
ISSN 1361 - 6161

Computer Science
Univers i ty o f Manchester

Optimisation Techniques for Expressive
Description Logics

Ian Horrocks

Department of Computer Science

University of Manchester

Technical Report Series

UMCS-97-2-1

Optimisation Tehniques for Expressive DesriptionLogis∗Ian HorroksDepartment of Computer SieneUniversity of ManhesterOxford Road, Manhester, UK.horroks�s.man.a.uk1st February 1997

Copyright c©1997. All rights reserved. Reproduction of all or part of this work is permitted for educa-
tional or research purposes on condition that (1) this copyright notice is included, (2) proper attribution
to the author or authors is made and (3) no commercial gain is involved.

Recent technical reports issued by the Department of Computer Science, Manchester University, are

available by anonymous ftp from ftp.cs.man.ac.uk in the directory pub/TR. The files are stored as

PostScript, in compressed form, with the report number as filename. They can also be obtained on

WWW via

URL http://www.cs.man.ac.uk/csonly/cstechrep/index.html. Alternatively, all reports are avail-

able by post from The Computer Library, Department of Computer Science, The University, Oxford

Road, Manchester M13 9PL, UK.

∗Refereed by: Graham Gough

AbstratThis report desribes and evaluates optimisation tehniques for a tableaux based sat-is�ability testing algorithm used to ompute subsumption in Grail, an expressivedesription logi. Five tehniques are studied in detail: normalisation and enod-ing, indexing, semanti branhing, dependeny direted baktraking and ahing.The e�etiveness of these tehniques is evaluated by empirial testing using a largeknowledge base from the Galen projet. The performane of the optimised las-si�er and subsumption test are also ompared with that of the Kris lassi�er andKSAT satis�ability testing proedure using both the Galen knowledge base andrandomly generated test data.1 Introdution
As part of the European Galen project the Medical Informatics Group at Manchester
University have built a large concept model representing knowledge about medical ter-
minology. The model is intended to promote sharing and re-use of medical data by acting
as a flexible and extensible classification schema [40, 39].

In existing applications this function is often served by ‘controlled vocabularies’, of which
more than 20 are currently in use. These vocabularies or ‘coding schemes’ are often very
large and thus both difficult and costly to build and maintain. Moreover, in spite of the
fact that many schemes are specific to particular purposes, specialities or even databases,
their rigidity frequently compels application designers to use additional ad-hoc terms to
cover fine detail [38].

The concept model has been built using Grail, a description logic (DL) based knowledge
representation system. By using a DL based model it is hoped to avoid many of the pitfalls
of existing static coding schemes and to provide additional benefits to applications:

• concept descriptions have clear semantics and more detailed descriptions can be
constructed systematically to provide principled extensions to the terminology where
required;

• the DL classifier can be used to check the coherence of new descriptions and to
enrich the schema by the discovery of implicit subsumption relationships;

• the DL can be used as a powerful database query language supporting intensional
as well as extensional queries [12] and query optimisation [11];

• the concept model can be used in intelligent data entry systems [35, 28] and in
natural language processing [10, 37, 48];

• data can be shared between existing applications by using the concept model as an
interlingua and providing mappings to a variety of coding schemes.

1

1.1 The GRAIL Desription LogiGrail was developed specifically for building the medical terminology model (although it
is now being used in a variety of other applications [23, 22]). A detailed design study [34]
led to the specification of a DL with a restricted set of concept and role forming operators
but an unusually expressive set of terminological axioms. Grail is differentiated from
other implemented DLs by its support for these axioms:

• Role inclusion axioms—used to construct hierarchies based on transitive relations
other than is-a, such as the various part-whole and compositional relations which
are essential for describing anatomy (and other complex physical structures). e.g.
the axiom:

has-part ◦ has-part ⊑ has-part

asserts that the has-part role is transitively closed.

• General Concept Inclusion axioms (GCIs)—used to add knowledge which does not
form part of concept definitions. e.g. the GCI:

Ulcer ⊓ ∃hasLocation.Stomach ⊑ ∃hasLocation.StomachLining

asserts that all stomach ulcers are located in the lining of the stomach without
making ∃hasLocation.StomachLining part of the definition of a stomach ulcer.

It is worth noting that the requirement for similarly (or more) expressive DLs has been
demonstrated for a wide range of other applications [30, 41].1.2 Subsumption Algorithms
In common with the majority of implemented DL systems [31, 32, 36, 29] the originalGrail classifier uses a structural subsumption algorithm. This algorithm is known to be
incomplete and may even be unsound [27].

In contrast, the new Grail classifier converts the subsumption problem into an equi-
valent satisfiability problem which is solved using a sound and complete tableaux based
algorithm [26]. Tableaux algorithms have the additional advantage that they can be re-
latively easily adapted to deal with different description languages [13]. Extensions to
such algorithms which support both transitive closure [3] and GCIs [14] are well under-
stood but the problem’s inherent complexity (EXPTIME) appears to limit their practical
applicability. However empirical studies using implemented DL systems (which do not
support transitive closure or GCIs) have shown that:

• constructs which lead to pathological behaviour rarely occur in ‘realistic’ knowledge
bases [24];

2

• optimising the implementation can significantly improve the performance of a tab-
leaux algorithm [8].

In view of these considerations it seemed worthwhile to investigate tableaux optimisation
techniques for a more expressive DL (Grail) via empirical testing with a real knowledge
base (the Galen model). This report describes a number of optimisation techniques and
presents some preliminary test results.2 Desription Logi Syntax and Semantis
Description Logics (DLs) are a family of formalisms closely related to semantic networks
but with the distinguishing characteristic that the semantics of the concept (class) de-
scription language is sufficiently well defined that the resulting structured objects can
be reasoned with [5]. In particular the subsumption (sub-class/super-class) relationship
between two concept expressions can be computed by a suitable algorithm.

Although implemented DLs use various forms of syntax in their description languages
a standard infix notation is commonly used in theoretical papers. The interpretation of
concept expressions and of the subsumption relationship is also widely based on a Tarski
style model theoretic semantics [47].2.1 Syntax
DLs support the logical description of concepts, roles (relationships) and attributes (single-
valued roles). Concepts, roles and attributes can be combined, using using a variety of
operators, to form more complex expressions [50] which can be used in terminological ax-
ioms to add information to the knowledge base. The operators supported by DLs usually
include some or all of the standard logical connectives along with one or both of univer-
sal and existential quantification (often called value restrictions and exists restrictions).
Using standard infix notation the concept parent, a person who is related via the child

role to another person, might be introduced by the axiom:

parent
.
= person ⊓ ∃child.person

Concepts can be viewed as corresponding to unary predicates in first order logic and roles
as corresponding to binary predicates. Using this correspondence the above axiom could
be translated into first order logic as:

∀x.(parent(x) ⇐⇒ person(x) ∧ ∃y(person(y) ∧ child(x, y)))

3

2.2 Model Theoreti Semantis
A Tarski style model theoretic semantics [47] is used to interpret expressions and to
justify subsumption inferences. Concepts, roles and attributes are taken to refer to sets
of objects in the domain of interest and the relationships between them. A terminology
consists of a finite set of axioms which introduce new concept, role and attribute names
and assert subsumption relationships. In the following discussion CN will be used to
denote a concept name, RN a role name, AN an attribute name, C a concept expression,
R a role expression and A an attribute expression.

The meaning of concepts, roles and attributes is given by an interpretation I which
consists of a set ∆I , the domain, and an interpretation function ·I [5]. The interpretation
function maps each concept name CN to a subset of the domain:

CNI ⊆ ∆I

each role name RN to a set valued function (or equivalently a binary relation):

RNI : ∆I −→ 2∆I

(RNI ⊆ ∆I × ∆I)

and each attribute name AN to a single valued partial function:

ANI : dom ANI −→ ∆I

where dom ANI ⊆ ∆I .

The interpretations of concept, role and attribute expressions can be derived from that
of their components using the semantics of concept, role and attribute forming operators
as described in the following section.

2.2.1 Concept and Role Forming Operators

DLs can support a wide variety of operators for building and combining concept expres-
sions. The semantics of some of the most common operators is described in Table 1 on
the following page.

Less commonly, DLs can also support a range of operators for building and combining role
and attribute expressions. A selection of these operators and their semantics is described
in Table 2 on the next page. All of the operators can be used with either roles or attributes
but it should be noted that A1⊔A2, A−1, A+ and A∗ are in general roles and not attributes.

