicate λx′ 7→ x′ 
 ϕ is called the realis-
ability predicate for ϕ , so saying that x′ realises ϕ is equivalent
to saying that x′ satisfies the realisability predicate for ϕ . When
x′ 
 ϕ holds, the term x′ is called a realiser of the proposition ϕ .
The relation 
 being defined in the language, a proof of x′ 
 ϕ

exists as a proof term, which we call a realisability proof. In his
original realisability paper [9], Kleene hinted that a realiser is “an
incomplete communication of a more specific statement,” and a
realisability proof provides “items as may be necessary to com-
plete the communication.” This is close to our interpretation: A
realiser is an incomplete proof that can somehow be derived from
a complete proof without losing the basic structure of the latter. A

realisability predicate states what information needs to be supplied
if we wish to augment an incomplete proof to a complete one, and
a realisability proof provides the missing information.

For example, let us consider lists as realisers of the vector type.
That is, lists are incomplete vectors, in the sense that a list is a
vector whose length information is forgotten. To synthesise a vector
of length n out of a list, we need to prove that the list has length n.
One way to state this is to use the inductively defined relation

data Length {A : Set} : Nat→ List A → Set where
nil : Length zero []

cons : ∀ {x n xs }→

Length n xs → Length (suc n) (x ::xs) .

The predicate Length n on lists is the realisability predicate which,
when satisfied by a list, states that the list can be upgraded to a
vector of length n. That is, we can establish an isomorphism

Vec A n ∼= Σ (List A) (Length n)

which allows a list that can be proved to have length n to be con-
verted to a vector of length n or vice versa. If we temporarily ignore
the framed parts of Length, we see that it is just the vector type, so
an inhabitant of Length n xs is actually a vector of length n whose
type is indexed by the underlying list xs. Since the underlying list
is computed by the forgetful map, we see that Length is the alge-
braic ornamentation of Vec A using the ornamental algebra from
vectors to lists. The use of the ornament language here is a hint of
datatype-genericity.

So let us go generic: An ornament O : Orn J e D of a description
D : Desc I states how to augment the datatype µ D : I → Set to
a richer datatype µ bOc : J → Set, and induces a forgetful map
forget O : µ bOc ⇒ µ D · e. If we regard µ bOc as the complete
type, then µ D is incomplete with respect to µ bOc and serves as
the type of potential realisers of µ bOc.3 A complete object of type
µ bOc j can be compressed by forget O to an incomplete one of
type µ D (e j) but retaining the basic structure. Conversely, given
an incomplete object x′ : µ D (e j), can we reconstruct a complete
object x : µ bOc j such that x has the same basic structure as x′,
i.e., forget O x ≡ x′ is provable? This is exactly the scenario where
the construction method supported by algebraically ornamented
datatypes can be applied, since forget O = fold (ornAlg O). So the
answer is: Yes, if we can construct

r : µ balgOrn bOc (ornAlg O)c ( j, x′) ,

then by setting

x = forget (algOrn bOc (ornAlg O)) r : µ bOc j

we are assured by the recomputation lemma that

forget O x
≡ fold (ornAlg O) x
≡ fold (ornAlg O) (forget (algOrn bOc (ornAlg O)) r)
≡ {- recomputation bOc (ornAlg O) r -}

proj2 ( j, x′)
≡ x′ .

3 A µ D object is not necessarily a realiser of µ bOc, as it may not satisfy
the realisability predicate. We will nevertheless simply call µ D the realiser
type, instead of the “potential realiser type.”



The predicate λx′ 7→ µ balgOrn bOc (ornAlg O)c ( j, x′) thus acts
as the realisability predicate. Consequently we define

rpOrn : ∀ {I J e} {D : Desc I} (O : Orn J e D)→
Orn (Σ J (µ D · e)) proj1 bOc

rpOrn O = algOrn bOc (ornAlg O)

and
[ ] 
 : ∀ {I J e} {D : Desc I}→

( j : J) (x′ : µ D (e j)) (O : Orn J e D)→ Set
[ j ] x′ 
 O = µ brpOrn Oc ( j, x′) .

This is interpreted as the type of a proof that x′ can be completed
to yield an object of µ bOc. We also define x′ 
 O = [ ] x′ 
 O so
the index j can be omitted when it can be inferred.

Since a realisability predicate is implemented as an algebraic or-
namentation of the complete type, it is isomorphic to the complete
type — more precisely, to be called a type a realisability predicate
needs to be applied to a realiser, so the complete type is isomor-
phic to the dependent pair of the realiser type and the realisability
predicate. The isomorphism can be nicely interpreted in terms of
realisability: Given a complete object, a realiser can be obtained by
applying forget O to the object, and the corresponding realisability
proof is produced by

ℜ : ∀ {I J e} {D : Desc I} (O : Orn J e D)
{ j} (x : µ bOc j)→ forget O x 
 O

ℜ O x = remember bOc (ornAlg O) x .

We call this direction of the isomorphism the realisability transfor-
mation, because it helps to switch from the “proving” view to the
“realising” view. The inverse transformation metaphorically com-
bines a realiser and its realisability proof, whose computation de-
pends only on the latter:

ℜ−1 : ∀ {I J e} {D : Desc I} (O : Orn J e D)
{ j} (x′ : µ D (e j)) (r : x′ 
 O)→ µ bOc j

ℜ−1 O x′ r = forget (rpOrn O) r .

