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Abstract
Dependently typed programming is hard, because ideally depen-
dently typed programs should share structure with their correctness
proofs, but there are very few guidelines on how one can arrive at
such integrated programs. McBride’s algebraic ornamentation pro-
vides a methodological advancement, by which the programmer
can derive a datatype from a specification involving a fold, such
that a program that constructs elements of that datatype would be
correct by construction. It is thus an effective method that leads the
programmer from a specification to a dependently typed program.
We enhance the applicability of this method by generalising alge-
braic ornamentation to a relational setting and bringing in relational
algebraic methods, resulting in a hybrid approach that makes es-
sential use of both dependently typed programming and relational
program derivation. A dependently typed solution to the minimum
coin change problem is presented as a demonstration of this hybrid
approach. We also give a theoretically interesting “completeness
theorem” of relational algebraic ornaments, which sheds some light
on the expressive power of ornaments and inductive families.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

Keywords dependently typed programming; inductive families;
program derivation; algebra of programming; greedy algorithms

1. Introduction
Dijkstra famously described the situation where a program is writ-
ten and then proved correct afterwards as “putting the cart before
the horse”, and argued that correctness proof and program should
“grow hand in hand” such that the proof can guide the develop-
ment of the program [8, 9]. Dependently typed programming is a
promising step towards this goal: Traditional functional program-
ming languages are enriched with expressive types capable of ex-
pressing strong specifications, and during program development the
type system can offer more hints and guarantees. In particular, we
are interested in programs that share structure with their correct-
ness proofs, so the programs and their proofs can be devised and
completed simultaneously [14]. We proposed to call such an ap-
proach internalism, suggesting that proofs are internalised in pro-
grams rather than being given separately [12].
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In essence, internalism is no more than a refinement of the in-
tuitive way in which we first learned to program, namely relying
on the semantic understanding of programs to guide the develop-
ment, but now aided by a more informative syntax. It is a novel
refinement, though — the novelty lies in the idea that a program
can carry a proof in its syntax implicitly. We programmers are un-
familiar with this idea, and consequently find it awkward to devise
such programs. In this respect, dependently typed programming is
indeed harder, not only because there are now proof obligations to
be formally discharged, but also because we are still in search of
program structures into which more of these proof obligations can
be embedded.

To reduce the problem a little: since program structures are
deeply influenced by their types (which is even more true for de-
pendently typed programming), we need more help with design-
ing types from which we can receive useful guidance when writ-
ing internalist programs. One important type structure we currently
have for internalism is inductive families [10], which enables pro-
grams to carry inductive proofs implicitly. The use of inductive
families is usually explained only through ad hoc examples, how-
ever, and a methodological treatment was absent until McBride
proposed datatype ornamentation for organising related inductive
families [15]. In particular, McBride proposed algebraic ornamen-
tation and an associated construction method: Suppose that we wish
to construct a function f : A→ T , where T is some inductive type,
that satisfies the specification fold φ ◦ f .

= g (where .
= denotes

extensional equality) for some function g : A→ B and algebra φ .
(McBride gave an example in which the function f we wish to
construct compiles arithmetic expressions into stack-machine pro-
grams. Compilation is correct if, for any arithmetic expression,
the result of executing the stack-machine program compiled from
that expression — which is done by a fold — matches the seman-
tics of the expression.) Rather than directly implementing f and
then proving its correctness, we synthesise from the definitions of
T and φ an inductive family T φ indexed by B and construct a func-
tion f φ : (a : A)→ T φ (g a), from which we can extract f and a
proof that it satisfies the specification. The definition of the induc-
tive family T φ is derived by algebraic ornamentation and carries
the specification in its structure, which can guide the construction
of f φ . This construction method is highly effective because it tells
us how to arrive at a useful internalist type from a specification
rather than improvising one and hoping that it will help. The spec-
ification targeted by the method does not seem too widely appli-
cable, though. Can we solve more complicated specifications with
this construction method?

A possible step forward is to consider the slightly more gen-
eral specification h ◦ f .

= g: this specification can be solved with
exactly the same construction method above if we can prove that
h .

= fold φ . Effective ways of carrying out such proofs — espe-
cially when h is written in point-free style — have been studied
by the program derivation community [4]. Experience with pro-
gram derivation suggests that we take one step further — to gen-

http://www.cs.ox.ac.uk/people/hsiang-shang.ko/
http://www.cs.ox.ac.uk/people/jeremy.gibbons/
http://www.cs.ox.ac.uk/
http://www.ox.ac.uk/
mailto:Hsiang-Shang.Ko@cs.ox.ac.uk
mailto:Jeremy.Gibbons@cs.ox.ac.uk


eralise to relations. With a relational language we can give more
powerful yet concise specifications, and can naturally talk about
program refinement with relational inclusion. And it seems natural
to also generalise algebraic ornamentation to accept relational alge-
bras, in the hope that relational program derivation can be smoothly
integrated with dependently typed programming through relational
algebraic ornamentation. We would start from a relational spec-
ification, manipulate the expression until it becomes a relational
fold, and then invoke relational algebraic ornamentation to synthe-
sise a datatype that offers useful type information during program
construction and guarantees correctness with respect to the original
specification once the program is constructed.

This paper reports on a successful initial experiment with the
above hybrid construction method integrating relational program
derivation and internalist programming, conducted in Agda [19,
20]. We import a part of the AoPA library [18] — which provides
facilities for encoding relational derivations in Agda — to the or-
nament framework [7, 12, 15] and generalise McBride’s algebraic
ornamentation to the relational setting (Section 3). (The ornament
framework is briefly recapped in Section 2.) Using relational alge-
braic ornamentation, we construct a program for the well-known
greedy algorithm for the minimum coin change problem from its
relational specification, and correctness of the program is jointly
guaranteed by the proof encoded in the program and a variant of
the Greedy Theorem given by Bird and de Moor [4, Chapter 10]
(Section 5). It also turns out that relational algebraic ornamentation
is theoretically interesting in its own right: we give a “complete-
ness theorem” stating that every ornament is a relational algebraic
ornament up to isomorphism, which sheds some light on the ex-
pressive power of ornaments and the computational meaning of in-
ductive families (Section 4). We discuss this hybrid approach and
the relationship between relational algebraic ornamentation and ex-
isting work on ornaments in Section 6.

The paper omits most low-level details of the datatype-generic
constructions for clarity. Our Agda code is included in the ACM
Digital Library as supplemental material.

2. Datatype descriptions and ornaments
In this section we give a high-level introduction to a universe [13]
for index-first datatypes [6] and a language of ornaments for relat-
ing structurally similar datatypes, presenting only examples rather
than datatype-generic definitions. For a full account, see our previ-
ous paper [12] and Dagand and McBride’s work [7].

Index-first datatypes and their descriptions. The notion of index-
first datatypes was first introduced by Chapman et al. [6] and a no-
tation for such datatypes was proposed by Dagand and McBride [7].
Below is our own adaptation [12] of Dagand and McBride’s nota-
tion. For an index-first datatype, rather than listing its constructors
along with their complete types like in Agda, we write the targeted
types first and determine from the indices of the types which con-
structors they offer. For simple datatypes, this does not make a
huge difference: For example, the following datatype declaration
(which is prefixed by the keyword indexfirst to be distinguished
from Agda datatype declarations) specifies that the type Nat of
natural numbers offers either the zero constructor or the suc con-
structor, the latter requiring an argument of type Nat, which is
given a name n.

indexfirst data Nat : Set where
Nat 3 zero | suc (n : Nat)

Let A : Set in what follows.1 The type List A of lists with elements
of type A is declared similarly.

1 We treat quantification in text (like A : Set here) like introducing a module
parameter, which subsequent definitions (like the declaration of List) can

indexfirst data List A : Set where
List A 3 [ ]

| :: (a : A) (as : List A)
The power of index-first datatypes only shows up in non-trivially
indexed datatype declarations, in which we can do pattern matching
on the indices. For example, the datatype Vec′ A of vectors, i.e., lists
indexed by their length, can be declared as follows:

indexfirst data Vec′ A : Nat→ Set where
Vec′ A zero 3 [ ]
Vec′ A (suc n) 3 :: (a : A) (as : Vec′ A n)

Vec′ A has an index of type Nat, on which we do pattern matching.
When the index is zero, the type Vec′ A zero only offers the nil
constructor; when the index is suc n for some n : Nat, the type
Vec′ A (suc n) only offers the cons constructor, which takes a head
element a : A and a tail vector as : Vec′ A n as arguments. Note that
the representation of a vector is as efficient as that of a list — there
is no information that needs to be stored in a cons node other than
the head and the tail. In general, with index-first datatypes, we can
directly express the detagging optimisation of inductive families
proposed by Brady et al. [5]. In contrast, Agda’s declaration of
vectors,

data Vec A : Nat→ Set where
nil : Vec A zero
cons : (a : A) (m : Nat) (as : Vec A m)→ Vec A (suc m)

if read literally, means that the cons nodes need to store the length
of the tail as well. This less efficient — but more generalisable —
declaration of vectors can also be written in index-first style:

indexfirst data Vec A : Nat→ Set where
Vec A n 3 nil (neq : n ≡ zero)

| cons (a : A) (m : Nat)
(as : Vec A m) (meq : n ≡ suc m)

Besides the field m storing the length of the tail, two more fields
neq and meq are inserted, demanding explicit equality proofs about
the indices. The vector datatype referred to in the rest of the paper
will be this more generalisable version (rather than the optimised
version Vec′).