2.2.2 Terminological Axioms

Terminological axioms are used to add information to the knowledge base. Most DLs only
support a restricted set of axioms which introduce new names and associate them with

4

Operator Notation Semantics
top ⊤ ∆I

bottom ⊥ ∅
conjunction C1 ⊓ . . . ⊓ Cn CI

1 ∩ . . . ∩ CI
n

disjunction C1 ⊔ . . . ⊔ Cn CI
1 ∪ . . . ∪ CI

n

negation ¬C ∆I − CI

exists restriction ∃R.C {d ∈ ∆I | RI(d) ∩ CI 6= ∅}
value restriction ∀R.C {d ∈ ∆I | RI(d) ⊆ CI}
number restriction ≥ nR.C {d ∈ ∆I | ‖RI(d) ∩ CI‖ ≥ n}
number restriction ≤ nR.C {d ∈ ∆I | ‖RI(d) ∩ CI‖ ≤ n}

Table 1: Concept forming operators

Operator Notation Semantics
conjunction R1 ⊓ . . . ⊓ Rn RI

1 ∩ . . . ∩ RI
n

disjunction R1 ⊔ . . . ⊔ Rn RI
1 ∪ . . . ∪ RI

n

composition R1 ◦ . . . ◦ Rn RI
1 ◦ . . . ◦ RI

n

inverse R−1 {(d, d′) | (d′, d) ∈ RI}
transitive closure R+ ⋃

n≥1(R
I)n

transitive reflexive closure R∗
⋃

n≥0(R
I)n

Table 2: Role and attribute forming operators

Axiom Notation Semantics

concept introduction CN
.
= C CNI = CI

role introduction RN
.
= R RNI = RI

attribute introduction AN
.
= A ANI = AI

primitive concept introduction CN ⊑ C CNI ⊆ CI

primitive role introduction RN ⊑ R RNI ⊆ RI

primitive attribute introduction AN ⊑ A ANI = AI

Table 3: Terminological axioms

an expression through either an equality or a subsumption relationship. The semantics
of these axioms is described in Table 3 on this page.

Names which are associated with an expression via a subsumption relation are known as
primitives while names which are associated with an expression via an equivalence relation
are known as non-primitives. Non-primitives are fully defined by their characteristics—

5

the characteristics are said to be both necessary and sufficient. e.g. the introduction
woman

.
= human ⊓ female states that a woman is necessarily both human and female and

that the conjunction of human(x) and female(x) is sufficient to infer woman(x). For this
reason, the concept expression associated with a non-primitive concept name will be called
its definition: in this case human ⊓ female is the definition of woman.

Primitives on the other hand are not fully defined by their characteristics—they have
only necessary characteristics. e.g. the introduction human ⊑ featherless ⊓ biped

states that a human is necessarily both featherless and a biped but the conjunction of
featherless(x) and biped(x) is not sufficient to infer human(x). Natural kinds, such as
human, are often primitives as it is difficult to describe them definitively.

2.2.3 General Concept Inclusion Axioms

Expressive DLs may support more general terminological axioms of the form C1 ⊑ C2

where C1 and C2 are arbitrary concept expressions. These axioms are variously known as
general concept inclusions (GCIs), concept equations or universal terminological axioms:
their semantics is defined in Table 4 on the current page.

Example 2.1 The knowledge that all stomach ulcers occur in the lining of the stomach
could be represented by the general concept inclusion axiom:

Ulcer ⊓ ∃hasLocation.Stomach ⊑ ∃hasLocation.StomachLining

Notation Semantics
C1 ⊑ C2 CI

1 ⊆ CI
2

Table 4: General concept inclusion axioms

The concept introduction axioms described in Section 2.2.2 are special forms of GCI—
primitive introductions are simply GCIs where the left hand expression is a concept name
while non-primitive introductions are equivalent to a pair of GCIs:

CN
.
= C ≡

{

CN ⊑ C
C ⊑ CN2.3 Subsumption and Classi�ation

Subsumption is the subclass-superclass relationship between concept, role and attribute
expressions; classification is the computation of a partial ordering based on the subsump-
tion relation. In practice, subsumption between and classification of concept expressions
is the usual focus of interest. A DL classifier will cache the computed partial order in the
form of a concept hierarchy which can then be used to provide rapid answers to queries

6

regarding classified concepts and to minimise the number of subsumption tests required
to classify a new concept [8].

The semantics of DLs mean that subsumption can be formally defined in terms of the
subset-superset relationship between interpretations. Given a terminology T consisting
of a finite set of terminological axioms, an interpretation I is a model of T if I satisfies
all the terminological axioms in T . C1 is subsumed by C2 in T , written C1 �T C2 if and
only if CI

1 is a subset of CI
2 for all models I of T :

C1 �T C2 ⇐⇒ CI
1 ⊆ CI

2 for all models I of T

Most implemented DLs restrict terminological axioms to unique and acyclic concept, role
and attribute introductions—a name can only appear once on the left hand side of an
axiom (unique) and an expression on the right hand side of an axiom cannot refer either
directly or indirectly to the name on the left hand side (acyclic). Given these restrictions,
any I is a model of any T and subsumption between concept expressions is therefore
independent of T :

C1 � C2 ⇐⇒ CI
1 ⊆ CI

2 for all I

This semantics for the subsumption relation, called descriptive semantics, can produce
counter-intuitive results when the terminology contains cycles [33]. Alternative semantics
based on least and greatest fixpoints have been proposed [2, 9] but it is not clear that any
one semantics is universally preferable [44]. Descriptive semantics are usually prefered as
they are the most conceptually obvious (they correspond to the semantics of first order
logic) and, unlike fixpoint semantics (but see [44]), are applicable to all DLs, including
those supporting GCIs. Subsumption based on descriptive semantics will be assumed in
the remainder of this report.3 Tableaux Subsumption Algorithms
Most early DL systems used structural subsumption algorithms [49] based on rules such
as:

C � (A ⊓ B) ⇐⇒ C � A ∨ C � B

—C subsumes A ⊓ B if and only if C subsumes either A or B. An alternative approach,
first used in the Kris system [7], transposes the subsumption problem into an equivalent
satisfiability problem:

C � D ⇐⇒ ¬(D ⊓ ¬C)

—C subsumes D if and only if D ⊓ ¬C is not satisfiable. The satisfiability problem can
be solved using an algorithm based on the tableaux calculus [7, 26]. This approach has
many advantages and has dominated recent DL research:

• it has a sound theoretical basis in first order logic [26];

7

• it can be relatively easily adapted to allow for different expressive possibilities by
changing the set of tableaux expansion rules [13];

• it has been shown to be optimal for a number of DL languages in the sense that the
worst case complexity of the algorithm is no worse than the known complexity of
the satisfiability problem for the logic [26];

• the theoretical frontiers of decidability and tractability are well understood [43, 15].3.1 Basi Method
Tableaux algorithms test the satisfiability of a concept expression by trying to construct
a model—a domain in which some individual satisfies the concept expression. They use
a constraint system S to describe possible models and a set of expansion rules which
are applied to S until it is fully expanded, and thus describes a complete model, or
demonstrates obvious contradictions which prove that a model cannot be constructed.

For a relatively simple DL such as ALC [45] only two forms of constraint are required,
x : C and xRy where x and y are variables corresponding to unique individuals in the
domain. The constraint x : C states that the individual x is of type C (x ∈ CI) while the
constraint xRy states that x is related to y by role R (y ∈ RI(x)). A constraint system
consists of a finite set of constraints.

To determine the satisfiability of a concept expression C, S is initialised to contain a
single constraint x : C. This states that the model must include some individual x such
that x ∈ CI . A set of expansion rules are repeatedly applied to S until it is fully expanded
or an obvious contradiction is detected. S is fully expanded when none of the expansion
rules are applicable and contains a contradiction when, for some x and some C, either
x : ⊥ or both x : C and x : ¬C are in S. A fully expanded constraint system can trivially
be converted into a model which is a witness to the satisfiability of C.3.2 Expansion Rules
The expansion rules for ALC are shown in Table 5 on the following page. There are 4
rules corresponding to the operators supported by the logic: ⊓, ⊔, ∃ and ∀—the need for
a ¬ rule is eliminated by internalising negations using a combination of de Morgan’s laws
and the axioms:

¬∃R.C ⇐⇒ ∀R.¬C

¬∀R.C ⇐⇒ ∃R.¬C

Note that:

8

⊓ if 1. x : (C ⊓ D) ∈ S
2. x : C /∈ S or x : D /∈ S

then S −→ S ∪ {x : C, x : D}

⊔ if 1. x : (C ⊔ D) ∈ S
2. x : C /∈ S and x : D /∈ S

then S −→ S ∪ {x : C} or S −→ S ∪ {x : D}

∃ if 1. x : ∃R.C ∈ S
2. ¬∃y(xRy ∈ S ∧ y : C ∈ S)

then S −→ S ∪ {xRz, z : C}
where z is a new variable

∀ if 1. x : ∀R.C ∈ S and xRy ∈ S
2. y : C /∈ S

then S −→ S ∪ {y : C}

Table 5: Tableaux expansion rules for ALC

1. The second condition in each rule constitutes a control strategy which ensures that
the algorithm does not fail to terminate due to an infinite repetition of the same
expansion. It can be intuitively seen that the algorithm is guaranteed to terminate
because:

(a) The ⊓, ⊔ and ∃ rules can only be applied once to a given x : C constraint.