That ℜ and ℜ−1 are indeed inverse to each other can be proven by
recomputation and the fact that forget and remember are inverses.
For example, one inverse property we will need is

realiser-recovery :
∀ {I J e} {D : Desc I} (O : Orn J e D)→
(x′ : µ D (e j)) (r : x′ 
 O)→ forget O (ℜ−1 O x′ r)≡ x′

realiser-recovery O x′ r = recomputation bOc (ornAlg O) r ,

which says that the realiser extracted from a complete object syn-
thesised from a realiser x′ is just x′ again.

To recap: By defining an ornament, we specify a complete type
relative to a realiser type, and the corresponding realisability predi-
cate can be immediately derived from that ornament. From this fol-
low the realisability transformation and its inverse transformation
that allow us to break a complete object into a realiser and a cor-
responding realisability proof, or recover a complete object from a
realisability proof, which depends on a realiser.

Examples. Let us turn back to the example in which lists are
viewed as realisers of the vector type, which arises from the or-
nament VecO A. The derived realisability predicate is

Length : ∀ {A}→ Nat→ List A→ Set
Length {A} n xs = [tt, n ] xs 
 VecO A ,

which translates to the Length datatype given previously.
A slightly confusing but classic example is given by the or-

nament ListO A. The complete type specified by this ornament is
List A, and the realiser type is Nat — a natural number is an in-
complete list, with the elements missing. The derived realisability
predicate n 
 ListO A is just Vec A n, meaning that to augment a

natural number n to a list of A’s we need to supply a vector of type
Vec A n, i.e., n elements of type A. It may seem strange at first that
to construct a list, we end up constructing a vector, which is “heav-
ier” than a list. But in fact we are asking not just for any list, but a
list whose length is n. By constructing the list as a vector indexed
by n, the requirement that the list constructed should have length n,
i.e., that it has the same basic structure as n, is met by construction.
A metaphor for this is that n is scaffolding to guide the construction
of a list, and a vector is the finished construction still with the scaf-
fold. To get the list constructed, we remove the scaffold by ℜ−1,
i.e., forget.

For an example other than vectors, assume that a less-than-or-
equal-to relation ≤ on natural numbers is suitably defined, and
consider the following datatype for sorted lists of natural numbers
indexed by a lower bound:

data SList : Nat→ Set where
snil : ∀ {b}→ SList b
scons : (x : Nat)→∀ {b}→ b≤ x→ SList x→ SList b .

Coding sorted lists as an ornamentation of lists,

SListO : Orn Nat ! bList Natc
SListO = σ Bool (false7→ ∆ Nat (λb 7→ say (ok b))

true 7→ σ Nat (λx 7→
∆ Nat (λb 7→ ∆ (b≤ x) (λ 7→

ask (ok x)∗ say (ok b))))) ,

where != λ 7→ tt : ∀ {A}→A→>, we obtain SList = µ bSListOc.
The derived realisability predicate is

Sorted : Nat→ List Nat→ Set
Sorted n xs = [n ] xs 
 SListO Nat ,

which translates to
data Sorted : Nat→ List Nat→ Set where

nil : ∀ {b}→ Sorted b []
cons : ∀ {x b}→ b≤ x→

∀ {xs}→ Sorted x xs→ Sorted b (x ::xs) .

It is an inductively defined predicate stating that a list is sorted and
bounded below by a number. If we can prove that a list satisfies this
predicate, then the list can be cast as a sorted list bounded below.

For an example other than lists, recall the finite numbers pre-
sented in Section 1, which can be coded as an ornamentation of
natural numbers:

FinO : Orn Nat ! NatD
FinO =

σ Bool (false7→ ∆ Nat (λn 7→ say (ok (suc n)))
true7→ ∆ Nat (λn 7→ ask (ok n)∗ say (ok (suc n)))) .

The decoded type of finite numbers is thus Fin = µ bFinOc. The
derived realisability predicate translates to the greater-than relation
also presented in Section 1 — to say a natural number n is a finite
number bounded by m, what we need to prove is exactly m > n.

Realisability predicates for algebraic ornaments. The example
regarding lists as realisers of the vector type may have made the
reader feel uneasy — the derived realisability predicate Length
looks rather heavyweight. Given that an algebraic ornament does
not add extra information to a datatype, shouldn’t the realisability
predicate be more lightweight and sometimes even trivially satisfi-
able? Indeed, the realisability predicate for an algebraic ornament
should simply amount to an equality, e.g., length xs≡ n for the or-
nament VecO A instead of Length n xs, and this can be proved gener-
ically.

For one direction, we wish to prove

AOE : ∀ {I J} (D : Desc I) (φ : [[D]] J⇒ J)
{ij : Σ I J} {x′ : µ D (proj1 ij)}→
(r : [ ij ] x′ 
 algOrn D φ)→ fold φ x′ ≡ proj2 ij .



Note that the realiser x′ is ornamentally two levels away from the
realisability proof r, but since the two ornaments involved are both
algebraic, x′ and r really are isomorphic. The goal type looks quite
similar to the conclusion of the recomputation lemma at the first
level, so we try to apply recomputation to a complete object, the
natural choice being ℜ−1 (algOrn D φ) x′ r. We supply the proof
term

recomputation D φ (ℜ−1 (algOrn D φ) x′ r) (1)

as the result, whose type

fold φ (forget (algOrn D φ) (ℜ−1 (algOrn D φ) x′ r))≡ proj2 ij

requires a bit of tweaking, though: The argument to fold φ should
be just x′ to match the goal type, which is achieved by rewriting
with

realiser-recovery (algOrn D φ) x′ r . (2)

In Agda, we first use with to put the term (1) into the context
and then rewrite the context with (2) before delivering the term
left in the context as the result, whose type has been appropriately
rewritten. This programming pattern will be used a lot.