Under the bonnet, we assume that there is a universe
Desc : (I : Set)→ Set1

for index-first datatypes, which is parametrised by an index set
I : Set of datatypes. Elements of Desc I are called datatype descrip-
tions. The datatype declarations of Nat, List A, and Vec A given
above are all assumed to be high-level presentations of datatype
descriptions: Nat is considered to be trivially indexed by the one-
element set > with sole element tt, so its declaration corresponds
to some code NatD : Desc>; List is also trivially indexed but has
a parameter of type Set, so its declaration corresponds to a fam-
ily of codes ListD : Set→ Desc >; Vec A is indexed by Nat and
has a parameter of type Set, so its declaration corresponds to some
VecD : Set→ Desc Nat. Datatype descriptions are decoded to ac-
tual types by the least fixed-point operator

µ : {I : Set}→Desc I→ (I→ Set)

so Nat, List A, and Vec A n are, in fact, sugared forms of µ NatD tt,
µ (ListD A) tt, and µ (VecD A) n. There are generic fold and
induction operators parametrised by descriptions, so we can write
datatype-generic programs and proofs that work for all datatypes
encoded in the universe. Here we give the type of the generic fold
operator: There is an operation on descriptions

F : {I : Set}→Desc I→ (I→ Set)→ (I→ Set)

refer to directly. To make it clear which parameters are referred to and how
they are used, we include the (explicit) parameters as part of the definitions
(like the declaration data List A : Set), deviating from Agda syntax.



which decodes a description to a base functor. Then the type of the
generic fold operator is

fold : {I : Set} {D : Desc I} {X : I→ Set}→
(F D X ⇒ X)→ (µ D ⇒ X)

where ⇒ is the type of families of functions between corre-
sponding types in two type families:
⇒ : {I : Set}→ (I→ Set)→ (I→ Set)→ Set

X ⇒ Y = ∀ {i}→ X i→ Y i

For example, the base functor decoded from ListD A is2

F (ListD A) : (>→ Set)→ (>→ Set)
F (ListD A) X = Σ LTag (λ{‘nil→>; ‘cons→ A × X tt})

where LTag is a two-element set for marking the nil and cons cases:
data LTag : Set where

‘nil : LTag
‘cons : LTag

and the fold operator on lists would essentially be
fold {>} {ListD A} : {X : >→ Set}→

(F (ListD A) X ⇒ X)→
(µ (ListD A) ⇒ X)

fold f [ ] = f (‘nil,tt)
fold f (a :: as) = f (‘cons,a, fold f as)

assuming that dependent pattern matching can be performed on the
high-level presentations of index-first datatypes.

Ornaments. The three datatypes Nat, List A, and Vec A are ev-
idently related: a list is a natural number whose cons nodes are
decorated with elements of A, and a vector is a list enriched with
length information. Such relationship can be seen by “overlaying”
one datatype declaration on the other: for example, the declaration
of List A differs from that of Nat only in an extra field (a : A) in the
cons constructor, and the declaration of Vec A differs from that of
List A in that (i) the index set is changed from> to Nat, (ii) the cons
constructor has two extra fields, and (iii) the index of the recursive
position is specified to be m. Such differences between datatype
declarations are encoded as ornaments. Whenever there is an or-
nament between two datatypes, there is a forgetful function from
the more informative datatype to the other, erasing information ac-
cording to the ornament’s specification of datatype differences. For
example, we have a forgetful function from lists to natural numbers
that discards elements associated with cons nodes — i.e., it com-
putes the length of a list — and another one from vectors to lists
which removes all length information from a vector and returns the
underlying list.

Ornaments constitute the second underlying universe:
Orn : {I J : Set} (e : J→ I) (D : Desc I) (E : Desc J)→ Set1

An ornament O : Orn e D E specifies the difference between the
more informative description E and the basic description D, and is
parametrised by an “index erasure” function e from the index set
of E to that of D. The ornament gives rise to a forgetful function

forget O : µ E ⇒ (µ D ◦ e)
For example, there are families of ornaments

NatD-ListD : (A : Set)→Orn ! NatD (ListD A)
and

ListD-VecD : (A : Set)→Orn ! (ListD A) (VecD A)
(where ! = const tt) that encode the differences between the list-
like datatypes. The function

forget (NatD-ListD A) {tt} : List A→ Nat

2 This is an abuse of Agda syntax to state the type of F (ListD A) and what
it computes to, rather than a real Agda definition.

data InvImage {I J : Set} (e : J→ I) : I→ Set where
ok : (j : J)→ InvImage e (e j)

und : {I J : Set} {e : J→ I} {i : I}→ InvImage e i→ J
und (ok j) = j -- underlying value of an inverse image object

record ./ {I J K : Set} (e : J→ I) (f : K→ I) : Set where
constructor ,
field
{i} : I
j : InvImage e i
k : InvImage f i

pull : {I J K : Set} {e : J→ I} {f : K→ I}→ e ./ f → I
pull = ./ . i

Figure 1. Definitions of inverse images and set-theoretic pull-
backs.

computes the length of a list, and the function
forget (ListD-VecD A) : ∀ {n}→ Vec A n→ List A

computes the underlying list of a vector.

Ornamental descriptions. Ornaments arise between existing
datatype descriptions. The typical scenario of using ornaments,
however, is first modifying a base description into a more informa-
tive one and then specifying an ornament between the two descrip-
tions. Ornamental descriptions are introduced to combine the two
steps into one:

OrnDesc : {I : Set} (J : Set) (e : J→ I) (D : Desc I)→ Set1

An ornamental description
OD : OrnDesc J e D

is like a new description of type Desc J, but is written relative to
a base description D such that not only can we extract the new
description
bODc : Desc J

but we can also extract an ornament from the base description D to
the new description
dODe : Orn e D bODc

An ornamental description is a convenient way to specify a new
datatype that has an ornamental relationship with an existing one;
it might be thought of as simultaneously denoting the new de-
scription and the ornament — the floor and ceiling brackets b_c
and d_e are added to resolve ambiguity. For example, let 6A :
A→ A→ Set be an ordering on A and declare a datatype of ordered
lists (parametrised by A and 6A ) indexed by a lower bound under
this ordering:

indexfirst data OrdList A 6A : A→ Set where
OrdList A 6A b
3 nil
| cons (a : A) (leq : b6A a) (as : OrdList A 6A a)

This datatype can be thought of as being decoded from an orna-
mental description

OrdListOD A 6A : OrnDesc A ! (ListD A)
which inserts the field leq and refines the index of the recursive
position to a. That is, the underlying description for OrdList is
bOrdListOD A 6A c : Desc A

(so OrdList A 6A b desugars to µ bOrdListOD A 6A c b), and
dOrdListOD A 6A e : Orn ! (ListD A) bOrdListOD A 6A c

is the ornament from lists to ordered lists.



Promotion predicates and isomorphisms. A more complete view
of ornaments is given by a particular class of isomorphisms induced
by ornaments. For example, consider the following datatype:

indexfirst data Ordered A 6A : A→ List A→ Set where
Ordered A 6A b [ ] 3 nil
Ordered A 6A b (a :: as)
3 cons (leq : b6A a) (s : Ordered A 6A a as)

A proof of Ordered A 6A b as consists of a series of inequality
proofs and ensures that as is ordered and bounded below by b, so
Ordered A 6A b is a predicate that characterises ordered lists
(with a lower bound). The Ordered predicate helps to formulate
the following isomorphisms

OrdList A 6A b ∼= Σ [as : List A ] Ordered A 6A b as (1)

for all b : A — an ordered list bounded below by b can be converted
to/from a plain list and a proof that it is ordered and bounded below
by b. In general, for any ornament O : Orn e D E (where D : Desc I
and E : Desc J) there is a promotion predicate

PromP O : {i : I} (j : InvImage e i)→ µ D i→ Set

(where the definition of InvImage is shown in Figure 1) such that
there is a family of promotion isomorphisms

µ E (und j) ∼= Σ [d : µ D i ] PromP O j d (2)

for all i : I and j : InvImage e i. Moreover, the first half of
the forward direction of the promotion isomorphisms is exactly
forget O. For example, Ordered A 6A b is syntactic sugar for
PromP dOrdListOD A 6A e (ok b), and the isomorphisms (1)
are a specialisation of the promotion isomorphisms (2) for the or-
nament dOrdListOD A 6A e. The promotion isomorphisms are
named as such because the right-to-left direction can be interpreted
as promoting an element of the basic type (e.g., a list) to an ele-
ment of the more informative type (e.g., an ordered list) provided
that there is a proof that the promotion predicate (e.g., Ordered) is
satisfied.

