Relational algebraic ornaments

Josh Ko & Jeremy Gibbons

Department of Computer Science University of Oxford

Workshop on Dependently Typed Programming Boston, MA, US, 24 September 2013 Workshop on Dependently Typed Programming Nijmegen, the Netherlands, 27 August 2011

Internalism Externalism

Internalism

++ : Vec A m → Vec A n → Vec A (m + n) [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys)

proof structure follows program structure

How far can internalism go?

Minimum Coin Change

d

¢

Richard Bird Oege de Moor Algebra of Programming

PRENTICE HALL INTERNATIONAL SERIES IN COMPUTER SCIENCE

C.A.R. HOARE SERIES EDITOR

tion lobal optimisation

A Pearson Education Print on Demand Edition

Algebra of Programming

Richard Bird and Oege De Moor

PEARSON Education

Relations

potentially partial and nondeterministic mappings (generalising functions)

$A \rightarrow B \rightarrow Set$

predicates on (subsets of) $A \times B$

 $R : A \rightarrow B \rightarrow Set relates a to b$ if R a b : Set is inhabited

Relations

potentially partial and nondeterministic mappings (generalising functions)

$A \rightarrow (B \rightarrow Set)$

functions from A to subsets of B

Relations

potentially partial and nondeterministic mappings (generalising functions)

A $\rightarrow B$

relational programs from A to B

R : A ---> B nondeterministically maps a to b if R a b : Set is inhabited inclusion ordered \cdot perm \leftarrow specification \supseteq {since flatten is a function} ordered \cdot flatten \cdot flatten $^{\circ} \cdot$ perm = {claim: ordered \cdot flatten = flatten \cdot inordered (see below)} flatten \cdot inordered \cdot flatten $^{\circ} \cdot$ perm = {converses} flatten \cdot (perm \cdot flatten \cdot inordered) $^{\circ}$

 $\supseteq \{fusion, for an appropriate definition of split\}$ flatten · ([nil, split°])°. towards an executable program

Converse

R : A \rightsquigarrow B = A \rightarrow B \rightarrow Set R $^{\circ}$ = flip R : B \rightsquigarrow A running R backwards

Relational folds

functionalrelationalf : $1 + A \times B \rightarrow B$ $S : 1 + A \times B \rightsquigarrow B$ fold f : List $A \rightarrow B$ $(S) : List A \rightsquigarrow B$

B = List A
S (inl _) = { [] }
S (inr (x , xs)) = { xs , x :: xs }
⇒ (S) computes a subsequence of its input

Converse of relational folds

well-founded unfolds (generating inductive data)

sum : List Nat ---> Nat

sum °: Nat ---> List Nat breaks n into a (finite) list summing to n

Minimisation

generate all possible results of T min $R \cdot \Lambda T$

choose a minimum under R

- T = the relation that nondeterministically breaks n into a list of coins representing n
- R = the length ordering on lists

Greedy Theorem

$$\min R \cdot \Lambda (S)^{\circ} S'$$

$$\supseteq ((\min Q \cdot \Lambda S^{\circ})^{\circ})^{\circ}$$

if there exists Q such that ...

the minimum coin change problem can be solved by repeatedly choosing the largest possible denomination

min $R \cdot \Lambda (S)^{\circ} \supseteq (S')^{\circ}$

p : Nat → List Coin $(S')^{\circ} n (p n)$ same structure Greedy Theorem $(min R \cdot \Lambda (S)^{\circ}) n (p n)$

Algebraic ornamentation

S: $1 + A \times B \longrightarrow B$

data AlgList S : $B \rightarrow Set$

AlgList S b \cong (xs : List A) × (S) xs b

```
S : 1 + A \times B \implies B
AlgList S b \cong (xs : List A) × (S) xs b
data AlgList S : B \rightarrow Set where
 nil : {b : B} \rightarrow S (inl tt) b \rightarrow
           AlgList S b
 cons : \{b : B\} \rightarrow
           (x : A) \rightarrow
           \{b' : B\} \rightarrow S(inr(x, b')) b \rightarrow
           AlgList S b' → AlgList S b
```

AlgList S' : Nat → Set
indexed by total value
the head of a nonempty list can only be
the largest possible denomination

greedy : (n : Nat) \rightarrow AlgList S' n

(S') (forget (greedy n)) n

p = forget ∘ greedy : Nat → List Coin

- greedy : (n : Nat) \rightarrow AlgList S' n
 - p = forget ∘ greedy : Nat → List Coin
 - (S′) (p n) n
 - \Rightarrow { converse }
 - (S′)°n (pn)
 - \Rightarrow { Greedy Theorem }
 - (min $R \cdot \Lambda (S)^{\circ}$) n (p n)

[Internalist type] derivation

Relational program derivation being one possible way