(b) The ∀ rule can be applied many times to a given x : ∀R.C constraint but only
once to a given xRy constraint.

(c) The constraints added by each rule are always smaller than the constraints to
which the rule was applied.

2. The ⊔ rule for disjunctive constraints is different from the other rules: it is non-
deterministic and operates by searching different possible expansions.3.3 Extended Tableaux Algorithms

In order to deal with GCIs the basic ALC algorithm can be extended by the addition of
a new kind of constraint called a universal constraint and a more sophisticated control
strategy known as blocking.

9

3.3.1 Universal Constraints

When a terminology contains GCIs, they must all be satisfied in any valid model. A GCI
C1 ⊑ C2 is satisfied in a model I if and only if every individual in I is either in CI

2 or
not in CI

1 . This condition is imposed in a constraint system S by adding a universal
constraint ∀x.x : C where C

.
= C2 ⊓ ¬C1 [14].

Example 3.1 The GCI from Example 2.1 on page 6 would be converted into the universal
constraint:

∀x.x : ¬Ulcer ⊔ ∀hasLocation.¬Stomach ⊔ ∃hasLocation.StomachLining

This constraint states that every individual in a valid model is either not an Ulcer or not
located in the Stomach or is located in the StomachLining.

The expansion rule for universal constraints, given in Table 6 on this page, ensures that
when S contains the universal constraint ∀x.x : C, every variable y in S will be subject
to the constraint y : C.

∀x if 1. ∀x.x : C ∈ S and y is a variable in S
2. y : C /∈ S

then S −→ S ∪ {y : C}

Table 6: Tableaux expansion rule for universal constraints

To determine the satisfiability of a concept expression C with respect to a terminology
T containing the GCIs C1 ⊑ D1, . . . , Cn ⊑ Dn, S is initialised to contain the constraint
x : C plus the universal constraints ∀x.x : D1 ⊔¬C1, . . . , ∀x.x : Dn ⊔¬Cn. Note that each
universal constraints will cause a disjunctive constraint to be applied to every variable in
S.

3.3.2 Blocking

Universal constraints do not satisfy the termination conditions stated in Section 3.2 and it
is easy to see that a more sophisticated control strategy is required in order to guarantee
termination; e.g. if ∀x.x : ∃R.C ∈ S, an infinite sequence of applications of the ∀x and ∃
rules would result in non-termination.

In order to avoid this the algorithm uses a more sophisticated control strategy called
blocking. To describe blocking it is necessary to introduce some new terms and notation:

• A generating rule is a tableaux expansion rule which introduces a new variable to
the constraint system; in the case of ALC the ∃ rule is the only generating rule.

10

• The parent of a variable x is the variable which triggered the application of the
generating rule which introduced x; ancestor is the transitive closure of parent.

• The constraints on variable v in S, written Sv, is the set of constraints x : C or xRy
such that x = v.

Blocking imposes a new condition on generating rules: the rule can only be applied to
a variable x if it has no ancestor variable y such that Sx ⊆ Sy [14, 4]. If a variable
does not meet this condition it is said to be blocked. When a variable is blocked it is in
effect being identified with the blocking variable and the constraint system is describing
a cyclical model. Intuitively it can be seen that termination is now guaranteed because a
finite terminology can only produce a finite number of different constraints and therefore
a finite number of different sets of constraints; all variables must therefore eventually be
blocked.4 The New GRAIL Classi�er
Key Grail statements and their equivalent abstract forms are summarised in Table 7 on
the current page. In the (confusingly named) newAttribute statement K is a cardinality
keyword which determines whether R1 and R2 are roles (many valued) or attributes (single
valued): K can be one of oneOne (both R1 and R2 are attributes), manyMany (neither
are attributes), oneMany (R1 is an attribute) or manyOne (R2 is an attribute).

GRAIL Statement Abstract form

C which 〈R1 C1 . . . Rn Cn〉 C ⊓ ∃R1.C1 ⊓ . . .
. . . ⊓ ∃Rn.Cn

C newSub CN CN ⊑ C

C name CN CN
.
= C

C topicNecessarily 〈R1 C1 . . . Rn Cn〉 C ⊑ ∃R1.C1 ⊓ . . .
. . . ⊓ ∃Rn.Cn

RN newAttribute RN1 RN2 K

{

RN1 ⊑ RN

RN2
.
= RN−1

1

RN1 addSub RN2 RN2 ⊑ RN1

RN1 specialisedBy RN2 RN1 ◦ RN2 ⊑ RN1

Table 7: Grail statements and equivalent abstract forms

From Table 7 it can be seen that the only concept forming operators in the Grail language
are conjunction (⊓) and exists restriction (∃); Grail concept expressions are therefore
a subset of ALC expressions. Grail’s concept axioms can also be seen to be a subset

11

of the concept introduction and GCI axioms described in Table 3 on page 5 and Table 4
on page 6. The new Grail classifier uses an extended tableaux subsumption algorithm
based on [14, 3, 42, 4] which supports the full set of ALC concept forming operators as
well as GCIs.Grail’s role forming operators and axioms are rather more complex. Although Grail’s
syntax implies support for the inverse role forming operator the subsumption algorithm
does not support reasoning about inverse roles—the two new roles introduced by a
newAttribute statement are treated independently. As reasoning with inverse roles is
problematical [43, 18] the same approach has been adopted in the new Grail classifier.Grail’s role inclusion axioms are dealt with by extensions to the tableaux expansion
rules similar to those used to deal with transitively closed roles [42]; these extensions do
not affect the operation of the optimisation techniques and their description is beyond the
scope of this report.5 Intratability
When classifying the Galen knowledge base the large number of GCIs is a major cause of
intractability. Constraint systems used in subsumption/satisfiability testing will include
a set of universal constraints corresponding to the set of GCIs in the knowledge base;
each universal constraint will cause a disjunctive constraint to be added to every variable
in the constraint system, resulting in an exponential increase in the number of constraint
systems explored by the ⊔ expansion rule.

If there are n GCIs in the knowledge base n disjunctions will be applied to each variable.
Each disjunction could be expanded in at least 2 possible ways so this gives at least
#variables×2n possible constraint systems which may have to be searched. As there are
several hundred GCIs in the Galen knowledge base it is not surprising that a naive
implementation of the tableaux algorithm results in effective non termination.6 Optimisation Tehniques
The new Grail classifier includes a number of adapted and novel optimisations which
try to take advantage of the structure of a ‘realistic’ knowledge base. These include:

• Lexically normalising and encoding all concept expressions;

• Indexing GCI constraints so only ‘relevant’ GCIs are fully expanded;

• Semantic branching, a search technique adapted from the Davis-Putnam-Logeman-
Loveland procedure (DPL) commonly use to solve propositional satisfiability (SAT)
problems;

12

• Dependency directed backtracking (backjumping);

• Caching and re-using partial constraint systems.

The new classifier also includes optimisation techniques which have already been demon-
strated to be effective [8]. These include:

• Enhanced traversal—a modified breadth first search technique which minimises the
number of subsumption tests required to classify a concept.

• Lazy expansion—early clash detection is facilitated by substituting definitions for
concept names in constraints only as required by the expansion algorithm and by
retaining a copy of the original constraint in the constraint system.6.1 Normalisation and EnodingGrail lexically normalises and encodes all concept expressions and, recursively, their

sub-expressions. This ensures that:

1. All concept expressions are in a standard form; e.g. all exists restrictions are con-
verted to value restrictions so ∃R.A would be normalised to ¬∀R.¬A;

2. All sub-expressions are atomic concept names; e.g. ∀R.A⊓∀R.B would be encoded
as C1 ⊓ C2 where C1

.
= ∀R.A and C2

.
= ∀R.B.