Parallel composition of ornaments. At one point in Section 5
we will need parallel composition of ornaments. Let D : Desc I,
E : Desc J, and F : Desc K. Given two ornaments O : Orn e D E
and P : Orn f D F (note the common description D) where e : J→ I
and f : K → I, parallel composition of O and P is an ornamental
description relative to D:

O⊗ P : OrnDesc (e ./ f ) pull D

where e ./ f is the set-theoretic pullback of e and f , and pull :
e ./ f → I is the usual projection of pullbacks (definitions shown
in Figure 1). Intuitively: both O and P encode modifications to
the same base description D; parallel composition of O and P
produces a new datatype bO ⊗ Pc by committing all the mod-
ifications to D, and merges all the modifications into one orna-
ment dO⊗ Pe. For example, parallel composition of the ornament
dOrdListOD A 6A e from lists to ordered lists and the ornament
ListD-VecD A from lists to vectors produces (i) a new datatype of
ordered vectors

indexfirst data OrdVec A 6A : A→ Nat→ Set where
OrdVec A 6A b n
3 nil (neq : n ≡ zero)
| cons (a : A) (leq : b6A a)

(m : Nat) (as : OrdVec A 6A a m)
(meq : n ≡ suc m)

such that OrdVec A 6A b n desugars to

µ bdOrdListOD A 6A e ⊗ ListD-VecD Ac (ok b,ok n)

and (ii) an ornament that gives rise to a forgetful function from
ordered vectors to plain lists which retains only the list elements.

For a parallel composed ornament dO⊗ Pe, the promotion isomor-
phisms (2) can be transformed into a more reusable form:

µ bO⊗ Pc (j,k)
∼= Σ [d : µ D i ] PromP O j d × PromP P k d (3)

for all i : I, j : InvImage e i, and k : InvImage f i. For example, for
ordered vectors we get

OrdVec A 6A b n
∼= Σ [as : List A ] Ordered A 6A b as × Length A n as

where Length A is the promotion predicate for the ornament from
lists to vectors, asserting that a list has a particular length:

indexfirst data Length A : Nat→ List A→ Set where
Length A n [ ] 3 nil (neq : n ≡ zero)
Length A n (a :: as)
3 cons (m : Nat) (l : Length A m as) (meq : n ≡ suc m)

3. Relational program derivation in Agda and
relational algebraic ornamentation

In this section, we first introduce and formalise some basic notions
in relational program derivation [4] by importing and generalising
a small part of the AoPA library [18]. We then introduce relational
algebraic ornamentation, which acts as a bridge between the two
worlds of internalist programming and relational program deriva-
tion. At the end of this section is an example about the Fold Fusion
Theorem [4, Section 6.2] and how the theorem translates to conver-
sion functions between algebraically ornamented datatypes.

Basic definitions for relational program derivation. One com-
mon approach to program derivation is by algebraic transforma-
tions of functional programs: one begins with a specification in
the form of a functional program that expresses straightforward
but possibly inefficient computation, and transforms it into an ex-
tensionally equal but more efficient functional program by apply-
ing algebraic laws and theorems. Using functional programs as the
specification language means that specifications are directly exe-
cutable, but the deterministic nature of functional programs can re-
sult in less flexible specifications. For example, when specifying
an optimisation problem using a functional program that generates
all feasible solutions and chooses an optimal one among them, the
program would enforce a particular way of choosing the optimal
solution, but such enforcement should not be part of the specifica-
tion. To gain more flexibility, the specification language was later
generalised to relational programs. With relational programs, we
specify only the relationship between input and output without ac-
tually specifying a way to execute the programs, so specifications
in the form of relational programs can be as flexible as possible.
Though lacking a directly executable semantics, most relational
programs can still be read computationally as potentially partial
and nondeterministic mappings, so relational specifications largely
remain computationally intuitive as functional specifications.

To emphasise the computational interpretation of relations, we
will mainly model a relation between sets A and B as a function
sending each element of A to a subset of B. We define subsets by

P : Set→ Set1
P A = A→ Set

That is, a subset s : P A is a characteristic function that assigns a
type to each element of A, and a : A is considered to be a member
of s if the type s a : Set is inhabited. We may regard P A as the
type of computations that nondeterministically produce an element
of A. A simple example is

any : {A : Set}→P A
any = const >



The subset any : P A associates the unit type>with every element
of A. Since > is inhabited, any can produce any element of A.
P cannot be made into a conventional monad because it is not
an endofunctor, but it still has a monadic structure [3]: return and
>>= are defined as
return : {A : Set}→ A→P A
return = ≡
>>= : {A B : Set}→P A→ (A→P B)→P B
>>= {A} s f = λ b→ Σ [a : A ] s a × f a b

The subset return a : P A for some a : A simplifies to λa′→ a ≡ a′
(where ≡ is propositional equality), so a is the only member of
the subset; if s : P A and f : A→P B, then the subset s >>= f :
P B is the union of all the subsets f a : P B where a ranges over
the elements of A that belong to s, i.e., an element b : B is a member
of s >>= f exactly when there exists some a : A belonging to s such
that b is a member of f a.

We will mainly use relations between families of sets in this
paper: if X,Y : I→ Set for some I : Set, a relation from X to Y is
defined as a family of relations from X i to Y i for every i : I.
 : {I : Set}→ (I→ Set)→ (I→ Set)→ Set1

X Y = ∀ {i}→ X i→P (Y i)
We can use the subset combinators to define relations. For example,
the following combinator fun lifts a family of functions into a
family of relations.

fun : {I : Set} {X Y : I→ Set}→ (X ⇒ Y)→ (X Y)
fun f x = return (f x)

The identity relation is just the identity functions lifted to relations.
idR : {I : Set} {X : I→ Set}→ (X X)
idR = fun id

Composition of relations is easily defined with >>= : computing
R · S on input x is first computing S x and then feeding the result
to R.
· : {I : Set} {X Y Z : I→ Set}→

(Y Z)→ (X Y)→ (X Z)
(R · S) x = S x >>= R

Or we may choose to define a relation pointwise, like
∩ : {I : Set} {X Y : I→ Set}→

(X Y)→ (X Y)→ (X Y)
(R ∩ S) x y = R x y × S x y

This defines the meet of two relations. Unlike a function, which
distinguishes between input and output, inherently a relation treats
its domain and codomain symmetrically. This is reflected by the
presence of the following converse operator:
◦ : {I : Set} {X Y : I→ Set}→ (X Y)→ (Y X)

(R ◦) y x = R x y
A relation can thus be “run backwards” simply by taking its con-
verse. The nondeterministic and bidirectional nature of relations
makes them a powerful and concise language for specifications, as
will be demonstrated in Section 5.

Laws and theorems in relational program derivation are formu-
lated with relational inclusion
⊆ : {I : Set} {X Y : I→ Set} (R S : X Y)→ Set

R ⊆ S = ∀ {i}→ (x : X i) (y : Y i)→ R x y→ S x y
or equivalence of relations, which is defined as two-way inclusion:
' : {I : Set} {X Y : I→ Set} (R S : X Y)→ Set

R ' S = (R ⊆ S) × (S ⊆ R)
We will also need relators, i.e., monotonic functors on relations
with respect to relational inclusion.

R : {I : Set} (D : Desc I) {X Y : I→ Set}→
(X Y)→ (F D X F D Y)

If R : X Y , the relation R D R : F D X F D Y applies R to
the recursive positions of its input, leaving everything else intact.
For example, if D = ListD A (for some A : Set), then R (ListD A)
essentially specialises to

R (ListD A) : {X Y : I→ Set}→
(X Y)→ (F (ListD A) X F (ListD A) Y)

R (ListD A) R (‘nil ,tt) = return (‘nil,tt)
R (ListD A) R (‘cons,a,x) = R x >>= λ y→ return (‘cons,a,y)

Among other properties, we can prove that R D preserves identity
(R D idR ' idR), composition (R D (R · S) ' R D R · R D S),
converse (R D (R ◦) ' (R D R) ◦), and is monotonic (R ⊆ S
implies R D R ⊆ R D S).

With relational inclusion, many concepts can be expressed in a
surprisingly concise way. For example, a relation R is a preorder
if it is reflexive and transitive. In relational terms, these two con-
ditions are expressed simply as idR ⊆ R and R · R ⊆ R, and
are easily manipulable in calculations. Another important notion is
monotonic algebras [4, Section 7.2]: an algebra S : F D X X is
monotonic on R : X X (usually an ordering) if

S · R D R ⊆ R · S
which says that if two input values to S have their recursive posi-
tions related by R and are otherwise equal, then the output values
would still be related by R. In the context of optimisation problems,
monotonicity can be used to capture the principle of optimality, as
will be shown in Section 5.