The other direction requires us to prove

AOE−1 : ∀ {I J} (D : Desc I) (φ : [[D]] J⇒ J)
{ij : Σ I J} {x′ : µ D (proj1 ij)}→
fold φ x′ ≡ proj2 ij→ [ ij ] x′ 
 algOrn D φ .

Promoting x′ two levels up should do the job, so we give the term

ℜ (algOrn D φ) (remember D φ x′)

as the result after tweaking its type, which is originally

[proj1 ij, fold φ x′ ]

forget (algOrn D φ) (remember D φ x′) 
 algOrn D φ .

Since forget is a left inverse to remember and we have an assump-
tion fold φ x′ ≡ proj2 ij, the type can be rewritten as our goal.

Incidentally, implementation of remember and recomputation
can be made symmetric under the realisability view, i.e., if the
combinators ℜ, ℜ−1, AOE, and AOE−1 are taken as primitives.
First consider remember: To promote x′ : µ D i to an object of type

µ balgOrn D φc (i, fold φ x′) ,

we apply the inverse realisability transformation ℜ−1 to x′ and a
corresponding realisability proof, which can simply be a proof of
fold φ x′ ≡ fold φ x′ because of AOE−1.

remember :
∀ {I J} (D : Desc I) (φ : [[D]] J⇒ J)
{i} (x′ : µ D i)→ µ balgOrn D φc (i, fold φ x′)

remember D φ x′ = ℜ−1 (algOrn D φ) x′ (AOE−1 D φ refl)

As for recomputation, we are given a complete object x and asked
to produce the equality form of a realisability proof, which we can
easily obtain by applying the realisability transformation ℜ to x and
then resorting to AOE.

recomputation :
∀ {I J} (D : Desc I) (φ : [[D]] J⇒ J)
{ij : Σ I J} (x : µ balgOrn D φc ij)→

fold φ (forget (algOrn D φ) x)≡ proj2 ij
recomputation D φ x = AOE D φ (ℜ (algOrn D φ) x)

We see that remember is ℜ−1 whose argument is produced by
AOE−1, while recomputation is ℜ whose result is modified by
AOE. Hence recomputation and remember are actually the realis-
ability transformation and the inverse transformation, specialised
for algebraic ornaments.

Function upgrade. After we define an ornament to get a fancier
type, naturally we want to port functions working on the original
type to the fancier type. For example, we should be able to upgrade
list append to vector append. Our strategy is based on realisers and
realisability predicates for function types. In type theory, a proof of
an implication ϕ → ψ takes a proof of ϕ to a proof of ψ , while in
the realisability world the role of proofs are taken by realisers, so a
realiser of ϕ → ψ takes a realiser of ϕ to a realiser of ψ , i.e., it is
a function f ′ : ϕ ′ → ψ ′ where ϕ ′ and ψ ′ are the type of potential
realisers of ϕ and ψ . But in order to justify that f ′ really takes
realisers to realisers, we need to prove that when an input x′ : ϕ ′ is
a realiser, i.e., we are given a proof of x′ 
 ϕ , the output f ′ x′ : ψ ′

is also a realiser, i.e., we can produce a proof of f ′ x′ 
 ψ . This
justification is thus a proof of type

(x′ : ϕ
′)→ x′ 
 ϕ → f ′ x′ 
 ψ ,

which is defined to be the realisability predicate for ϕ → ψ . Back
in the context of ornaments, this suggests that to upgrade a func-
tion, we can consider it as a realiser of a function type between
ornamented types, and obtain a complete function by supplying a
suitable realisability proof.

For the example of upgrading list append to vector append, our
goal is to write the append function for vectors

vappend : ∀ {A m n}→ Vec A m→ Vec A n→ Vec A (m+n)

in terms of list append

++ : ∀ {A}→ List A→ List A→ List A .

Given xs : Vec A m and ys : Vec A n, to produce a vector of type
Vec A (m + n), we invoke ℜ−1 and thereby split the goal into
two parts — the realiser and the realisability proof. The realiser,
which is a list, is obtained by extracting the two underlying lists
xs′ = forget (VecO A) xs and ys′ = forget (VecO A) ys and append-
ing them. For the realisability proof, because of AOE−1, the proof
obligation is reduced to the equality

length (xs′++ys′)≡ m+n .

We know length is a list homomorphism, i.e.,

length (xs′++ys′)≡ length xs′+ length ys′ for all xs′ and ys′ .

The type of the realisability proof for list append is merely a
restatement of the fact above:
append-length :
∀ {A} (xs′ ys′ : List A) {m n}→
length xs′ ≡ m→ length ys′ ≡ n→ length (xs′++ys′)≡ m+n .

And the two equality premises of append-length are discharged by
applying ℜ and AOE to xs and ys. The whole Agda translation is
shown below.

vappend : ∀ {A m n}→ Vec A m→ Vec A n→ Vec A (m+n)
vappend {A} xs ys = ℜ−1 (VecO A) (xs′++ys′)

(AOE−1 bListO Ac φ (append-length xs′ ys′ eq1 eq2))
where xs′ = forget (VecO A) xs

ys′ = forget (VecO A) ys
φ = ornAlg (ListO A)
eq1 = AOE bListO Ac φ (ℜ (VecO A) xs)
eq2 = AOE bListO Ac φ (ℜ (VecO A) ys)

4. A first step towards ornament composition
The inverse realisability transformation combines a realisability
proof with a realiser to get a complete object. For example, we
combine length information with a list to get a vector, or we com-
bine a proof of the Sorted predicate with a list to get a sorted list.
It is then natural to ask: Can we combine both the length infor-
mation and the sortedness proof with a list, to get a sorted vector?