A functional definition of the normalisation and encoding process is given in Table 8 on
the following page. Note that:

• the Encode function minimises the number of new concept definitions added to the
knowledge base T by identifying lexically equivalent conjunctive expressions;

• non-primitive concepts introduced by the encoding process are are not classified.

Example 6.1 Normalising the expression ∃R.(A ⊓ C ⊓ ¬B) ⊓ ∀R.(B ⊔ ¬A ⊔ ¬C) leads
to the normalisation and encoding of the two sub-expressions ∃R.(A ⊓ C ⊓ ¬B) and
∀R.(B ⊔ ¬A ⊔ ¬C). After normalisation the first sub-expression becomes ¬Cy, where
Cy

.
= ∀R.¬Cx and Cx

.
= A ⊓ ¬B ⊓ C. When the second sub-expression is normalised

(B ⊔¬A⊔¬C) becomes ¬(¬B ⊓A⊓C) and is encoded as ¬Cx; ∀R.¬Cx is then encoded
as Cy. The combined expression ¬Cy ⊓Cy is then normalised as ⊥ which means that the
expression is identified as being unsatisfiable without recourse to the tableaux expansion
algorithm.

Normalisation and encoding has a number of advantages:

13

Normalise(A) :
A = atomi onept name ⇒ A

A = ¬B ⇒ C if Normalise(B) = ¬C

⊥ if Normalise(B) = ⊤
⊤ if Normalise(B) = ⊥otherwise ¬Normalise(B)

A = ∀R.B ⇒ ⊤ if Normalise(B) = ⊤otherwise Enode(∀R.Normalise(B))
A = B1 ⊓ . . . ⊓ Bn ⇒ ⊥ if ⊥ ∈ {Normalise(B1), . . . ,Normalise(Bn)}

⊥ if ∃C.({C, ¬C} ⊆ {Normalise(B1), . . . ,Normalise(Bn)})otherwise Enode(Normalise(B1) ⊓ . . . ⊓ Normalise(Bn))
A = ∃R.B ⇒ Normalise(¬∀R.¬B)
A = B1 ⊔ . . . ⊔ Bn ⇒ Normalise(¬(¬B1 ⊓ . . . ⊓ ¬Bn))Enode(A) :
A = ∀R.B ⇒ C if C

.= ∀R.B ∈ Totherwise D where D is a new onept name and
T −→ T ∪ D

.= ∀R.B

A = B1 ⊓ . . . ⊓ Bn ⇒ C if C
.= (B′

1 ⊓ . . . ⊓ B′
n) ∈ T and

∀B.(B ∈ {B1, . . . , Bn} ⇔ B ∈ {B′
1, . . . , B

′
n})otherwise D where D is a new onept name and

T −→ T ∪ D
.= B1 ⊓ . . . ⊓ Bn

Table 8: Normalisation and encoding

• syntactically obvious unsatisfiability can be detected without using the tableaux
procedure;

• the effect of the lazy expansion optimisation (described in Section 6 on page 12) is
maximised—clashing concepts can be detected without fully expanding their defin-
itions;

• knowledge bases with large amounts of repetitive structure may be more compactly
stored;

• more efficient data structures can be used—e.g. if all concepts are encoded as
integers, hash tables can be replaced with arrays;

• other optimisation techniques are facilitated—e.g. semantic branching and its asso-
ciated heuristic functions (see Section 6.3 on page 16).

14

6.2 Indexing GCI Constraints
This technique uses knowledge about the structure and function of GCIs in the Galen
terminology:

1. The left hand side of a GCI is always a conjunctive concept expression, one element
of which is either a primitive or is a defined concept which can be expanded into a
conjunctive expression containing a primitive.

2. Each GCI represents additional knowledge about some specific concept—e.g. the
GCI in Example 2.1 on page 6 represents the knowledge that stomach ulcers always
occur in the lining of the stomach—and consequently is irrelevant to the majority
of subsumption tests.

As described in section 5 on page 12, testing satisfiability with respect to a terminology
which contains a GCI C ⊑ D is achieved by applying the universal constraint ∀x.x :
D ⊔ ¬C to any model being constructed by the tableaux expansion algorithm. When, as
in the Galen terminology, C is a conjunctive expression of the form P ⊓ A1 ⊓ . . . ⊓ An,
where P is primitive, this leads to a universal constraint of the form:

∀x.x : D ⊔ ¬P ⊔ ¬A1 ⊔ . . . ⊔ ¬An

The effect of irrelevant GCIs can be minimised by ordering the search of possible expan-
sions of the resulting disjunctive constraints on each variable x so that S −→ S∪{x : ¬P}
is chosen first. Because P is primitive, x : ¬P requires no further expansion and can re-
main implicit—an explicit expansion of the remainder of the disjunction is only necessary
when x : P is added to the constraint system.

For example, testing satisfiability w.r.t. a terminology containing the GCI from Ex-
ample 2.1 on page 6 means that the universal constraint from Example 3.1 on page 10
will apply and that every variable x in a constraint system S generated by the tableaux
expansion algorithm will be subject to the disjunctive constraint:

x : ∃hasLocation.StomachLining ⊔ ¬Ulcer ⊔ ∀hasLocation.¬Stomach

The implicit expansion S −→ S∪{x : ¬Ulcer} can be assumed unless and until x : Ulcer is
added to S, when explicit expansion of the remainder of the disjunction becomes necessary:

S −→ S ∪ {x : ∃hasLocation.StomachLining ⊔ ∀hasLocation.¬Stomach}

This technique can be extended to deal with a set of n GCIs:

P1 ⊓ A11 ⊓ . . . ⊓ A1m ⊑ B1
...

Pn ⊓ An1 ⊓ . . . ⊓ Anm ⊑ Bn

15

The GCIs are transformed into n universal constraints, each containing a negated prim-
itive ¬Pj :

∀x.x : ¬P1 ⊔ ¬A11 ⊔ . . . ⊔ ¬A1m ⊔ B1
...

∀x.x : ¬Pn ⊔ ¬An1 ⊔ . . . ⊔ ¬Anm ⊔ Bn

These constraints are used to construct a table (which can be an array if all concept names
are encoded as integers—see section 6.1 on page 13—or a hash table otherwise) indexed
by P1 . . . Pn. The entry corresponding to each Pj is a (conjunction of) disjunction(s) from
the universal constraint(s) containing Pj:

index entry
P1 (¬A11 ⊔ . . . ⊔ ¬A1m ⊔ B1) ⊓ . . .
...

...
Pn (¬An1 ⊔ . . . ⊔ ¬Anm ⊔ Bn) ⊓ . . .

The expansion algorithm makes the default assumption that every variable xi ∈ S is
subject to the constraints xi : ¬P1, . . . , xi : ¬Pn. Whenever a constraint xi : Pj is added
to S, Pj is looked up in the table. If there is an entry for Pj it is added as a constraint
of the form:

xi : (¬Aj1 ⊔ . . . ⊔ ¬Ajm ⊔ Bj) ⊓ . . .

Although this optimisation depends on the structure of GCIs in the Galen terminology
there is no loss of generality as GCIs which do not meet condition 1 on the preceding
page can still be dealt with in the usual way by adding the full disjunctive constraint to
every individual.

It is perhaps worth noting that this optimisation is in fact a form of dynamic back-
tracking [19]: a branching choice is made (i.e. the selection of the negated primitive
from a GCI disjunction); search continues, perhaps involving further branching choices;
a contradiction is discovered; the earlier choice is changed without discarding subsequent
searching.6.3 Semanti Branhing
Standard tableaux algorithms are inherently inefficient as the search technique uses syn-
tactic branching—choosing an unexpanded disjunction and searching all the possible con-
straint systems obtained by adding constraints corresponding to each of the disjuncts [20].
As the alternative constraint systems are not disjoint there is nothing to prevent the re-
currence of clashing constraints in different branches of the search tree. The resulting
wasted expansion could be costly if discovering the clash requires the solution of a com-
plex sub-problem.

16

Example 6.2 Tableaux expansion of a constraint system S, where:

{x : (A ⊔ B), x : (A ⊔ C)} ⊆ S

could lead to the search pattern shown in Figure 1 on the current page.

S ∪ {x : A} ⇒ clash S ∪ {x : C}

S ∪ {x : A} ⇒ clash S ∪ {x : B}

S

�
�

�
�

��

X
X

X
X

XX

�
�

�
�

��

X
X

X
X

XX

Figure 1: syntactic branchingGrail deals with this problem by using a semantic branching technique adapted from
DPL SAT algorithms [17]. Instead of choosing an unexpanded disjunction, Grail chooses
a single disjunct from one of the unexpanded disjunctions and searches the two possible
constraint systems obtained by adding constraints corresponding to the chosen disjunct
and its negation. e.g. if x : (A ⊔ B) ∈ S the algorithm might choose A and search the
two constraint systems S ∪ {x : A} and S ∪ {x : ¬A}.

