FaCT and DLP

Tan Horrocks':2 and Peter F. Patel-Schneider?

! Medical Informatics Group, Department of Computer Science,
University of Manchester, Manchester M13 9PL, UK
horrocks@cs.man.ac.uk
2 IRST, Istituto per la Ricerca Scientifica e Tecnologica, I-38050 Povo TN, ITALY
3 Bell Labs Research, Murray Hill, NJ, U.S.A.
pfps@research.bell-labs.com

FaCT: The tests were performed using FaCT version 1.2. FaCT is a descrip-
tion logic classifier whose description language is a superset of K4 y,) and whose
subsumption reasoning uses a sound and complete tableaux algorithm. FaCT
employs a wide range of optimisations, in particular a form of dependency di-
rected backtracking called backjumping which can significantly reduce the size
of the search space [5]. The FaCT algorithm does not support KT and S4 ex-
plicitly, but FaCT includes a preprocessing and encoding optimisation which is
also able to apply the standard embedding of KT and S4 in K and K4 respec-
tively: the time taken for preprocessing and embedding is included in the results.
Programming language: Common Lisp (compiled).

DLP: The ideas in FaCT are being incorporated into a new generation of De-
scription Logic systems. Initial experiments in this effort have resulted in a modal
prover for a superset of K4(y,), which has provisionally been called DLP. The
DLP prover has control over several options, including backjumping and caching
partial results. Both of these mechanisms have proved to be very useful in the
benchmarks, with caching being the more powerful. As an experimental prover,
there are essentially no user amenities in DLP, but the final Description Logic
system will have a full user interface and other amenities. Programming lan-
guage: ML (compiled).

The other provers: For comparative purposes the tests for K and KT were
repeated using three other available provers: Crack version 1.0 beta 15 [3],
KSAT [4] and Kris [2,1]. Crack and Kris are also description logic classifiers
which use sound and complete tableaux algorithms while KSAT is a K,y prover
which uses an algorithm based on propositional satisfiability (SAT) testing. None
of these systems supports transitive relations so they could not be used for S4.
The KT tests were performed by using the standard embedding of KT in K:
the time taken for the embedding is not included in the results for these systems.

All three systems are programmed in Common Lisp (compiled). It should be
pointed out that neither Crack nor Kris are intended as stand-alone K provers
and for many classes of formula a significant improvement in their performance

could be achieved by preprocessing and encoding large formulae, a technique
which is used by both FaCT and KSAT. Both Crack and Kris support much
richer logics than K (for example Crack can reason about converse relations)
and can also reason about nominals (individuals).

Availability: The sources for FaCT are available from the first authors home
page: http://www.cs.man.ac.uk/ horrocks; the DLP prover is currently under
development, but the benchmark version and full timing results are also available
from the same location. Contacts for information about the other systems are:

Crack — Enrico Franconi, franconi@irst.itc.it;
KSAT — Roberto Sebastiani, rseba@irst.itc.it;
Kris — H.-J. Burckert, hjb@dfki.uni-sb.de.

Advantages: FaCT has been tested using several Common Lisps including
GNU Lisp and should thus be highly portable. As well as K, KT and S4 it can
also deal with K4. The implemented logic is significantly more expressive than
S4: it includes support for a hierarchy of multiple modalities (roles), functional
roles and global axioms. DLP should also be highly portable: the ML compiler
runs on a variety of platforms and is freely available from several sites, including
http://cm.bell-labs.com/cm/cs/what /sming.

Hardware and Software: For DLP: SPARC clone; main memory 132MB; 150
MHz Ross RT626 CPU; SML-NJ compiler, version 109.32. For the other provers:
Sun Ultra 1; main memory 32MB; 147 MHz CPU; Solaris; Allegro CL 4.3.

Results: To demonstrate the effectiveness of the backjumping optimisation the
tests were also performed using FaCT with backjumping disabled: the resulting
prover is referred to as FaCT*. The results of the tests are given in Tables 1, 2
and 3. Both FaCT and DLP performed reasonably well with all classes of K and
KT formula, trivially solving most of the K formulae, and in the case of DLP
many of the KT and S4 formulae.

FaCT and DLP significantly outperformed all the other provers, and in many
cases they also exhibited a completely different qualitative performance. For
example, with k_dum_p the other provers all show an exponential increase in
solution times with increasing formula size, whereas the times taken by FaCT
and DLP increase very little for larger formulae (and FaCT is already 2,000
times faster for the largest formula solved by another system).