Having defined relations as nondeterministic mappings, it is
straightforward to port the datatype-generic fold to relations:
([ ]) : {I : Set} {D : Desc I} {X : I→ Set}→

(F D X X)→ (µ D X)
The definition of ([ ]) is obtained by rewriting the definition of fold
with the subset combinators. For example, the relational fold on
lists would essentially be
([ ]) {>} {ListD A} : {X : >→ Set}→

(F (ListD A) X X)→
(µ (ListD A)  X)

([R ]) [ ] = R (‘nil,tt)
([R ]) (a :: as) = ([R ]) as >>= λ x→ R (‘cons,a,x)

The functional and relational fold operators are related by the
following lemma:

fun-preserves-fold :
{I : Set} (D : Desc I) {X : I→ Set}
(f : F D X ⇒ X)→ fun (fold f ) ' ([ fun f ])

Relational algebraic ornamentation. We now turn to relational
algebraic ornamentation, the key construct that bridges inter-
nalist programming and relational program derivation. Let R :
F (ListD A) X  X (where X : > → Set) be a relational alge-
bra for lists. We can define a datatype of “algebraic lists” as

indexfirst data AlgList A R : X tt→ Set where
AlgList A R x 3 nil (rnil : R (‘nil,tt) x)

| cons (a : A) (x′ : X tt) (as : AlgList A R x′)
(rcons : R (‘cons,a,x′) x)

There is an ornament from lists to algebraic lists which marks the
fields rnil, x′, and rcons in AlgList as additional and refines the
index of the recursive position to x′. The promotion predicate for
this ornament is

indexfirst data AlgListP A R : X tt→ List A→ Set where
AlgListP A R x [ ] 3 nil (rnil : R (‘nil,tt) x)
AlgListP A R x (a :: as) 3 cons (x′ : X tt)

(p : AlgListP A R x′ as)
(rcons : R (‘cons,a,x′) x)



A simple argument by induction shows that AlgListP A R x as is in
fact isomorphic to ([R ]) as x for any as : List A and x : X tt. As a
corollary, we have

AlgList A R x ∼= Σ [as : List A ] ([R ]) as x (4)
for any x : X tt by (2). That is, an algebraic list is exactly a plain list
and a proof that the list folds to x using the algebra R. The vector
datatype is a special case of AlgList — to see that, define

length-alg : F (ListD A) (const Nat) ⇒ const Nat
length-alg (‘nil ,tt) = zero
length-alg (‘cons,a,n) = suc n

and take R = fun length-alg. From (4) we have the isomorphisms
Vec A n ∼= Σ [as : List A ] ([ fun length-alg ]) as n

for all n : Nat, from which we can derive
Vec A n ∼= Σ [as : List A ] length as ≡ n

by fun-preserves-fold, after defining length = fold length-alg.
The above can be generalised to all datatypes encoded by the

Desc universe. Let D : Desc I be a description and R : F D X X
(where X : I → Set) an algebra. The (relational) algebraic orna-
mentation of D with R is an ornamental description

algOrn D R : OrnDesc (Σ I X) proj1 D
(where proj1 : Σ I X → I). Its definition is a slight generalisation
of the one given by Dagand and McBride [7, supplementary code].
The promotion predicate for the ornament dalgOrn D Re is point-
wise isomorphic to ([R ]), i.e.,

PromP dalgOrn D Re (ok (i,x)) d ∼= ([R ]) d x (5)
for all i : I, x : X i, and d : µ D i. As a corollary, we have the
following isomorphisms

µ balgOrn D Rc (i,x) ∼= Σ [d : µ D i ] ([R ]) d x (6)
for all i : I and x : X i by (2). For example, taking D = ListD A,
the type AlgList A R x can be thought of as the high-level presen-
tation of µ balgOrn (ListD A) Rc (tt,x). Algebraic ornamentation
is a very convenient method for adding new indices to inductive
families, and most importantly, it says precisely what the new in-
dices mean. The method was demonstrated by McBride [15] with a
correct-by-construction compiler for a small language, and will be
demonstrated again in Section 5.

Example: the Fold Fusion Theorem. As a first example of bridg-
ing internalist programming with relational program derivation
through algebraic ornamentation, let us consider the Fold Fu-
sion Theorem [4, Section 6.2]: Let D : Desc I be a description,
R : X Y a relation, and S : F D X X and T : F D Y Y be
algebras. If R is a homomorphism from S to T , i.e.,

R · S ' T · R D R
which is referred to as the fusion condition, then we have

R · ([S ]) ' ([T ])

The above is, in fact, a corollary of two variations of Fold Fusion
that replace relational equivalence in the statement of the theorem
with relational inclusion. One of the variations is

R · S ⊆ T · R D R implies R · ([S ]) ⊆ ([T ])

This can be used with (6) to derive a conversion between alge-
braically ornamented datatypes:

algOrn-fusion-⊆ D R S T :
R · S ⊆ T · R D R→
{i : I} (x : X i)→ µ balgOrn D Sc (i,x)→
(y : Y i)→ R x y→ µ balgOrn D Tc (i,y)

The other variation of Fold Fusion simply reverses the direction of
inclusion:

R · S ⊇ T · R D R implies R · ([S ]) ⊇ ([T ])

which translates to the conversion
algOrn-fusion-⊇ D R S T :

R · S ⊇ T · R D R→
{i : I} (y : Y i)→ µ balgOrn D Tc (i,y)→
Σ [x : X i ] µ balgOrn D Sc (i,x) × R x y

For a simple example, suppose that we need a “bounded” vector
datatype, i.e., lists indexed with an upper bound on their length. A
quick thought might lead to this definition

BVec : Set→ Nat→ Set
BVec A m =

µ balgOrn (ListD A) (geq · fun length-alg)c (tt,m)

where geq = λ x y → x 6 y : const Nat  const Nat maps a
natural number x to any natural number that is at least x. The
isomorphisms (6) specialise for BVec to

BVec A m ∼= Σ [as : List A ] ([geq · fun length-alg ]) as m
But is BVec really the bounded vectors? Indeed it is, because we
can deduce

geq · ([ fun length-alg ]) ' ([geq · fun length-alg ])
by Fold Fusion (where ([ fun length-alg ]) is equivalent to fun length
by fun-preserves-fold). The fusion condition is

geq · fun length-alg ' geq · fun length-alg · R (ListD A) geq
The left-to-right inclusion is easily calculated as follows:

geq · fun length-alg
⊆ { idR identity}

geq · fun length-alg · idR
⊆ { relator preserves identity}

geq · fun length-alg · R (ListD A) idR
⊆ {geq reflexive}

geq · fun length-alg · R (ListD A) geq
And from right to left:

geq · fun length-alg · R (ListD A) geq
⊆ { fun length-alg monotonic on geq}

geq · geq · fun length-alg
⊆ {geq transitive}

geq · fun length-alg
Note that these calculations are good illustrations of the power of
relational calculation despite their simplicity — they are straight-
forward symbolic manipulations, hiding details like quantifier
reasoning behind the scenes. As demonstrated by the AoPA li-
brary [18], they can be faithfully formalised with preorder reason-
ing combinators in Agda and used to discharge the fusion condi-
tions of algOrn-fusion-⊆ and algOrn-fusion-⊇. Hence we get two
conversions, one of type

Vec A n→ (n6 m)→ BVec A m
which relaxes a vector of length n to a bounded vector whose length
is bounded above by some m that is at least n, and the other of type

BVec A m→ Σ [n : Nat ] Vec A n × (n6 m)

which converts a bounded vector whose length is at most m to a
vector of length precisely n and guarantees that n is at most m.

Theoretically, the conversions derived from Fold Fusion are
actually more generally applicable than they seem, because every
ornament is an algebraic ornament up to isomorphism. This we
show next.

4. Completeness of relational algebraic
ornaments

Consider the AlgList datatype in Section 3 again. The way it is
refined relative to the plain list datatype looks canonical, in the



sense that any variation of the list datatype can be programmed
as a special case of AlgList: we can choose whatever index set
we want by setting the carrier of the algebra R; and by carefully
programming R, we can insert fields into the list datatype that
add more information or put restriction on fields and indices. For
example, if we want some new information in the nil case, we can
program R such that R (‘nil,tt) x contains a field requesting that
information; if, in the cons case, we need the targeted index x, the
head element a, and the index x′ of the recursive position to be
related in some way, we can program R such that R (‘cons,a,x′) x
expresses that relationship.

The above observation leads to the following general theorem:
Let O : Orn e D E be an ornament from D : Desc I to E : Desc J.
There is a classifying algebra for O

clsAlg O : F D (InvImage e) InvImage e
such that there are isomorphisms

µ balgOrn D (clsAlg O)c (e j,ok j) ∼= µ E j
for all j : J. That is, the algebraic ornamentation of D using the
classifying algebra derived from O produces a datatype isomorphic
to µ E, so intuitively the algebraic ornament has the same content
as O. We may interpret this theorem as saying that algebraic orna-
ments are “complete” for the ornament language: any relationship
between datatypes that can be described by an ornament can be
described up to isomorphism by an algebraic ornament.