To clarify, the datatypes involved are shown in the following di-
agram, ornaments drawn as double-headed arrows and the realis-
ability predicates framed. It can be read as “the datatype List Nat is
revised to the datatype SList b by the ornament SListO” and so on.

List Nat

SList b SVec b n Vec Nat n

Sorted b SLen b n Length n

SListO

SVecO

VecO Nat

We know that to promote a list xs to a sorted vector, we need
to provide a realisability proof of type SLen b n xs, but what we
are given are proofs of Sorted b xs and Length n xs. Nevertheless,
intuitively we see that Sorted b xs× Length n xs is isomorphic to
SLen b n xs, i.e., the realisability predicate for the ornament SVecO
is the composition (pointwise conjunction) of the realisability pred-
icates for SListO and VecO Nat. Since realisability predicates are
derived from ornaments, we are led to seeking a way of regarding
SVecO as the composition of SListO and VecO Nat. Our hypothe-
sis, then, is that the realisability predicate for a composite ornament
amounts to the composition (pointwise conjunction) of the realis-
ability predicates for the component ornaments.

As an initial experiment, in this paper we consider only com-
position of two ornaments one of which is algebraic, which has
a simpler implementation. Let D : Desc I, O : Orn J e D, and φ :
[[D]] K ⇒ K. The composition of O and algOrn D φ will be called
algOrn′ O φ . The datatypes involved are shown in the following
diagram. We omit the names of ornaments on the arrows that rep-
resent them, because the names are shown in the datatypes at the
end of the arrows. A dashed arrow indicates an algebraic ornament.

µ D

µ bOc µ balgOrn D φc

µ balgOrn′ O φc

The function algOrn′ does the same thing as algOrn except that it
works on an ornament — algOrn′ O φ patches O algebraically so
the resulting ornament on D has new indices which are the result
of folding with φ . We call it an algebraic ornament-ornament.
(Fortunately this rather ugly name will appear only once more.)

algOrn′ : {I J : Set} {K : I→ Set} {e : J→ I} {D : Desc I}
(O : Orn J e D) (φ : [[D]] K⇒ K)→
Orn (Σ J (K · e)) (e ·proj1) D

algOrn′ (say (ok j)) φ = say (ok ( j,φ refl))
algOrn′ (σ S O) φ = σ S λ s 7→ algOrn′ (O s) (Λ φ s)
algOrn′ {K = K} {e} (ask (ok j)∗O) φ =

∆ (K (e j)) λk 7→ ask (ok ( j,k))∗algOrn′ O (Λ φ k)
algOrn′ (∆ S O) φ = ∆ S λ s 7→ algOrn′ (O s) φ .

Each of the three ornaments appearing in the diagram induces its
own realisability predicate, and we are going to show that a real-
isability proof for algOrn′ O φ can be projected to a realisability
proof for O or for algOrn D φ , or synthesised by integrating realis-
ability proofs for O and algOrn D φ .

Projections. First we deal with the left and right projection,

project-l :
∀ {I J K e} {D : Desc I} (O : Orn J e D) (φ : [[D]] K⇒ K)
{jk : Σ J (K · e)} {x′ : µ D (e (proj1 jk))}→
(r : [ jk ] x′ 
 algOrn′ O φ)→ [proj1 jk ] x′ 
 O

project-r :
∀ {I J K e} {D : Desc I} (O : Orn J e D) (φ : [[D]] K⇒ K)
{jk : Σ J (K · e)} {x′ : µ D (e (proj1 jk))}→
(r : [ jk ] x′ 
 algOrn′ O φ)→ [ (e× id) jk ] x′ 
 algOrn D φ ,

where × is overloaded to mean ( f × g) (x, y) = ( f x, g y). It is
difficult to prove the projections directly by generic induction on r.
Rather, we will first complete the ornament diagram by defining
two difference ornaments from which the decoded datatypes are
isomorphic to µ balgOrn′ O φc (the isomorphisms are shown as
two-way arrows below),

µ D

µ bOc µ balgOrn D φc

µ bdiffOrn-l O φc µ balgOrn′ O φc µ bdiffOrn-r O φc

and then route a realisability proof through the appropriate forgetful
maps, isomorphisms, and remembering maps to get the proof we
want. Let us look at the left part of the completed diagram, to which
the induced realisability predicates have been added.

µ D


 O µ bOc

µ bdiffOrn-l O φc µ balgOrn′ O φc


 algOrn′ O φ

The left difference ornament is an algebraic ornament defined by

diffOrn-l : ∀ {I J K e} {D : Desc I}
(O : Orn J e D) (φ : [[D]] K⇒ K)→
Orn (Σ J (K · e)) proj1 bOc

diffOrn-l O φ = algOrn bOc (φ · erase O) .