The results for FaCT* demonstrate that backjumping accounts for a sig-
nificant proportion of FaCT’s performance advantage over the other systems,
particularly with respect to provable formulae, and experiments with DLP sug-
gest that caching is even more effective. However the performance of FaCT*
still compares favourably with that of the other systems and it still exhibits a

Table 1. Results for K, KT and S4

FaCT || FaCT* || DLP Crack || KSAT || Kris
Formulae|| p | n || p | n | p|n|p|n|p|n|p|ln
k_branch_ 6| 4 31 3| 13] 11 20 1 8 8| 3] 3
k_dj- >20{ 8| 15| 8|[>20(>20 2l 3 8 5| 8 6
k_dum_ ||>20|>20| 15|>20{|>20|>20 3|>20|| 11{>20]|| 15|>20
k_grz_ >20(|>20 8|>20||>20(>20 1|>20(17|>20|| 13|>20
k_lin_ >20(|>20 7|>201|>20{>20 5/ 2|{|>20{ 3|| 6/ 9
k_path_ 76 5/ 5||>20{>20 2l 6 4, 8| 3| 11
k_ph_ 6| 7 5 6 6| 8 2l 3 5 5| 4 5
k_poly_ ||>20|>20}{|>20|>20(|>20|>20(|>20{>20|| 13| 12| 11{>20
k_t4p- >20(|>20(|>20|>20(|>20|>20 1 1) 10/ 18| 7| 5
Table 2. Results for KT
FaCT || FaCT" || DLP || Crack||KSAT | Kris
Formulae || p | n p | n plnfp|lnlp|n|p|n
kt_45_ >20|>20|| 13|>20|[>20{>20|| O] O|| 5| 5| 4| 3
kt_branch._ 6| 4 3| 3| 16| 11| 2| 2f 8 7| 3| 3
kt_dum_ 11{>20 8/>20(|>20(>20|| O 1| 7| 12| 3| 14
kt_grz_ >20(|>20 5/>20(/>20(>20{| 0| Of 9[>20] 0] 5
kt_md_ 4 5 3 5 31>20| 2| 4| 2| 4| 3| 4
kt_path_ 5 3 2| 2 6|>20| 1| 5| 2| 5| 1] 13
kt_ph_ 6| 7 4 5 7 18| 2| 2| 4| 5| 3| 3
kt_poly- ||>20[7|>20[6 6/ 6| 1| 1| 1] 2| 2| 2
kt_t4p_ 4 2 1l 1 3|>20(O 1f 1| 1} 1| 7
Table 3. Results for S4
FaCT ||FaCT*|| DLP
Formulae | p | n || p | n p|ln
S4-45_ >20|>20(| 8|>20||>20|>20
s4_branch._ 41 4| 2| 2|| 10 8
S4-grz- 2|>20(0[>20 9|>20
S4-1pc- 5 4| 4| 4| 10/>20
s4-md- 8 4| 3| 4 3/>20
s4-path_ 21 1 2| 1 3|>20
$4-ph_ 5 4| 4] 3 7 18
S4-85_ >201 2f 2| 2 3/>20
S4-t4p- 5 3| 1 1{|>20(>20

different qualitative performance in some cases (e.g. k_lin_p). DLP is more effec-
tive with non-provable formulae, and for some classes of provable formulae it is
outperformed by FaCT; this phenomenon is the subject of continuing research.

A well engineered C code implementation of KSAT is now available, and has
been observed to outperform the Lisp version by a significant margin (as much
as 100 times). It is likely that significant improvements to the performance of
FaCT and DLP could also be achieved by employing more sophisticated software
engineering.

References

1. F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical
analysis of optimization techniques for terminological representation systems. In
B. Nebel, C. Rich, and W. Swartout, editors, Principals of Knowledge Represen-
tation and Reasoning: Proceedings of the Third International Conference (KR’92),
pages 270-281. Morgan-Kaufmann, 1992. Also available as DFKI RR~93-03.

2. F. Baader and B. Hollunder. A terminological knowledge representation system with
complete inference algorithms. In Processing declarative knowledge: International
workshop PDK’91, number 567 in Lecture Notes in Artificial Intelligence, pages
67-86, Berlin, 1991. Springer-Verlag.

3. P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive
description logics: a preliminary report. In Gerard Ellis, Robert A. Levinson, An-
drew Fall, and Veronica Dahl, editors, Knowledge Retrieval, Use and Storage for
Efficiency: Proceedings of the First International KRUSE Symposium, pages 28-39,
1995.

4. F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure for ALC. In L. C.
Aiello, J. Doyle, and S. Shapiro, editors, Principals of Knowledge Representation
and Reasoning: Proceedings of the Fifth International Conference (KR’96), pages
304-314. Morgan Kaufmann, November 1996.

5. I. Horrocks. Optimising Tableaur Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