The completeness theorem brings up a nice algebraic intuition
about inductive families. Consider the ornament from lists to vec-
tors, for example. This ornament specifies that the type List A is
refined by the collection of types Vec A n for all n : Nat. A list, say
a :: b :: [ ] : List A, can be reconstructed as a vector by starting in
the type Vec A zero as [ ], jumping to the next type Vec A (suc zero)
as b :: [ ], and finally landing in Vec A (suc (suc zero)) as a :: b :: [ ].
The list is thus classified as having length 2, as computed by the
fold function length, and the resulting vector is a fused representa-
tion of the list and the classification proof. In the case of vectors,
this classification is total and deterministic: every list is classified
under one and only one index. But in general, classifications can be
partial and nondeterministic. For example, promoting a list to an or-
dered list is classifying the list under an index that is a lower bound
of the list. The classification process checks at each jump whether
the list is still ordered; this check can fail, so an unordered list
would “disappear” midway through the classification. Also there
can be more than one lower bound for an ordered list, so the list can
end up being classified under any one of them. Algebraic ornamen-
tation in its original functional form can only capture part of this
intuition about classification, namely those classifications that are
total and deterministic. By generalising algebraic ornamentation to
accept relational algebras, bringing in partiality and nondetermi-
nacy, this idea about classification is captured in its entirety — a
classification is just a relational fold computing the index that clas-
sifies an element. All ornaments specify classifications, and thus
can be transformed into algebraic ornaments.

For more examples, let us first look at the classifying algebra
for the ornament from natural numbers to lists. The base functor
for natural numbers is

F NatD : (>→ Set)→ (>→ Set)
F NatD X = Σ LTag (λ{‘nil→>; ‘cons→ X tt})

And the classifying algebra for the ornament NatD-ListD A is
essentially

clsAlg (NatD-ListD A) : F NatD (InvImage !) InvImage !
clsAlg (NatD-ListD A) (‘nil , ) (ok tt) = >
clsAlg (NatD-ListD A) (‘cons,ok t) (ok tt) = A × (t ≡ tt)

The result of folding a natural number n with this algebra is un-
interesting, as it can only be ok tt. The fold, however, requires an

element of A for each successor node it encounters, so a proof that
n goes through the fold consists of n elements of A. Another ex-
ample is the ornament OL = dOrdListOD A 6A e from lists to
ordered lists, whose classifying algebra is essentially

clsAlg OL : F (ListD A) (InvImage !) InvImage !
clsAlg OL (‘nil , ) (ok b) = >
clsAlg OL (‘cons,a,ok b′) (ok b) = (b6A a) × (b′ ≡ a)

In the nil case, the empty list can be mapped to any ok b because
any b : A is a lower bound of the empty list; in the cons case, where
a : A is the head and ok b′ is a result of classifying the tail, i.e., b′ : A
is a lower bound of the tail, the list can be mapped to ok b if b : A
is a lower bound of a and a is exactly b′.

Perhaps the most important consequence of the completeness
theorem (in its present form) is that it provides a new perspec-
tive on the expressive power of ornaments and inductive families.
We showed in a previous paper [12] that every ornament induces a
promotion predicate and a corresponding family of isomorphisms
(which is restated as (2) in Section 2). But one question was un-
touched: can we determine (independently from ornaments) the
range of predicates induced by ornaments? An answer to this ques-
tion would tell us something about the expressive power of orna-
ments, and also about the expressive power of inductive families in
general, since the inductive families we use are usually ornamen-
tations of simpler algebraic datatypes from traditional functional
programming. The completeness theorem offers such an answer:
ornament-induced promotion predicates are exactly those express-
ible as relational folds (up to pointwise isomorphism). In other
words, a predicate can be baked into a datatype by ornamentation if
and only if it can be thought of as a nondeterministic classification
of the elements of the datatype with a relational fold. This is more
a guideline than a precise criterion, though, as the closest work
about characterisation of the expressive power of folds discusses
only functional folds [11] (however, we believe that those results
generalise to relations too). But this does encourage us to think
about ornamentation computationally and to design new datatypes
with relational algebraic methods. We illustrate this point with a
solution to the minimum coin change problem in the next section.

5. Example: the minimum coin change problem
Suppose that we have an unlimited number of 1-penny, 2-pence,
and 5-pence coins, modelled by the following datatype:

data Coin : Set where
1p 2p 5p : Coin

Given n : Nat, the minimum coin change problem asks for the least
number of coins that make up n pence. We can give a relational
specification of the problem with the following operator:

min ·Λ : {I : Set} {X Y : I→ Set}
(R : Y Y) (S : X Y)→ (X Y)

(min R ·Λ S) x y = S x y × (∀ y′→ S x y′→ R y′ y)

An input x : X i for some i : I is mapped by min R ·Λ S to y : Y i
if y is a possible result in S x : P (Y i) and is the smallest such
result under R, in the sense that any y′ in S x : P (Y i) must satisfy
R y′ y (i.e., R maps larger inputs to smaller outputs). Intuitively,
we can think of min R ·Λ S as consisting of two steps: the first
step Λ S computes the set of all possible results yielded by S,
and the second step min R chooses a minimum result from that
set (nondeterministically). We use bags of coins as the type of
solutions, and represent them as decreasingly ordered lists indexed
with an upper bound. (This is a deliberate choice to make the
derivation work, but one would naturally turn to this representation
having attempted to apply the Greedy Theorem, which will be
introduced shortly.) If we define the ordering on coins as



6C : Coin→ Coin→ Set
c6C d = value c6 value d

where the values of the coins are defined by
value : Coin→ Nat
value 1p = 1
value 2p = 2
value 5p = 5

then the datatype of coin bags we use is
indexfirst data CoinBag : Coin→ Set where

CoinBag c 3 nil
| cons (d : Coin) (leq : d 6C c) (b : CoinBag d)

Down at the universe level, the (ornamental) description of CoinBag
(relative to List Coin) is simply that of OrdList Coin (flip 6C ).

CoinBagOD : OrnDesc Coin ! (ListD Coin)
CoinBagOD = OrdListOD Coin (flip 6C )

CoinBagD : Desc Coin
CoinBagD = bCoinBagODc
CoinBag : Coin→ Set
CoinBag = µ CoinBagD

The base functor for CoinBag is
F CoinBagD : (Coin→ Set)→ (Coin→ Set)
F CoinBagD X c =

Σ LTag (λ{‘nil→>; ‘cons→ Σ [d : Coin ] (d 6C c) × X d})
The total value of a coin bag is the sum of the values of the coins
in the bag, which is computed by a (functional) fold:

total-value-alg : F CoinBagD (const Nat) ⇒ const Nat
total-value-alg (‘nil , ) = 0
total-value-alg (‘cons,d, ,n) = value d + n
total-value : CoinBag ⇒ const Nat
total-value = fold total-value-alg

and the number of coins in a coin bag is also computed by a fold:
size-alg : F CoinBagD (const Nat) ⇒ const Nat
size-alg (‘nil , ) = 0
size-alg (‘cons, , ,n) = 1 + n
size : CoinBag ⇒ const Nat
size = fold size-alg

The specification of the minimum coin change problem can now be
written as

min-coin-change : const Nat CoinBag
min-coin-change =

min (fun size ◦ · leq · fun size) ·Λ (fun total-value ◦)
where leq = geq ◦ : const Nat const Nat maps a natural num-
ber n to any natural number that is at most n. Intuitively, given
an input n : Nat, the relation fun total-value ◦ computes an ar-
bitrary coin bag whose total value is n, so min-coin-change first
computes the set of all such coin bags and then chooses from
the set a coin bag whose size is smallest. Our goal, then, is to
write a functional program f : const Nat ⇒ CoinBag such that
fun f ⊆ min-coin-change, and then f 5p : Nat → CoinBag 5p
would be a solution — note that the type CoinBag 5p contains all
coin bags, since 5p is the largest denomination and hence a triv-
ial upper bound on the content of bags. Of course, we may guess
what f should look like, but its correctness proof is much harder.
Can we construct the program and its correctness proof in a more
manageable way?