One direction of the isomorphism between µ bdiffOrn-l O φc and
µ balgOrn′ O φc is iso1,

iso1 : ∀ {I J K e} {D : Desc I}
(O : Orn J e D) (φ : [[D]] K⇒ K)→
µ balgOrn′ O φc ⇒ µ bdiffOrn-l O φc

iso1 O φ = fold (〈 〉 · iso1-cast O φ) ,

where iso1-cast is a polymorphic restructuring map like erase,
which is actually just an identity map.

iso1-cast : ∀ {I J K e} {D : Desc I}
(O : Orn J e D) (φ : [[D]] K⇒ K) {X}→
[[balgOrn′ O φc]] X ⇒ [[bdiffOrn-l O φc]] X

iso1-cast (say (ok j)) φ refl = refl
iso1-cast (σ S O) φ (s, xs) = s, iso1-cast (O s) (Λ φ s) xs
iso1-cast (ask (ok j)∗O) φ (k, x, xs) = k, x,

iso1-cast O (Λ φ k) xs
iso1-cast (∆ S O) φ (s, xs) = s, iso1-cast (O s) φ xs

The other direction of the isomorphism, iso2, has the same imple-
mentation. Each ornament induces a forgetful map, and addition-
ally a remembering map if it is algebraic, as shown in Figure 1.



µ D

r1 : 
 O µ bOc

µ bdiffOrn-l O φc µ balgOrn′ O φc

r : 
 algOrn′ O φ

forget

forget

forget

remember

ℜ−1
ℜ

ℜ

ℜ−1

iso1

iso2

Figure 1. (Commutative) diagram of ornament-induced maps and
the isomorphism maps iso1 and iso2.

In the diagram there is a path of maps along which we can take
a realisability proof for algOrn′ O φ to one for O: Starting from a
composite realisability proof

r : [ jk ] x′ 
 algOrn′ O φ ,

the term

r1 = ℜ O (forget (diffOrn-l O φ) (iso1 O φ

(ℜ−1 (algOrn′ O φ) x′ r)))

is the desired left-component realisability proof, but its type again
needs tweaking. Its original type is

[proj1 jk ]

forget O (forget (diffOrn-l O φ) (iso1 O φ

(ℜ−1 (algOrn′ O φ) x′ r))) 
 O ,

while our goal type is

[proj1 jk ] x′ 
 O .

The composition of the two forgets and iso1, however, can be
reduced to just one big forget (algOrn′ O φ). This can be proved
by two applications of fold fusion [5], and ultimately reduces to
naturality [16] of the underlying restructuring maps — erase and
iso1-cast — and the fact that

erase O (erase (diffOrn-l O φ) (iso1-cast O φ xs))

≡ erase (algOrn′ O φ) xs

holds for all xs, which can be easily proved by induction on O. Thus
the type we are left with is

[ proj1 jk ] forget (algOrn′ O φ) (ℜ−1 (algOrn′ O φ) x′ r)
O ,

and realiser-recovery says that the realiser is just x′. Thus we reach
our goal type and finish the implementation of the left projection.

As for the right projection, after defining the right difference
ornament,

diffOrn-r : ∀ {I J K e} {D : Desc I}
(O : Orn J e D) (φ : [[D]] K⇒ K)→
Orn (Σ J (K · e)) (e× id) balgOrn D φc

diffOrn-r (say (ok j)) φ = say (ok ( j, refl))
diffOrn-r (σ S O) φ = σ S λ s 7→ diffOrn-r (O s) (Λ φ s)
diffOrn-r {K = K} {e} (ask (ok j)∗O) φ =

σ (K (e j)) λk 7→ ask (ok ( j, k))∗diffOrn-r O (Λ φ k)
diffOrn-r (∆ S O) φ = ∆ S λ s 7→ diffOrn-r (O s) φ ,

the implementation is completely symmetric and is omitted here.

Integration. Now we look at integration:

integrate :
∀ {I J K e} {D : Desc I} (O : Orn J e D) (φ : [[D]] K⇒ K)
{jk} {x′ : µ D (e (proj1 jk))}→
(r1 : [proj1 jk ] x′ 
 O) (r2 : [ (e× id) jk ] x′ 
 algOrn D φ)→
[ jk ] x′ 
 algOrn′ O φ .

Had we considered general ornament composition, integration
would have been much harder to implement, because ingredients
from both component realisability proofs are essential and really
need to be integrated by hard work. But since we are considering
algebraic ornament-ornaments, the left difference ornament is al-
gebraic and thus induces a remembering map, completing a path
of maps along which we can smuggle a realisability proof for O as
one for algOrn′ O φ — again see Figure 1. (A realisability proof
for algOrn D φ is nevertheless still needed, which provides infor-
mation about the index, as we will see later.) Starting from the
left-component realisability proof

r1 : [proj1 jk ] x′ 
 O ,

the composite realisability proof we deliver is

r = ℜ (algOrn′ O φ) (iso2 O φ

(remember bOc (φ · erase O) (ℜ−1 O x′ r1))) ,

which has type

[proj1 jk, fold (φ · erase O) (ℜ−1 O x′ r1) ]

forget (algOrn′ O φ) (iso2 O φ

(remember bOc (φ ·erase O) (ℜ−1 O x′ r1)))
 algOrn′ O φ ,

while our goal type is

[ jk ] x′ 
 algOrn′ O φ .

Comparing the two types, we see that we need to establish two
equalities,

fold (φ · erase O) (ℜ−1 O x′ r1)≡ proj2 jk (3)

and

forget (algOrn′ O φ) (iso2 O φ

(remember bOc (φ · erase O) (ℜ−1 O x′ r1)))≡ x′ . (4)

The left-hand side of the first equality (3) looks like the left-hand
side of realiser-recovery, but instead of fold (φ · erase O) what we
wish to see is forget O. Nevertheless, we see that fold (φ ·erase O) is
just fold φ lifted to work with µ bOc, so we can perform fission [8]
— the conceptual opposite of fusion — by proving that

fold (φ · erase O) x≡ fold φ (forget O x) for all x .