Using semantic branching has a number of advantages:

• At each branching point in the search tree the two branches are strictly disjoint so
there is no possibility of wasted search as in syntactic branching.

• A great deal is known about the implementation and optimisation of this algorithm.
In particular both boolean constraint propagation and heuristic guided search can
be used to minimise the size of the search tree [16].

6.3.1 Boolean Constraint Propagation

Boolean constraint propagation (BCP) [16] is a technique used to maximise determin-
istic expansion, and thus pruning of the search tree via clash detection, before performing
non-deterministic expansion (branching). BCP deterministically expands disjunctive con-
straints presenting only one expansion possibility and detects a clash when a disjunctive
constraint has no expansion possibilities. The number of expansion possibilities presen-
ted by a disjunctive constraint x : C1 ⊔ . . . ⊔ Cn in a constraint system S is equal to the
number of disjuncts Ci such that x : ¬Ci /∈ S.

Example 6.3 Given a constraint system S such that:

{x : (A ⊔ (B ⊓ C)), x : (¬B ⊔ ¬C), x : ¬A} ⊆ S

17

BCP deterministically expands the constraint x : (A ⊔ (B ⊓ C)) because x : ¬A ∈ S:

S −→ S ∪ {x : (B ⊓ C)}

After x : (B ⊓ C) is expanded to give S −→ S ∪ {x : B, x : C}, BCP also identifies
x : (¬B ⊔ ¬C) as a clash because x : B ∈ S and x : C ∈ S.

6.3.2 Heuristic Guided Search

A heuristic technique is used to guide the search in a way which tries to minimise the
size of the search tree by maximising the pruning effect of the constraint added at each
branching point. When expanding the constraints on a variable x, Grail examines all the
unexpanded disjunctive constraints on x and branches on the disjunct which has the Max-
imum number of Occurrences in disjunctions of Minimum Size—the well known MOMS
heuristic [16]. The order in which the two branches are searched is also heuristically
determined based on the ratio of positive and negated occurrences of the chosen disjunct.

Example 6.4 When applied to the constraint system from Example 6.2 on the preceding
page the Grail algorithm would use the MOMS heuristic to select A as the disjunct on
which to branch and search the two possible expansions:

S −→ S ∪ {x : A} or S −→ S ∪ {x : ¬A}

resulting in the search pattern illustrated in Figure 2 on the current page. Note that
when x : ¬A is added to S, BCP will lead deterministically to the further expansion
S −→ S ∪ {x : B, x : C}.

S ∪ {x : B, x : C}

S ∪ {x : A} ⇒ clash S ∪ {x : ¬A}

S
�

�
�

�
��

X
X

X
X

XX

Figure 2: semantic branching

6.3.3 The GRAIL Search Algorithm

In general, for a variable x in a constraint system S, the Grail search algorithm proceeds
as follows:

1. Perform all deterministic expansions; e.g. apply the ⊓, ∃, ∀ and ∀x rules from
Table 5 on page 9 and Table 6 on page 10.

18

2. Perform Boolean Constraint Propagation (BCP):

(a) Search for constraints x : (C1 ⊔ . . . ⊔ Cn) where:

{x : ¬C1, . . . , x : ¬Ci−1} ⊆ S

{x : ¬Ci+1, . . . , x : ¬Cn} ⊆ S

x : Ci /∈ S

(b) If such a constraint is found and x : ¬Ci ∈ S return clash.

(c) If such a constraint is found and x : ¬Ci /∈ S, expand the constraint:

S −→ S ∪ {x : Ci}

and return to step 1.

3. Perform heuristic guided search if there are unexpanded disjunctions x : (C11⊔ . . .⊔
C1n), . . . , x : (Cm1 ⊔ . . . ⊔ Cmn) in S.

(a) Use MOMS heuristic to select Cij such that x : ¬Cij /∈ S.

(b) Search:
S −→ S ∪ {x : Cij}

or

S −→ S ∪ {x : ¬Cij}

in a heuristically determined order.6.4 Dependeny Direted Baktraking
Inherent unsatisfiability concealed in sub-problems can lead to large amounts of unpro-
ductive backtracking search known as thrashing.

Example 6.5 A constraint system S, where:

S = {x : (C1 ⊔ D1), . . . , x : (Cn ⊔ Dn), x : ∃R.(A ⊔ B), x : ∀R.E}

and (A⊔B)⊓E ⇒ clash, could lead to the fruitless exploration of 2n truth assignments
for C1, . . . , Cn before the inherent unsatisfiability is discovered.

The Grail classifier addresses this problem by employing a form of dependency directed
backtracking called backjumping. This works by labeling constraints with a dependency
set indicating the truth assignments which led to their introduction. When a clash is
discovered the algorithm can jump back over irrelevant assignments without exploring
the alternative branches.

For example when expanding the constraint system from Example 6.5 on this page, the
first set of truth assignments for C1, . . . , Cn will lead to the discovery of the clash with

19

respect to y : (A⊔B) and y : E. As neither of these constraints has the truth assignments
for C1, . . . , Cn in their dependency sets it is clear that the clash did not depend on any of
these assignments. The algorithm can therefore either return unsatisfiable immediately
(if the dependency sets of the clashing constraints were empty) or jump directly back to
the most recent truth assignment on which the clash did depend without exploring the
alternative truth assignments for C1, . . . , Cn.

In more general terms backjumping works as follows:

1. The initial constraint(s) in a constraint system S have their dependency sets ini-
tialised to ∅.

2. Constraints added by deterministic expansion rules (⊓, ∃, ∀ and ∀x) are labelled
with the union of the label(s) from the constraint(s) which triggered the expansion.

3. A constraint added by the nth truth assignment is labelled {n}.

4. After a clash, return a dependency set D consisting of the (union of the) label(s)
from the clashing constraint(s).

5. If the first branch of the nth truth assignment returns a dependency set D1 such
that n /∈ D1, backtrack immediately returning the dependency set D1.

6. If the second branch of the nth truth assignment returns a dependency set D2,
backtrack returning the dependency set (D1 ∪ D2) − {n}.6.5 Cahing

The combination of normalisation, encoding and lazy expansion [8] facilitates the rapid
detection of ‘obvious’ unsatisfiability (subsumption) but detecting ‘obvious’ satisfiability
(non-subsumption) is more difficult for tableaux algorithms. This is unfortunate as:

• most tests are satisfiable (a ratio of 3:1 when classifying the Galen terminology);

• satisfiable tests are generally much more expensive (a ratio of 7:1 when classifying
the Galen terminology).

The Grail classifier tackles this problem by trying to use cached results from previous
tableaux tests to demonstrate the satisfiability of a concept expression. A considerable
amount of work can be saved when large or complex models are re-used in this way.

Example 6.6 Given two concepts:

A = C ⊓ ∃R1.C1 ⊓ ∃R2.C2

¬B = D ⊓ ∃R3.C3

20

C1 C2 C3

D

R
3R1 R2

R1 R2

C1 C2C3

R
3

C, D

C

Figure 3: Merging models of C ⊓ ∃R1.C1 ⊓ ∃R2.C2 and D ⊓ ∃R3.C3

the satisfiability of A⊓ ¬B (and thus the non-subsumption A 6� B) can be demonstrated
by a model consisting of models of A and ¬B joined at their roots, as shown in Figure 3
on the current page.

To demonstrate that two models joined at their roots result in a valid (non-clashing)
model, it is only necessary to examine their root constraints (constraints on their first
variables). Two models represented by constraint systems SA and SB can be joined in
this way unless :

1. The union of their root constraints contains an immediate contradiction; e.g.:

x0 : C ∈ SA ∧ x0 : ¬C ∈ SB

2. An additional tableaux expansion rule may be applicable when the root constraints
are combined, e.g.:

x0Rxn ∈ SA ∧ x0 : ∀R.C ∈ SB ∧ x0 : ∀R.C /∈ SA (1)

Note that condition 2 states that an additional rule may be applicable—it would be
possible to merge models in a wider range of cases by considering additional variables:
e.g. in Equation 1 on this page, if xn : C ∈ SA. However caching only root constraints has
the advantage of simplifying the merging procedure and minimising space requirements.
The space required for caching can be further reduced by storing only:

SC = {C | x0 : C ∈ S}

S¬C = {C | x0 : ¬C ∈ S}

SR = {R | x0Ry ∈ S}

S∀ = {〈R, C〉 | x0 : ∀R.C ∈ S}

In more general terms, when testing if A is subsumed by B (A � B?), caching works as
follows:

21

1. If models for A, ¬A, B or ¬B have not been cached, perform the satisfiability test(s)
and cache SC , S¬C , SR and S∀ from the fully expanded constraint system(s). If a
satisfiability test fails the concept is equal to ⊥ and its negation to ⊤.