The plan. In traditional relational program derivation, we would
attempt to refine min-coin-change to some simpler relational pro-
gram and then to an executable functional program by applying

algebraic laws and theorems. With algebraic ornamentation, how-
ever, there is a new possibility: if we can derive that, for some al-
gebra R : F CoinBagD (const Nat) const Nat,
([R ]) ◦ ⊆ min-coin-change (7)

then we can manufacture a new datatype
GreedySolutionOD : OrnDesc (Coin × Nat) proj1 CoinBagD
GreedySolutionOD = algOrn CoinBagD R
GreedySolution : Coin→ Nat→ Set
GreedySolution c n = µ bGreedySolutionODc (c,n)

and construct a function of type
greedy : (c : Coin) (n : Nat)→ GreedySolution c n

from which we can assemble a solution
sol : Nat→ CoinBag 5p
sol = forget dGreedySolutionODe ◦ greedy 5p

The program sol satisfies the specification because of the following
argument: For any c : Coin and n : Nat, by (6) we have

GreedySolution c n ∼= Σ [b : CoinBag c ] ([R ]) b n
In particular, since the first half of the left-to-right direction of the
isomorphism is forget dGreedySolutionODe, we have
([R ]) (forget dGreedySolutionODe g) n

for any g : GreedySolution c n. Substituting g by greedy 5p n, we
get
([R ]) (sol n) n

which implies, by (7),
min-coin-change n (sol n)

i.e., sol satisfies the specification. Thus all we need to do to solve
the minimum coin change problem is (i) refine the specification
min-coin-change to the converse of a fold, i.e., find the algebra R
in (7), and (ii) construct the internalist program greedy.

Refining the specification. The key to refining min-coin-change
to the converse of a fold lies in the following version of the
Greedy Theorem, which is essentially a specialisation of Bird and
de Moor’s Theorem 10.1 [4]: Let D : Desc I be a description,
R : µ D µ D a preorder, and S : F D X X an algebra. Con-
sider the specification

min R ·Λ (([S ]) ◦)
That is, given an input value x : X i for some i : I, we choose a
minimum under R among all those elements of µ D i that computes
to x through ([S ]). The Greedy Theorem states that, if the initial
algebra α = fun con : F D (µ D) µ D is monotonic on R (where
con : F D (µ D) ⇒ µ D is the datatype-generic constructor), i.e.,

α · R D R ⊆ R · α

and there is a relation (ordering) Q : F D X F D X such that
the greedy condition

α · R D (([S ]) ◦) · (Q ∩ (S ◦ · S)) ◦ ⊆ R ◦ · α · R D (([S ]) ◦)
is satisfied, then we have
([ (min Q ·Λ (S ◦)) ◦ ]) ◦ ⊆ min R ·Λ (([S ]) ◦)

Here we offer an intuitive explanation of the Greedy Theorem, but
the theorem admits an elegant calculational proof, which can be
faithfully reprised in Agda. The monotonicity condition states that
if ds : F D (µ D) i for some i : I is better than ds′ : F D (µ D) i
under R D R, i.e., ds and ds′ are equal except that the recursive
positions of ds are all better than the corresponding recursive po-
sitions of ds′ under R, then con ds : µ D i would be better than
con ds′ : µ D i under R. This implies that, when solving the op-
timisation problem, better solutions to subproblems would lead to
a better solution to the original problem, so the principle of opti-
mality applies, i.e., to reach an optimal solution it suffices to find



optimal solutions to subproblems, and we are entitled to use the
converse of a fold to find optimal solutions recursively. The greedy
condition further states that there is an ordering Q on the ways of
decomposing the problem which has significant influence on the
quality of solutions: Suppose that there are two decompositions xs
and xs′ : F D X i of some problem x : X i for some i : I, i.e.,
both xs and xs′ are in S ◦ x : P (F D X i), and assume that xs is
better than xs′ under Q. Then for any solution resulting from xs′
(computed by α · R D (([S ]) ◦)) there always exists a better solu-
tion resulting from xs, so ignoring xs′ would only rule out worse
solutions. The greedy condition thus guarantees that we will arrive
at an optimal solution by always choosing the best decomposition,
which is done by min Q ·Λ (S ◦) : X F D X.

Back to the coin changing problem: By fun-preserves-fold, the
specification min-coin-change is equivalent to

min (fun size ◦ · leq · fun size) ·Λ (([ fun total-value-alg ]) ◦)
which matches the form of the generic specification given in the
Greedy Theorem, so we try to discharge the two conditions of the
theorem. The monotonicity condition reduces to monotonicity of
fun size-alg on leq, and can be easily proved either by relational
calculation or pointwise reasoning. As for the greedy condition,
an obvious choice for Q is an ordering that leads us to choose the
largest possible denomination, so we go for

Q : F CoinBagD (const Nat) F CoinBagD (const Nat)
Q (‘nil , ) = return (‘nil,tt)
Q (‘cons,d, ) =
( 6C d) >>= λ e→ any >>= λ r→ return (‘cons,e,r)

where, in the cons case, the output is required to be also a cons
node, and the coin at its head position must be one that is no
smaller than the coin d at the head position of the input. It is
non-trivial to prove the greedy condition by relational calculation.
Here we offer instead a brute-force yet conveniently expressed
case analysis by dependent pattern matching, which also serves
as an example of algebraic ornamentation. Define a new datatype
CoinBag′ : Coin→Nat→Nat→ Set by composing two algebraic
ornaments on CoinBagD in parallel:

CoinBag′OD : OrnDesc (proj1 ./ proj1) pull CoinBagD
CoinBag′OD = dalgOrn CoinBagD (fun total-value-alg)e ⊗

dalgOrn CoinBagD (fun size-alg)e
CoinBag′ : Coin→ Nat→ Nat→ Set
CoinBag′ c n l = µ bCoinBag′ODc (ok (c,n),ok (c, l))

By (3), (5), and fun-preserves-fold, CoinBag′ is characterised by
the isomorphisms

CoinBag′ c n l ∼= Σ [b : CoinBag c ]
(total-value b ≡ n) × (size b ≡ l) (8)

for all c : Coin, n : Nat, and l : Nat. Hence a coin bag of type
CoinBag′ c n l contains l coins that are no larger than c and sum up
to n pence. We can give the following types to the two constructors
of CoinBag′:

bnil′ : ∀ {c}→ CoinBag′ c 0 0
bcons′ : ∀ {c n l}→ (d : Coin)→ d 6C c→

CoinBag′ d n l→ CoinBag′ c (value d + n) (1 + l)
The greedy condition then essentially reduces to this lemma:

greedy-lemma :
(c d : Coin)→ c6C d→
(m n : Nat)→ value c + m ≡ value d + n→
(l : Nat) (b : CoinBag′ c m l)→
Σ [ l′ : Nat ] CoinBag′ d n l′ × (l′ 6 l)

That is, given a problem (i.e., a value to be represented by coins),
if c : Coin is a choice of decomposition (i.e., the first coin used) no
better than d : Coin (recall that we prefer larger denominations),

and b : CoinBag′ c m l is a solution of size l to the remaining
subproblem m resulting from choosing c, then there is a solution to
the remaining subproblem n resulting from choosing d whose size l′
is no greater than l. We define two views [16] — or “customised
pattern matching” — to aid the analysis. The first view analyses a
proof of c6C d and exhausts all possibilities of c and d,

data CoinOrderedView : Coin→ Coin→ Set where
1p1p : CoinOrderedView 1p 1p
1p2p : CoinOrderedView 1p 2p
1p5p : CoinOrderedView 1p 5p
2p2p : CoinOrderedView 2p 2p
2p5p : CoinOrderedView 2p 5p
5p5p : CoinOrderedView 5p 5p

view-ordered-coin :
(c d : Coin)→ c6C d→ CoinOrderedView c d

where the covering function view-ordered-coin is written by stan-
dard pattern matching on c and d. The second view analyses some
b : CoinBag′ c n l and exhausts all possibilities of c, n, l, and the
first coin in b (if any). The view datatype CoinBag′View is shown
in Figure 2, and the covering function

view-CoinBag′ :
∀ {c n l} (b : CoinBag′ c n l)→ CoinBag′View b

is again written by standard pattern matching. Given these two
views, greedy-lemma can be split into eight cases by first exhaust-
ing all possibilities of c and d with view-ordered-coin and then
analysing the content of b with view-CoinBag′. Figure 3 shows the
case-split tree generated semi-automatically by Agda; the detail is
explained as follows:

• At goal 0 (and, similarly, goals 3 and 7), the input bag is
b : CoinBag′ 1p n l, and we should produce a CoinBag′ 1p n l′
for some l′ : Nat such that l′ 6 l. This is easy because b itself
is a suitable bag.

• At goal 1 (and, similarly, goals 2, 4, and 5), the input bag is
of type CoinBag′ 1p (1 + n) l, i.e., the coins in the bag are no
larger than 1p and the total value is 1 + n. The bag must contain
1p as its first coin; let the rest of the bag be b : CoinBag′ 1p n l′′.
At this point Agda can deduce that l must be 1 + l′′. Now we
can return b as the result after the upper bound on its coins is
relaxed from 1p to 2p, which is done by

relax : ∀ {c n l} (b : CoinBag′ c n l)→
∀ {d}→ c6C d→ CoinBag′ d n l

• The remaining goal 6 is the most interesting one: The input bag
has type CoinBag′ 2p (3 + n) l, which in this case contains two
2-pence coins, and the rest of the bag is b : CoinBag′ 2p k l′′.
Agda deduces that n must be 1 + k and l must be 2 + l′′. We
thus need to add a penny to b to increase its total value to 1 + k,
which is done by

add-penny :
∀ {c n l}→ CoinBag′ c n l→ CoinBag′ c (1 + n) (1 + l)

and relax the bound of add-penny b from 2p to 5p.