Hence the forget O coming out of the fission cancels out the ℜ−1

by realiser-recovery, reducing (3) to

fold φ x′ ≡ proj2 jk . (5)

This is where we need a realisability proof for algOrn D φ . In
the beginning we were also given the right-component realisability
proof

r2 : [ (e× id) jk ] x′ 
 algOrn D φ .

Notice that r2 is a realisability proof for an algebraic ornament,
so it can be transformed by AOE to a proof of an equality, which
is exactly (5). So the first equality is successfully discharged. As
for the second equality (4), we perform fission again to exchange
the big forget (algOrn′ O φ) composed with iso2 for two smaller
forgets, one of which cancels out the remember. The equality is



thus reduced to

forget O (ℜ−1 O x′ r1)≡ x′ ,

which is just an instance of realiser-recovery.

Example. Consider the function

insert : Nat→ List Nat→ List Nat
insert y 〈false, refl〉= y ::[]
insert y 〈true,x,xs, refl〉 with y≤? x
. . . | yes = y ::x ::xs
. . . | no = x :: insert y xs ,

which is used, for example, in insertion sort. (The function ≤?
compares two natural numbers, returning as a result either yes eq
or no neq where eq and neq are proof terms justifying the result.
Neither of the two proof terms is used in this basic version of insert,
however.) We know that insert y xs has one more element than xs,
i.e., we can prove

insert-length :
∀ y xs {n}→ length xs≡ n→ length (insert y xs)≡ suc n .

This is the realisability proof for upgrading insert to work with
vectors, i.e., to the function

vinsert : Nat→∀ {n}→ Vec Nat n→ Vec Nat (suc n) .

Also we know that insert produces a sorted list if the input list is
sorted, i.e., we can prove

insert-sorted :
∀ y xs {b}→ Sorted b xs→ Sorted (bu y) (insert y xs)

where bu y is the minimum of b and y. Again this serves as a
realisability proof for upgrading insert to work with sorted lists,
i.e., to the function

sinsert : (y : Nat)→∀ {b}→ SList b→ SList (bu y) .

Now suppose we wish to upgrade it to work with sorted vectors,

data SVec : Nat→ Nat→ Set where
nil : ∀ {b}→ SVec b zero
cons : (x : Nat)→∀ {b}→ b≤ x→

∀ {n}→ SVec x n→ SVec b (suc n) ,

which is described by the ornament

SVecO : Orn (Nat×Nat) ! bListO Natc
SVecO = algOrn′ SListO (ornAlg (ListO Nat)) .

This time, however, we do not need to prove repetitively and mono-
lithically that insert y xs is sorted and has length suc n if xs is
sorted and has length n; instead, we can reuse insert-length and
insert-sorted with the help of project-l, project-r, and integrate.
The function we wish to write is

svinsert :
(y : Nat)→∀ {b n}→ SVec b n→ SVec (bu y) (suc n) .

Assume that y : Nat and xs : SVec b n are given. We invoke the
inverse realisability transformation and supply insert y xs′, where
xs′ = forget SVecO xs, as the realiser, and we need to produce a cor-
responding realisability proof of type insert y xs′ 
 SVecO from a
realisability proof of type xs′ 
 SVecO. Since SVecO is a compos-
ite ornament, we can break the given composite realisability proof
into two component proofs with project-l and project-r, use them to
build two required component proofs independently, and integrate
the two independently built proofs to get the required composite
proof. The program is shown below.

svinsert : (y : Nat)→∀ {b n}→ SVec b n→ SVec (bu y) (suc n)
svinsert y xs = ℜ−1 SVecO (insert y xs′)

(integrate SListO φ

(insert-sorted y xs′ r1)
(AOE−1 bListO Natc φ

(insert-length y xs′ (AOE bListO Natc φ r2))))
where xs′ = forget SVecO xs

φ = ornAlg (ListO Nat)
r = ℜ SVecO xs
r1 = project-l SListO φ r
r2 = project-r SListO φ r

5. Discussion
The realisability interpretation in fact works for general algebraic
ornaments, ornamental-algebraic ornaments being a special case:
Given a description D : Desc I and an algebra φ : [[D]] J ⇒ J, the
type µ D is interpreted as the complete type, J as the realiser type,
and µ balgOrn D φc as the realisability predicate. Assuming that
x : µ D i is a complete object, the type of remember says that
fold φ x : J i satisfies the realisability predicate, so remember is
the realisability transformation, while the inverse transformation is
forget. ℜ and ℜ−1 are just remember and forget specialised for or-
namental algebras. The reason we introduced the realisability trans-
formation based on ornaments instead of algebras is that ultimately
we use the transformation to talk about ornament composition. It
is convenient to have the intuition that every ornament expresses
the relationship between a realiser type and a complete type and in-
duces a corresponding realisability predicate. Subsequently, com-
posing ornaments gives rise to a new and richer complete type, and
the induced realisability predicate can be decomposed into realis-
ability predicates for the component ornaments. Algebra-based in-
terpretation does not offer this intuition, because algebras do not
compose: For example, we can fold both a list and a tree to a nat-
ural number, say computing the number of elements, but it is not
obvious what composite datatype would arise in this situation.