2. Return true or false if obvious subsumption or non-subsumption is detected:

¬B = ⊥ ⇒ true (A � B)

A = ⊥ ⇒ true (A � B)

B = ⊥ ∧ A 6= ⊥ ⇒ false (A 6� B)

¬A = ⊥∧ ¬B 6= ⊥ ⇒ false (A 6� B)

3. Return false (A 6� B) if the root constraints from A (SA) and ¬B (S¬B) can be
merged. SA and S¬B can be merged unless :

(a) SA
C ∩ S¬B

¬C 6= ∅

(b) SA
¬C ∩ S¬B

C 6= ∅

(c) ∃R, C.(R ∈ SA
R ∧ 〈R, C〉 ∈ S¬B

∀ ∧ 〈R, C〉 /∈ SA
∀)

(d) ∃R, C.(R ∈ S¬B
R ∧ 〈R, C〉 ∈ SA

∀ ∧ 〈R, C〉 /∈ S¬B
∀))

(e) ∃R.(R ∈ SA
R ∧ R ∈ S¬B

R ∧ R is functional)

4. Perform a tableaux satisfiability test on A ⊓ ¬B returning false (A 6� B) if it is
satisfiable and true (A � B) if it is not.

It would be possible to extend this technique in order to avoid constructing obviously
satisfiable sub-models during tableaux expansions but this has not been implemented in
the current version of the Grail classifier.

6.5.1 Interactions

The behaviour of the optimisation techniques is not orthogonal; in particular, the normal-
isation and encoding of concept expressions interacts with both semantic branching and
caching.

The semantic branching optimisation uses a heuristic function to select the concept on
which to branch with the objective of maximising pruning by selecting the most con-
straining concept; in the current implementation this is based on frequency of occurrence.
Efficiency is an essential characteristic of the heuristic function if its effectiveness is to
exceed its cost and the required efficiency would be difficult to achieve without normal-
isation and encoding due to the cost of repeatedly comparing arbitrarily complex concept
expressions. Normalisation and encoding effectively performs all such comparisons once,
replacing concept expressions with concept names and leaving the heuristic function only

22

needing to compare the names. In the current implementation neither the heuristic func-
tion nor the subsequent branching procedure are able to deal with non-atomic concept
expressions.

The caching optimisation interacts with normalisation and encoding in a similar way.
When testing if two cached models can be merged the algorithm must check for interac-
tions between value restriction constraints (x0 : ∀R.C) which occur only in one model
and relation constraints (x0Rxn) which occur in the other model. This means comparing
the concept expressions in value restrictions, a process which is made much more efficient
by normalisation and encoding so that it is only necessary to compare concept names.7 Preliminary Results
The new classifier has been tested in a number of ways:

• by classifying the Galen core knowledge base (the high level ontology which con-
tains 1,794 distinct concepts, 207 roles and 277 GCIs) with various combinations of
optimisations enabled and disabled;

• by comparing its performance with that of the Kris DL [6] using a modified version
of the full Galen knowledge base (the modified knowledge base contains 413 roles
and 3,917 concepts);

• by comparing its performance with the KSAT algorithm [20].

The comparisons with Kris and KSAT also provided useful correctness tests: the concept
hierarchies computed by Kris and Grail were identical, as were the results of 44,000
satisfiability tests performed by both KSAT and Grail.
The current version of the classifier is written in Lisp and no attempt has been made
to tune or optimise the Lisp code beyond that performed by the Lisp compiler with
‘optimization’ settings speed=3 and safety=0. All tests have been performed using Allegro
Lisp on a Sun SPARCstation 20/61 equipped with a 60MHz superSPARC processor, a
1Mbyte off-chip cache and 128Mbytes of RAM.

Testing work is still at an early stage but some interesting and encouraging results have
already emerged:

• Without optimisation, attempting to classify the Galen core knowledge base results
in effective non-termination—single satisfiability tests have been run for more than
> 106s without producing a result. With optimisation, the Galen core terminology
is classified in approximately 547s (an average of 0.3s per concept).

• Kris takes over 1.4 times as long as Grail to classify (an ALCF version of) theGalen knowledge base, performs over 3.6 times as many satisfiability tests and

23

exhibits a higher rate of increase in the number of satisfiability tests required as the
knowledge base size is increased.

• Grail out-performs KSAT when testing the satisfiability of single randomly gen-
erated ALC concept expressions, a test method devised and used by KSAT’s de-
velopers [21]. For the hardest problems generated, KSAT’s median solution time is
more than 3 times greater than Grail’s and its mean solution time is more than
10 times greater; KSAT also takes almost 25 times longer to solve the complete
problem set.

With this kind of problem Grail also exhibits easy-hard-easy behavior as con-
strainedness is varied to give problems with probabilities of satisfiability in the range
1–0, a behavior which has been shown to be characteristic of many (NP-Complete)
search problems [25].7.1 Classifying the GALEN Knowledge Base

The performance of the new Grail classifier was first tested with respect to classification
of the Galen core knowledge base. In Figure 4 on the current page the classification time
per concept is plotted against knowledge base size. Each data point shows the mean clas-
sification time per concept for a set of 100 concepts. The complete classification process
required 21,610 subsumption tests of which only 8,376 resulted in tableaux satisfiabil-
ity tests—the remaining tests were avoided, largely by the caching optimisation which
detected obvious subsumptions and non-subsumptions.

0.001

0.01

0.1

1

10

0 200 400 600 800 1000 1200 1400 1600 1800

m
ea

n
cl

as
si

fic
at

io
n

tim
e

(s
)

KB size (concepts)

Figure 4: mean classification time

24

In order to measure the effectiveness of some of the optimisation techniques, the above
test was repeated several times with one of the optimisations disabled in each case.

7.1.1 Normalisation and Encoding

To measure the effectiveness of normalisation and encoding, the Galen core knowledge
base classification test was repeated with the optimisation partially disabled—it is not
possible to fully disable encoding as the semantic branching technique cannot deal with
non-atomic concept expressions (see Section 6.5.1 on page 22). However in order to
measure the direct benefit of normalisation and encoding—the detection of lexically ob-
vious unsatisfiability—the matching process was disabled so that every expression and
sub-expression was uniquely encoded.

In Figure 5 on the current page the classification time per concept, both with and without
normalisation and encoding, is plotted against knowledge base size Although total clas-
sification time increased from 547s to 1,122s this was largely due to interaction with
the caching optimisation (see Section 6.5.1 on page 22) which resulted in the number of
satisfiability tests performed increasing from 8,376 to 13,949.

0.001

0.01

0.1

1

10

0 200 400 600 800 1000 1200 1400 1600 1800

m
ea

n
cl

as
si

fic
at

io
n

tim
e

(s
)

KB size (concepts)

normal
no normalisation & encoding

Figure 5: mean classification time with & without normalisation & encoding

7.1.2 Caching

The Galen core knowledge base classification test was repeated a second time with the
caching optimisation disabled. In Figure 6 on the next page the mean classification time
per concept, both with and without caching, is plotted against knowledge base size. With

25

caching disabled disabled total classification time increased to 2,573s, a factor of more
than 4.7, while the number of satisfiability tests performed increased to 22,961, a factor
of more than 2.7.

0.001

0.01

0.1

1

10

100

0 200 400 600 800 1000 1200 1400 1600 1800

m
ea

n
cl

as
si

fic
at

io
n

tim
e

(s
)

KB size (concepts)

normal
no caching

Figure 6: mean classification time with & without caching

7.2 Comparing GRAIL and KRIS
In order to compare the performance of Grail and Kris the Galen knowledge base was
converted to an ALCF knowledge base [26] by:

1. Discarding all role inclusion axioms.

2. Converting all GCIs A ⊑ B into concept definitions CN
.
= A ⊓ B where CN is a

unique system generated name.

3. Eliminating semantically equivalent concepts as these were not handled correctly
by Kris.

The method of converting GCIs was chosen to produce large numbers of realistic non-
primitive concepts—if the knowledge base includes the assertion that A implies B it is
reasonable to assume that concepts of type A⊓B are realistic. Non-primitive concepts were
prefered as their classification on the basis of subsumption reasoning is a key characteristic
of DLs.