Throughout the proof, Agda is able to keep track of the total
value and the size of bags and make deductions, so the case anal-
ysis is done with little overhead. The greedy condition can then
be discharged by pointwise reasoning, using (8) to interface with
greedy-lemma. We conclude that the Greedy Theorem is applica-
ble, and obtain
([ (min Q ·Λ (fun total-value-alg ◦)) ◦ ]) ◦ ⊆ min-coin-change

We have thus found the algebra
R = (min Q ·Λ (fun total-value-alg ◦)) ◦

which will help us to construct the final internalist program.



data CoinBag′View : {c : Coin} {n : Nat} {l : Nat}→ CoinBag′ c n l→ Set where
empty : {c : Coin}→ CoinBag′View {c} {0} {0} bnil′

1p1p : {m l : Nat} {lep : 1p6C 1p} (b : CoinBag′ 1p m l)→ CoinBag′View {1p} {1 + m} {1 + l} (bcons′ 1p lep b)
1p2p : {m l : Nat} {lep : 1p6C 2p} (b : CoinBag′ 1p m l)→ CoinBag′View {2p} {1 + m} {1 + l} (bcons′ 1p lep b)
2p2p : {m l : Nat} {lep : 2p6C 2p} (b : CoinBag′ 2p m l)→ CoinBag′View {2p} {2 + m} {1 + l} (bcons′ 2p lep b)
1p5p : {m l : Nat} {lep : 1p6C 5p} (b : CoinBag′ 1p m l)→ CoinBag′View {5p} {1 + m} {1 + l} (bcons′ 1p lep b)
2p5p : {m l : Nat} {lep : 2p6C 5p} (b : CoinBag′ 2p m l)→ CoinBag′View {5p} {2 + m} {1 + l} (bcons′ 2p lep b)
5p5p : {m l : Nat} {lep : 5p6C 5p} (b : CoinBag′ 5p m l)→ CoinBag′View {5p} {5 + m} {1 + l} (bcons′ 5p lep b)

Figure 2. The view datatype on CoinBag′.

greedy-lemma : (c d : Coin)→ c6C d→ (m n : Nat)→ value c + m ≡ value d + n→
(l : Nat) (b : CoinBag′ c m l)→ Σ [ l′ : Nat ] CoinBag′ d n l′ × (l′ 6 l)

greedy-lemma c d c6d m n eq l b with view-ordered-coin c d c6d

greedy-lemma .1p .1p .n n refl l b CoinBag′ 1p n l | 1p1p = { Σ [ l′ : Nat ] CoinBag′ 1p n l′ × (l′ 6 l) }0

greedy-lemma .1p .2p .(1 + n) n refl l b | 1p2p with view-CoinBag′ b
greedy-lemma .1p .2p .(1 + n) n refl .(1 + l′′) . | 1p2p | 1p1p {.n} {l′′} b CoinBag′ 1p n l′′ =

{ Σ [ l′ : Nat ] CoinBag′ 2p n l′ × (l′ 6 1 + l′′) }1

greedy-lemma .1p .5p .(4 + n) n refl l b | 1p5p with view-CoinBag′ b
greedy-lemma .1p .5p .(4 + n) n refl . . | 1p5p | 1p1p b with view-CoinBag′ b
greedy-lemma .1p .5p .(4 + n) n refl . . | 1p5p | 1p1p . | 1p1p b with view-CoinBag′ b
greedy-lemma .1p .5p .(4 + n) n refl . . | 1p5p | 1p1p . | 1p1p . | 1p1p b with view-CoinBag′ b
greedy-lemma .1p .5p .(4 + n) n refl .(4 + l′′) . | 1p5p | 1p1p . | 1p1p . | 1p1p . | 1p1p {.n} {l′′} b CoinBag′ 1p n l′′ =

{ Σ [ l′ : Nat ] CoinBag′ 5p n l′ × (l′ 6 4 + l′′) }2

greedy-lemma .2p .2p .n n refl l b CoinBag′ 2p n l | 2p2p = { Σ [ l′ : Nat ] CoinBag′ 2p n l′ × (l′ 6 l) }3

greedy-lemma .2p .5p .(3 + n) n refl l b | 2p5p with view-CoinBag′ b
greedy-lemma .2p .5p .(3 + n) n refl . . | 2p5p | 1p2p b with view-CoinBag′ b
greedy-lemma .2p .5p .(3 + n) n refl . . | 2p5p | 1p2p . | 1p1p b with view-CoinBag′ b
greedy-lemma .2p .5p .(3 + n) n refl .(3 + l′′) . | 2p5p | 1p2p . | 1p1p . | 1p1p {.n} {l′′} b CoinBag′ 1p n l′′ =

{ Σ [ l′ : Nat ] CoinBag′ 5p n l′ × (l′ 6 3 + l′′) }4

greedy-lemma .2p .5p .(3 + n) n refl . . | 2p5p | 2p2p b with view-CoinBag′ b
greedy-lemma .2p .5p .(3 + n) n refl .(2 + l′′) . | 2p5p | 2p2p . | 1p2p {.n} {l′′} b CoinBag′ 2p n l′′ =

{ Σ [ l′ : Nat ] CoinBag′ 5p n l′ × (l′ 6 2 + l′′) }5

greedy-lemma .2p .5p .(4 + k) .(1 + k) refl .(2 + l′′) . | 2p5p | 2p2p . | 2p2p {k} {l′′} b CoinBag′ 2p k l′′ =
{ Σ [ l′ : Nat ] CoinBag′ 5p (1 + k) l′ × (l′ 6 2 + l′′) }6

greedy-lemma .5p .5p .n n refl l b CoinBag′ 5p n l | 5p5p = { Σ [ l′ : Nat ] CoinBag′ 5p n l′ × (l′ 6 l) }7

Figure 3. Cases of greedy-lemma, generated semi-automatically by Agda’s interactive case-split mechanism. Shown in the (shaded)
interaction points are their goal types, and the types of some pattern variables are shown in subscript beside them.

Constructing the internalist program. As planned, we synthesise
a new datatype by ornamenting CoinBag using the algebra R:

GreedySolutionOD : OrnDesc (Coin × Nat) proj1 CoinBagD
GreedySolutionOD = algOrn CoinBagD R
GreedySolution : Coin→ Nat→ Set
GreedySolution c n = µ bGreedySolutionODc (c,n)

The two constructors of GreedySolution can be given the following
types:

gnil : ∀ {c n}→
total-value-alg (‘nil,tt) ≡ n→
(∀ ns→ total-value-alg ns ≡ n→ Q ns (‘nil,tt))→
GreedySolution c n

gcons :
∀ {c n}→ (d : Coin) (d6c : d 6C c)→
∀ {n′}→ total-value-alg (‘cons,d,d6c,n′) ≡ n→

(∀ ns→ total-value-alg ns ≡ n→ Q ns (‘cons,d,d6c,n′))→
GreedySolution d n′→ GreedySolution c n

Before we proceed to construct the internalist program
greedy : (c : Coin) (n : Nat)→ GreedySolution c n

let us first simplify the two constructors of GreedySolution. Each
of the two constructors has two additional proof obligations coming
from the algebra R: For gnil, since total-value-alg (‘nil,tt) reduces
to 0, we may just specialise n to 0 and discharge the equality
proof obligation. For the second proof obligation, ns is necessarily
(‘nil,tt) if total-value-alg ns ≡ 0, and indeed Q maps (‘nil,tt) to
(‘nil,tt), so the second proof obligation can be discharged as well.
We thus obtain a simpler constructor defined using gnil:

gnil′ : ∀ {c}→ GreedySolution c 0

For gcons, again since total-value-alg (‘cons,d,d6c,n′) reduces
to value d + n′, we may just specialise n to value d + n′ and dis-
charge the equality proof obligation. For the second proof obliga-



tion, any ns that satisfies total-value-alg ns ≡ value d + n′ must
be of the form (‘cons,e,e6c,m′) for some e : Coin, e6c : e6C c,
and m′ : Nat since the right-hand side value d + n′ is nonzero,
and Q maps ns to (‘cons,d,d6c,n′) if e 6C d, so d should be the
largest “usable” coin if this proof obligation is to be discharged.
We say that d : Coin is usable with respect to some c : Coin and
n : Nat if d is bounded above by c and can be part of a solution to
the problem for n pence:

UsableCoin : Nat→ Coin→ Coin→ Set
UsableCoin n c d =
(d 6C c) × (Σ [n′ : Nat ] value d + n′ ≡ n)