More importantly, introducing the realisability interpretation in
terms of ornamental-algebraic ornaments brings out the correspon-
dence between internalism and externalism regarding constraint
composition. Under the realisability view, data and constraints are
separated into realisers and realisability predicates. This is exactly
externalism — realisers do not carry with them proofs that they are
indeed realisers. Multiple constraints simply correspond to multiple
realisability predicates applied to the same piece of data. For inter-
nalism, constraints are encoded in ornaments, and to express mul-
tiple constraints we use ornament composition. The realisability
transformation points out the correspondence between the two dif-
ferent ways of expressing constraints — ornaments for internalism
and realisability predicates for externalism: An ornament induces a
realisability predicate, which is the manifestation of the ornament
in the world of decoded datatypes, and moreover, composition of
realisability predicates mirrors composition of ornaments. A bridge
is thus formed between externalism and internalism, and subse-
quently, externalist modularity is brought into internalist datatypes.

It is worth noting that upgrading a function using the realisabil-
ity transformation does not really exempt us from reimplementing
the logic. For example, when we upgrade insert to work with sorted
lists, the realisability proof we need to supply is insert-sorted,
which takes one Sortedness proof and produces another. Sorted be-
ing isomorphic to SList, implementing insert-sorted is not so dif-
ferent from reimplementing insert for sorted lists. So what is the
difference? Let us temporarily change our perspective and consider
how we might synthesise svinsert from sinsert and vinsert, without
the help of the realisability transformation. We would get a sorted
list and a vector from the input sorted vector, feed them to sinsert



and vinsert separately, and combine the outputs to get a sorted vec-
tor as the final result. The main obstacle is that we cannot freely
integrate a sorted list with a vector to get a sorted vector, because
the underlying list of the sorted list may not be the same as that
of the vector. If we are able to guarantee that the sorted list and
the vector have the same underlying list, however, then the inte-
gration goes through, but it is awkward to express the guarantee.
It is by employing realisability predicates that this awkwardness
can be overcome. A realisability predicate exposes the underlying
data in the index, so by taking proofs of realisability predicates ap-
plied to the same index, our integrate function gets precisely the
guarantee that it needs. The ability to express the guarantee in this
elegant manner is a demonstration of the strength of internalism.
Thus the use of realisability predicates, which is central to exter-
nalist compositionality, can in fact be regarded as an application of
an internalist technique to solve the compositionality problem of
internalist datatypes.

Practically, how do we structure our libraries with the realisabil-
ity transformation for better reusability? As McBride suggested,
the datatypes should be delivered as codes and ornaments. The
datatypes on which an operation is defined should be as general
as possible, and other versions of the operation on more specialised
types should be implemented in the form of realisability proofs. For
example, insert should be defined for plain lists, and implemented
for sorted lists and vectors as a function on sortedness proofs and
length equalities respectively. Delivered in this way, then, insert
for sorted lists, vectors, and sorted vectors can all be derived rou-
tinely by the realisability transformation as we have seen. This is
the reusability and modularity offered by externalism. On the other
hand, some operations are best defined on more specialised types,
so preconditions can be cleanly expressed and manipulated. An ex-
ample is the safe lookup function

lookup : {A : Set}→ ∀ {n}→ Fin n→ Vec A n→ A
lookup fzero (x ::xs) = x
lookup (fsuc i) (x ::xs) = lookup i xs .

It is natural to define this function on vectors (instead of lists) and
use Fin (instead of Nat) as the index type, as the length constraint
is embedded in the indices of the types of the data and requires no
extra management, which is the advantage offered by internalism.
So here is the development pattern we have in mind: Once a rich
collection of ornaments are provided, programmers will have the
freedom to choose which constraints they wish to impose on a ba-
sic type, compose the relevant ornaments and decode the composite
ornament to a suitable inductive family T . Existing operations are
upgraded to work with T routinely by the realisability transforma-
tion. And then, operations specific to T can be programmed directly
on T , benefiting from the precision and convenience of program-
ming with inductive families.

6. Related work
Section 2 is a faithful albeit condensed summary of McBride’s orig-
inal implementation of ornaments [11], except for a few notational
changes. Our work is heavily based on algebraic ornaments and the
associated construction method. Ornamental-algebraic ornaments
have already appeared in McBride’s original paper, and in partic-
ular, the Length predicate was derived from the ornament VecO A,
which was one of our motivating examples. Also, a variant of less-
than-or-equal-to relation on natural numbers was derived using an
algebraic ornament by McBride, which led us to notice the similar-
ity between Fin and > .

The idea of viewing vectors as realisability predicates was pro-
posed by Bernardy [3, p 82], which refers to the realisability trans-
formation defined for pure type systems by Bernardy and Las-
son [4]. He started with the list type in which the element-type