The performance of Grail and Kris was compared as the size of the knowledge base was
increased from 2,719 concepts to 3,917 concepts by adding the non-primitive converted

26

GCI concepts. In Figure 7 on this page the mean classification time per concept is
plotted against knowledge base size while in Figure 8 on the next page the mean numbers
of subsumption and satisfiability tests performed per classification is also plotted against
knowledge base size. Classifying all 3,917 concepts took Grail 670s while it performed
149,150 subsumption tests and 30,717 satisfiability tests. The same process took Kris
955s, 256,555 subsumption tests and 113,296 satisfiability tests.

0.05

0.1

0.15

0.2

0.25

0.3

2600 2800 3000 3200 3400 3600 3800 4000

m
ea

n
cl

as
si

fic
at

io
n

tim
e

pe
r

co
nc

ep
t (

s)

KB size (concepts)

GRAIL
KRIS

Figure 7: Grail -v- Kris — classification time

7.3 Comparing GRAIL and KSAT
As well as classifying the Galen terminology, Grail was also compared with KSAT, a
decision procedure for the propositional modal logic K(m) which has been shown to be
equivalent to ALC [43, 20]. The Grail and KSAT decision procedures were compared
using randomly generated N -CNF K(m) concepts, a test method devised by KSAT’s de-
velopers [21]. An N -CNFK(m) concept is defined as follows:

• N -CNFK(m) concept = conjunction of clauses

• clause = disjunction of literals

• literal = atom or ¬atom

• atom = primitive concept or ∀R.clause

Generation is controlled by parameters L, N , m, p and d where:

27

0

10

20

30

40

50

60

70

80

90

2600 2800 3000 3200 3400 3600 3800 4000

m
ea

n
te

st
s

pe
r

co
nc

ep
t

KB size (concepts)

GRAIL subsumption
GRAIL satisfiability
KRIS subsumption

KRIS satisfiability

Figure 8: Grail -v- Kris — subsumption and satisfiability tests

L = number of clauses
N = number of primitive concepts
m = number of different roles (modalities)
p = probability of atom being primitive
d = maximum role chain (modal depth)

For fixed N , m, p and d, concepts with a probability of satisfiability in the range 1–0 can
be obtained by varying L, the number of clauses in the top level conjunction. The tests
performed here follow the basic method from [21], using N = 3, m = 1, p = 0.5, d = 3
and L in the range 3–123.

The performance of KSAT and the new Grail satisfiability algorithm is compared in
Figure 9 on the following page. Each data-point on the graph shows the median time
taken by KSAT and Grail to perform satisfiability tests on 1,000 randomly generated
concepts. The probability of a concept being satisfiable (in the range 1–0) for each value
of L is also shown for reference purposes.

In order to measure the effectiveness of some of the optimisation techniques with this kind
of data the test was repeated several times with one of the Grail optimisations disabled
in each case.

7.3.1 Normalisation and Encoding

Figure 10 on the next page shows the result of partially disabling Grail’s normalisation
and encoding as described in section 7.1.1. In this experiment only 100 satisfiability tests

28

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120 140

m
ed

ia
n

sa
tis

fia
bi

lit
y

tim
e

(s
)

L - number of clauses

grail
ksat

prob. sat. (x0.1)

Figure 9: Grail -v- KSAT — median satisfiability times

per data point were performed due to the length of time required to perform some of these
tests.

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120 140

m
ed

ia
n

ne
t s

at
is

fia
bi

lit
y

tim
e

(s
)

L - number of clauses

normal
no normalisation & encoding

prob. sat. (x0.5)

Figure 10: Grail with & without normalisation & encoding

29

7.3.2 Dependency Directed Backtracking

Figure 11 on this page shows the result of disabling Grail’s dependency directed back-
tracking. In this case mean satisfiability time has been plotted to show more clearly the
effect of dependency directed backtracking on the small number of very hard problems
which occur in the generally easy region where L is in the range 90–123. When depend-
ency directed backtracking was disabled the test had to be curtailed for L > 90 due to
the time taken to test some of the concepts in this region.

0.001

0.01

0.1

1

10

100

0 20 40 60 80 100 120 140

m
ea

n
sa

tis
fia

bi
lit

y
tim

e
(s

)

L - number of clauses

GRAIL with DDB
GRAIL without DDB

KSAT

Figure 11: Grail with & without dependency directed backtracking

8 Conlusion
The results show that optimisation can dramatically improve the performance of a tab-
leaux subsumption testing procedure for an expressive description logic: when applied
to the new Grail classifier the techniques described in this report reduced classification
time for the Galen knowledge base by at least several orders of magnitude. The pre-
liminary results have already lead to some interesting observations regarding the various
techniques:

• Dependency directed backtracking and the indexing of GCIs are particularly im-
portant techniques: it proved impossible to classify the Galen knowledge base
without these optimisations.

30

• Techniques which work well with random data may not work as well with a real
knowledge base: normalisation and encoding was highly effective with randomly
generated 3-CNFK(m) concepts but was of little direct benefit when classifying theGalen knowledge base. Conversely, techniques which work well with real know-
ledge bases may appear to be ineffective if tested with randomly generated data.

• Caching is a valuable technique which reduced by a factor of approximately 5 the
number of satisfiability tests required to classify each concept. Moreover the number
of tests per concept stabilised at less than 8 for knowledge bases larger than 3,120
concepts.

• The optimised satisfiability test displayed good ‘pay as you go’ characteristics: when
tested with less expressive logics its performance compares favourably with that of
more specific algorithms.

It may be that even a highly optimised classifier will be unable to provide acceptable
performance as the size of the Galen knowledge base increases, particular if many more
GCIs are added. However, even if this is the case, the work described in this report will
still be of value, since:

• Many of the techniques studied would also be useful with less expressive DLs and
should become standard in tableaux satisfiability algorithms.

• A complete procedure could be used for ‘background’ processing after a quick answer
has been provided by an incomplete procedure and to provide a benchmark against
which the performance of an incomplete procedure could be judged [14]. In this
context the criteria for acceptable performance are less stringent but still extant—
the unoptimised Grail procedure would be of little value as single subsumption
tests frequently take in excess of 106s.

• A complete procedure is a sensible starting point from which to retreat gracefully
into limited and clearly characterised incompleteness.

The highly encouraging preliminary results justify further work on optimisation tech-
niques. Future work will include refining, extending and adding to the described tech-
niques as well as more extensive testing, preferably using large knowledge bases from a
range of real applications.

31

Referenes
[1] L. C. Aiello, J. Doyle, and S. Shapiro, editors. Principals of Knowledge Represent-

ation and Reasoning: Proceedings of the Fifth International Conference (KR’96).
Morgan Kaufmann, November 1996.

[2] F. Baader. Terminological cycles in kl-one-based knowledge representation lan-
guages. Research Report RR-90-01, Deutsches Forschungszentrum für Künstliche
Intelligenz GmbH (DFKI), January 1990.

[3] F. Baader. Augmenting concept languages by transitive closure of roles: An altern-
ative to terminological cycles. In Proceedings of IJCAI’91, pages 446–451, 1991.

[4] F. Baader, M. Buchheit, and B. Hollunder. Cardinality restrictions on concepts.
Artificial Intelligence, 1996. To appear.

[5] F. Baader, H.-J. Heinsohn, B. Hollunder, J. Muller, B. Nebel, W. Nutt, and H.-J.
Profitlich. Terminological knowledge representation: A proposal for a terminolo-
gical logic. Technical Memo TM-90-04, Deutsches Forschungszentrum für Künstliche
Intelligenz GmbH (DFKI), 1991.

[6] F. Baader and B. Hollunder. KRIS: Knowledge representation and inference system.
SIGART Bulletin, 2(3):8–14, 1991.

[7] F. Baader and B. Hollunder. A terminological knowledge representation system with
complete inference algorithms. In Processing declarative knowledge: Intermational
workshop PDK’91, number 567 in Lecture Notes in Artificial Intelligence, pages 67–
86, Berlin, 1991. Springer-Verlag.

[8] F. Baader, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical analysis of op-
timization techniques for terminological representation systems. In B. Nebel, C. Rich,
and W. Swartout, editors, Principals of Knowledge Representation and Reasoning:
Proceedings of the Third International Conference (KR’92), pages 270–281. Morgan-
Kaufmann, 1992. Also available as DFKI RR-93-03.