Now we can define a new constructor using gcons:
gcons′ :
∀ {c}→ (d : Coin)→ d 6C c→
∀ {n′}→
((e : Coin)→ UsableCoin (value d + n′) c e→ e6C d)→
GreedySolution d n′→ GreedySolution c (value d + n′)

which requires that d is the largest usable coin with respect to
c and value d + n′. We are thus directed to implement a function
maximum-coin that computes the largest usable coin with respect
to any c : Coin and nonzero n : Nat,

maximum-coin :
(c : Coin) (n : Nat)→ n > 0→
Σ [d : Coin] UsableCoin n c d ×

((e : Coin)→ UsableCoin n c e→ e6C d)
which takes some theorem proving but is overall a typical Agda
exercise in dealing with natural numbers and ordering. Now we
can implement the greedy algorithm as the internalist program

greedy : (c : Coin) (n : Nat)→ GreedySolution c n
greedy c n = <-rec P f n c

where
P : Nat→ Set
P n = (c : Coin)→ GreedySolution c n
f : (n : Nat)→ ((n′ : Nat)→ n′ < n→ P n′)→ P n
f n rec c with compare-with-zero n
f .0 rec c | is-zero = gnil′

f n rec c | above-zero n>z
with maximum-coin c n n>z

f .(value d + n′) rec c | above-zero n>z
| d,(d6c,n′, refl),guc =

gcons′ d d6c guc (rec n′ { }8 d)
where the combinator
<-rec : (P : Nat→ Set)→

((n : Nat)→ ((n′ : Nat)→ n′ < n→ P n′)→ P n)→
(n : Nat)→ P n

is for well-founded recursion on < , and the function
compare-with-zero : (n : Nat)→ ZeroView n

is a covering function for the view
data ZeroView : Nat→ Set where

is-zero : ZeroView 0
above-zero : {n : Nat}→ n > 0→ ZeroView n

At goal 8, Agda deduces that n is value d + n′ and demands that we
prove n′ < value d + n′ in order to make the recursive call, which
is easily discharged since value d > 0.

6. Discussion
The relational framework of this paper heavily borrows techniques
from the AoPA library [18]. AoPA deals with non-dependently
typed programs only, whereas to work with indexed datatypes we

need to move to indexed families of relations; to work with the
ornamental universe we parametrise the relational fold with a de-
scription, making it fully datatype-generic, whereas AoPA has only
specialised versions for lists and binary trees; we defined min ·Λ
as a single operator (which happens to be the shrinking operator
proposed by Mu and Oliveira [17]) to avoid the struggle with pred-
icativity that AoPA had. All of the above are not fundamental dif-
ferences between our work and AoPA, though — the two differ
essentially in methodology: In AoPA, dependent types merely pro-
vide a foundation on which relational program derivations can be
expressed and checked by machines but the programs remain non-
dependently typed, whereas in this paper relational program deriva-
tion is a tool for obtaining non-trivial inductive families that effec-
tively guide program development as advertised as the strength of
internalist dependently typed programming. In short, the focus of
AoPA is on traditional relational program derivation (expressed in
a dependently typed language), whereas our emphasis is on inter-
nalist programming (aided by relational program derivation).

Let us contemplate the roles played by internalist program-
ming and relational program derivation in the case study in Sec-
tion 5. As mentioned in Section 1, internalist programming pro-
vides us with a more informative syntax in which programs can
encode more semantic information, including correctness proofs.
We can thus write programs that directly explain their own mean-
ing. An example is the final program for the greedy algorithm
in Section 5, whose structure carries an implicit inductive proof;
the program constructs not merely a list of coins, but a bag of
coins chosen according to a particular optimisation strategy (i.e.,
min Q ·Λ (fun total-value-alg ◦)). Internalist programming alone
has limited power, however, because internalist programs share
structure with their correctness proofs, but we cannot expect to have
such coincidences all the time. In particular, there is no hope of in-
tegrating a correctness proof into a program when the structure of
the proof is more complicated than that of the program. For exam-
ple, we can not imagine how to integrate a correctness proof for
the full specification of the minimum coin change problem into a
program for the greedy algorithm. In essence, we have two kinds
of proofs to deal with: the first kind follow program structure and
can be embedded in internalist programs, and the second kind are
general proofs of full specifications, which do not necessarily fol-
low program structure and which fall outside the scope of inter-
nalism. To exploit the power of internalism as much as possible,
we need ways to reduce the second kind of proof obligations to
the first kind — note that such reduction involves not only con-
structing proof transformations but also determining what internal-
ist proofs are sufficient for establishing proofs of full specifications.
It turns out that relational program derivation is exactly one way in
which we can construct such proof transformations systematically
from specifications. In relational program derivation, we identify
important forms of relational programs (i.e., relational composi-
tion, recursion schemes, and various other combinators), and for-
mulate algebraic laws and theorems in terms of these forms. By
applying the laws and theorems, we massage a relational specifi-
cation into a known form which corresponds to a proof obligation
that can be expressed in an internalist type, enabling transition to
internalist programming. For example, we now know that, by re-
lational algebraic ornamentation, a relational fold can be turned
into an inductive family for internalist programming. Thus, given
a relational specification, we might seek to massage it into a rela-
tional fold when that possibility is pointed out by known laws and
theorems (e.g., the Greedy Theorem). To sum up, we get a hybrid
methodology that effectively leads us from relational specifications
towards correct-by-construction programs, providing hints in the
form of relational algebraic laws and theorems and internalist type
information throughout the development.



There is work to be done to improve practicality of the method-
ology besides notational support, especially interoperability be-
tween internalist programming and relational program derivation.
Relational program derivation was developed in a non-dependently
typed setting, but we need new operators and theorems to deal
with indexed datatypes. For example, the version of the Greedy
Theorem in this paper works for the minimum coin change prob-
lem because, luckily, the problem is simple enough — given
n : Nat we know that an optimal solution necessarily resides in
(fun total-value ◦) {5p} n : P (CoinBag 5p). But in general we do
not know the index in the type of an optimal solution in advance;
so we need to optimise across indices, which requires a non-trivial
revision of the Greedy Theorem. We also need more mechanisms
that allow us to make smooth transitions between relational pro-
gram derivation and dependently typed programming, relational
algebraic ornamentation being one example. Non-examples include
(i) the wrapping of the dependently typed function greedy-lemma
into a proof of the relational greedy condition, which is done by
painstakingly dissecting the proof terms generated by relational
operators and is very tedious since the proof terms are difficult to
understand, and (ii) the definition of the classifying algebra, which
can hardly be manipulated by relational algebraic methods, making
the completeness theorem much less useful in practice. These diffi-
culties arise because the encoding of relational program derivation
and the constructions for internalist programming were conceived
separately and did not take the other side into account. Most likely,
an integrated design is needed to narrow the gap.

Relationship with existing work on ornaments. There is a dual to
the completeness theorem in Section 4: every relational algebra is
isomorphic (in a suitable category of relational algebras) to the clas-
sifying algebra for the algebraic ornament using the algebra. More
precisely: Let D : Desc I be a description and R : F D X  X
an algebra (where X : I → Set). There is a family of isomor-
phisms between X i and InvImage proj1 i for every i : I (where
proj1 : Σ I X→ I); call the forward direction of this family of iso-
morphisms h : X ⇒ InvImage proj1. Then we have

fun h · R ' clsAlg dalgOrn D Re · R D (fun h)

Together with the completeness theorem, we see that algOrn and
clsAlg are, in some sense, inverse to each other up to isomorphism.
This suggests that if we properly set up descriptions and ornaments
as a category, algOrn and clsAlg can be extended to functors be-
tween the category of D-algebras and the slice category of orna-
ments over D, and their inverse relationship can be extended to
an equivalence between the two categories. A preliminary attempt
failed, however, due to a defect in the design of the ornament lan-
guage in our and Dagand and McBride’s work [7, 12] which pre-
vents ornaments from being formed between obviously structurally
related datatypes. We plan to make the ornament language closer to
containers [1, 2], in the hope that, in particular, we can establish the
equivalence of categories sketched above, which would show that
ornaments and relational algebras are essentially the same thing.

Finally, there is a practical concern: algebraic ornamentation
does not make full use of index-first datatypes and can produce
redundant representations. (For example, the vector datatype pro-
duced by algebraic ornamentation is the one containing equality
proof obligations rather than the optimised one, Vec′, in Section 2.)
With algebraic ornamentation, we determine what the targeted in-
dex can be from the data, but for index-first datatypes the natural
notion is coalgebraic ornamentation, because we determine what
data can be offered from the targeted index. This, however, is a
further justification of the move to relational algebras, because re-
lational algebras are bidirectional and hence coalgebras coincide
with the converses of algebras. In future work, we will attempt to
construct a suitable universe for relational algebras with which a

relational algebra (or part of it) can be marked as coalgebraic, so its
coalgebraic structure can be exploited by algebraic ornamentation
to generate efficient index-first representations.
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