parameter is marked as “first-level,” whereas the list type itself
is “second-level.” Applying the “projecting transformation,” which
removes first-level terms and demotes second-level terms to first-
level, the second-level type of lists is transformed to the first-
level type of natural numbers. And then, applying their realisability
transformation, the list type is transformed to a second-level vector
type indexed by first-level natural numbers. Our realisability inter-
pretation can be seen as a translation of his idea into the language of
ornaments without introducing levels: Our notion of complete ob-
jects and types would be second-level in Bernardy’s system, while
realisers and their types would be first-level. When applied to pro-
grams, their projecting transformation corresponds to our ornamen-
tal forgetful map. Due to the syntax-generic character of his trans-
formations, Bernardy was able to derive vector append effortlessly
from list append, and in particular deduce that, in the type of vector
append, the index of the resulting vector is the sum of the indices of
the two input vectors, because natural number addition is the (func-
tional) realiser extracted from list append. Extraction of functional
realisers from complete functions is not, and should not be, possi-
ble in our framework, however: The behaviour of a function taking
a complete object may depend essentially on the added informa-
tion, which is not available to a function taking only a realiser. For
example, a function of type List Nat→ List Nat may be defined to
compute the sum s of the input list and emit a list of length s whose
elements are all zero. We cannot hope to write a function of type
Nat→ Nat that reproduces the corresponding behaviour on natural
numbers. On the other hand, it is reasonable to project list append
to natural number addition, because list append is polymorphic and
cannot inspect the elements. Indeed, in Bernardy and Lasson’s sys-
tem, it is impossible to produce second-level terms by induction on
first-level terms, as the first-level terms are designed to be “compu-
tationally irrelevant” to second-level terms. This could be overcome
by, for example, employing singleton types [12] to link different
levels, but it can be inconvenient to do so explicitly. Our framework
does not embody computational irrelevance, and trades the ability
to derive polymorphic programs for simplicity and convenience.

The classic application of realisability in computing is program
extraction, e.g., in Coq [15]. Terms are marked either as “infor-
mative” or “non-informative,” and the non-informative terms, i.e.,
the proof terms irrelevant to computation, are removed during ex-
traction, leaving the informative terms as the extracted program. It
should be noted that our inverse transformation is not in general
possible for other realisability systems, e.g., the one for the Calcu-
lus of Constructions in [15]. That is, it is not the case in general
that having a realiser of a proposition implies that the proposition
has a proof. Realisability in such systems can be used to show con-
sistency of axioms — a proposition may not be provable, but can
be postulated as an axiom consistently if it can be shown to be
realisable. Our use of realisability terminology reflects that our de-
velopment started from applying the notion to interpret ornamental-
algebraic ornaments, but our development does not intend to follow
faithfully those of the existing realisability theories and clearly de-
viates from those systems.

7. Future work
General ornament composition is a natural goal to pursue. A quick
example that requires general ornament composition is finite lists,
which are lists guaranteed to be shorter than a certain length:

data FList (A : Set) : Nat→ Set where
fnil : ∀ {m}→ FList (suc m)
fcons : A→∀ {m}→ FList m→ FList (suc m) .

The datatype comes out of composing the ornaments ListO A and
FinO, neither of which is algebraic. One particular difficulty we
encounter when trying to define general ornament composition is



that the new index set is a pullback, which is awkward to deal
with. Also the implementation of integrate for general ornament
composition is conceivably more complex. These should just be
technical difficulties, though, and do not seem to detract from the
feasibility of general ornament composition.

Before we commit ourselves to the implementation of general
ornament composition, we may first consider increasing the expres-
sive power of datatype descriptions and ornaments. For example, to
define sorted lists without also indexing the type with a lower bound
requires induction-induction [13]:

mutual
data SList′ : Set where

snil′ : SList′

scons′ : (x : Nat) (xs : SList′)→ x� xs→ SList′

data � (y : Nat) : SList′→ Set where
nil : y� snil′

cons : ∀ {x xs b}→ y≤ x→ y� scons′ x xs b .

To talk about this and other similar datatypes, first we need to
expand the universe to include codes for datatypes defined by
induction-induction (or induction-recursion [7]). Another example
is lists indexed with one of their prefixes:

data PList (A : Set) : List A→ Set where
pnil : PList []
pcons-[] : (x : A)→∀ {xs}→ PList xs→ PList []
pcons-:: : (x : A)→∀ {xs}→ PList xs→ PList (x ::xs) .

It is possible to use the ornament

PListO : (A : Set)→Orn (List A) ! bListO Ac
PListO A =

σ Bool (false7→ say (ok [])
true 7→ σ A λx 7→ ∆ (List A) λxs 7→

ask (ok xs)∗
∆ Bool (false7→ say (ok [])

true 7→ say (ok (x ::xs))))

which, in the cons case, inserts a boolean just before saying the
index, which can be either [] or x ::xs, depending on the boolean.
However, it is desirable to make the ornament reflect the fact that
the native declaration has three constructors rather than two. To do
so, we need to be able to refine the type Bool for the outermost σ to
some three-element type. This requires expansion of the ornament
language.

As with McBride’s implementation of ornaments, we imple-
ment the realisability transformation in Agda just for experiment-
ing with the idea, and do not intend to actually structure Agda pro-
grams with the combinators. To make the realisability transforma-
tion practically usable, it may have to be built into the language
(along with ornaments) and supported by the development environ-
ment, allowing, e.g., automatic insertion of the transformation and
inference of the datatype-generic parameters, or at least providing
specific interactive commands to invoke the transformation, so the
programmer need not bother with the details.

Theoretically, we may wish to get rid of the implementation
details of datatype descriptions and ornaments, and examine all the
concepts in terms of a cleaner mathematical semantics, like the one
presented by Atkey, Johann, and Ghani [2]. Ornaments themselves
now have an interesting compositional structure, so it is possible
to develop an algebra of ornaments. Moreover, the correspondence
between ornaments and realisability predicates looks like a subject
ideally deserving a categorical treatment. We hope that our work
will someday find a counterpart in the mathematical theory of
datatypes, so it can be better characterised and understood.
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