[9] F. Baader and U. Sattler. Description logics with symbolic number restrictions. In
Wolfgang Wahlster, editor, Proceedings of the 12th European Conference on Artificial
Intelligence (ECAI’96), pages 283–287. John Wiley & Sons Ltd., 1996.

[10] R. Baud, C. Lovis, L. Alpay, A.-M. Rassinoux, J.-R. Scherrer, A. W. Nowlan, and
A. L. Rector. Modelling for natural language understanding. In Charles Safran,
editor, Seventeenth Annual Symposium on Computer Applications in Medical Care
(SCAMC-93), pages 289–93, Washington DC, 1993. McGraw Hill.

[11] D. Beneventano, S. Bergamaschi, S. Lodi, and C. Sartori. Terminological logics
for schema design and query processing in OODBs. In F. Baader, M. Buchheit,

32

M.A. Jeusfeld, and W. Nutt, editors, Reasoning about structured objects—knowledge
representation meets databases. Proceedings of the KI’94 Workshop KRDB’94,
Saarbrücken, Germany, September 1994.

[12] P. Bresciani. Querying databases from description logics. In F. Baader, M. Buchheit,
M.A. Jeusfeld, and W. Nutt, editors, Reasoning about structured objects—knowledge
representation meets databases. Proceedings of the 2nd Workshop KRDB’95, 1995.

[13] P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive
description logics: a preliminary report. In Gerard Ellis, Robert A. Levinson, An-
drew Fall, and Veronica Dahl, editors, Knowledge Retrieval, Use and Storage for
Efficiency: Proceedings of the First International KRUSE Symposium, pages 28–39,
1995.

[14] M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in terminological
knowledge representation systems. Journal of Artificial Intelligence Research, 1:109–
138, 1993.

[15] F. Donini, B. Hollunder, M. Lenzerini, A. M. Spaccamela, D. Nardi, and W. Nutt.
The frontier of tractability for concept description languages. Technical report,
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI), 1989.

[16] J. W. Freeman. Improvements to propositional satisfiability search algorithms.
PhD thesis, Department of Computer and Information Science, University of
Pennsylvania, Philadelphia, PA, USA, 1995.

[17] J. W. Freeman. Hard random 3-SAT problems and the Davis-Putnam procedure.
Artificial Intelligence, 81:183–198, 1996.

[18] G. De Giacomo and M. Lenzerini. Tbox and abox reasoning in expressive description
logics. In Aiello et al. [1], pages 316–327.

[19] M. L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research,
1:25–46, 1993.

[20] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics from
propositional decision procedures—the case study of modal K. In Michael McRobbie
and John Slaney, editors, Proceedings of the Thirteenth International Conference
on Automated Deduction (CADE-13), number 1104 in Lecture Notes in Artificial
Intelligence. Springer, 1996.

[21] F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure for ALC. In
Aiello et al. [1], pages 304–314.

[22] C. Goble, N. Paton, and S. Bechhofer, 1996. http://www.cs.man.ac.uk/mig/tambis/.

33

[23] C. A. Goble, C. Haul, and S. Bechhofer. Describing and classifying multimedia using
the description logic Grail. In Proceedings of IS&T/SPIE, vol 2670, Storage and
Retrieval for Still Image and Video Databases {IV}, San Jose, California, USA,
February 1996.

[24] J. Heinsohn, D. Kudenko, B. Nebel, and H.-J. Profitlich. An empirical analysis of
terminological representation systems. Artificial Intelligence, 68:367–397, 1994.

[25] T. Hogg, B. A. Huberman, and C. P. Williams. Phase transitions and the search
problem. Artificial Intelligence, 81:1–15, 1996. Editorial.

[26] B. Hollunder and W. Nutt. Subsumption algorithms for concept languages. Research
Report RR-90-04, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH
(DFKI), April 1990.

[27] I. Horrocks. A comparison of two terminological knowledge representation systems.
Master’s thesis, University of Manchester, 1995.

[28] J. Kirby and A. L. Rector. The PEN&PAD data entry system: From prototype to
practical system. In AMIA Fall Symposium, 1996. To appear.

[29] D. B. Lenat and R. V. Guha. The evolution of cycl, the cyc representation language.
SIGART Bulletin, 2(3):84–87, 1991.

[30] Alon Y. Levy and Marie-Christine Rousset. Using description logics to model and
reason about views. In F. Baader, M. Buchheit, M.A. Jeusfeld, and W. Nutt, edit-
ors, Reasoning about structured objects—knowledge representation meets databases.
Proceedings of the 3rd Workshop KRDB’96, pages 48–49, 1996.

[31] R. M. MacGregor. Inside the Loom description classifier. SIGART Bulletin, 2(3):88–
92, 1991.

[32] E. Mays, R. Dionne, and R. Weida. K-rep system overview. SIGART Bulletin,
2(3):93–97, 1991.

[33] B. Nebel. Terminological cycles: Semantics and computational properties. In Sowa
[46], chapter 11, pages 331–361.

[34] W. A. Nowlan. Structured methods of information management for medical records.
PhD thesis, University of Manchester, 1993.

[35] W. A. Nowlan and A. L. Rector. Medical knowledge representation and predict-
ive data entry. In M. Stefanelle, A. Hasman, M. Fieschi, and J. Talmon, editors,
Proceedings of AIME 91, number 44 in Lecture notes in Medical Informatics, pages
105–116. Springer-Verlag, 1991.

[36] P. F. Patel-Schneider. The Classi knowledge representation system: Guiding prin-
cipals and implementation rationale. SIGART Bulletin, 2(3):108–113, 1991.

34

[37] A.-M. Rasinoux, C. Juge, P.-A. Michel, R. H. Baud, D. Lemaitre, F.-C. Jean, P. De-
goulet, and J.-R. Scherrer. Analysis of medical jargon: The RECIT system. In
P. Barahona, M. Stefanelli, J. Wyatt, and J. Sickmann, editors, Fifth conference on
Artificial Intelligence in Medicine Europe (AIME ’95), number 934 in Lecture Notes
in Artificial Intelligence, pages 42–42. Springer, 1995.

[38] A. Rector, S. Bechhofer, C. A. Goble, I. Horrocks, W. A. Nowlan, and W. D. So-
lomon. The Galen concept modelling language for medical terminology. AI in
Medicine, 1996. To appear.

[39] A. Rector and I. Horrocks. Experience building a large, re-usable medical onto-
logy using a description logic with transitivity and concept inclusions. In Workshop
on Ontological Engineering, AAAI Spring Symposium, Stanford, CA. AAAI Press,
Menlo Park, California, 1997. To appear.

[40] A. L. Rector, P. Zanstra, D. Solomon, and The Galen Consortium. Galen: Termin-
ology services for clinical information systems. In M. F. Laires, M. J. Ladeira, and
J. P. Christensen, editors, Health in the New Communications Age, pages 90–100.
IOS Press, Amsterdam, 1995.

[41] U. Sattler. A concept language for engineering applications with part–whole relations.
In Proceedings of the International Conference on Description Logics—DL’95, pages
119–123, Roma, Italy, 1995.

[42] U. Sattler. A concept language extended with different kinds of transitive roles.
In G. Görz and S. Hölldobler, editors, 20. Deutsche Jahrestagung für Künstliche
Intelligenz, number 1137 in Lecture Notes in Artificial Intelligence. Springer Verlag,
1996.

[43] K. Schild. A correspondence theory for terminological logics: Preliminary report. In
Proceedings of IJCAI’91, pages 466–471, 1991.

[44] K. Schild. Terminological cycles and the propositional µ-calculus. Technical Report
RR-93-18, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI),
April 1993.

[45] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48:1–26, 1991.

[46] J. F. Sowa, editor. Principals of Semantic Networks: Explorations in the represent-
ation of knowledge. Morgan-Kaufmann, 1991.

[47] A. Tarski. Logic, Semantics, Mathemetics: Papers from 1923 to 1938. Oxford
University Press, 1956.

[48] J. C. Wagner, A.-M. Rassinoux, R. H. Baud, and J.-R. Scherrer. Generating noun
phrases from a medical knowledge representation. Twelfth International Congress
of the European Federation for Medical Informatics, MIE-94, pages 218–223, 1994.

35

[49] W. A. Woods. Understanding subsumption and taxonomy: a framework for progress.
In Sowa [46], chapter 1, pages 45–94.

[50] W. A. Woods and J. G. Schmolze. The kl-one family. Computers and Mathematics
with Applications – Special Issue on Artificial Intelligence, 23(2–5):133–177, 1992.

36

