
LTCS{Report Aa
hen University of Te
hnologyResear
h group forTheoreti
al Computer S
ien
e

A PSPACE-algorithm for decidingALCNIR+-satisfiability

Ian Horrocks Ulrike Sattler Stephan Tobies

LTCS-Report 98-08

RWTH Aa
henLuFg Theoretis
he Informatikhttp://www-lti.informatik.rwth-aa
hen.de Ahornstr. 5552074 Aa
henGermany

A PSPACE-algorithm for decidingALCNIR+-satisfiability�
Ian Horrocksy Ulrike Sattlerz Stephan Tobiesz

July 27, 2000

AbstractALCNIR+—ALCNaugmented with transitive and inverse roles—is an
expressive Description Logic which is especially well-suited for the repre-
sentation of complex, aggregated objects. Despite its expressiveness, it has
been conjectured that concept satisfiability for this logiccould be decided in
a comparatively efficient way. In this paper we prove the correctness of this
conjecture by presenting a PSPACE algorithm for deciding satisfiability and
subsumption ofALCNIR+-concepts. The space-efficiency of this tableau-
based algorithm is due to a sophisticated guidance of the search for a solution.
Moreover, this space-efficiency is not paid for with time-consumption; on the
contrary, the guidance technique leads to very early refutation. This algorithm
will be the basis for an efficient implementation.

�This work was partially supported by the Esprit Project 22469 – DWQ and the DFG.yDepartment of Computer Science, University of Manchester.zResearch Group for Theoretical Computer Science, University of Technology Aachen.

1

1 Syntax and Semantics ofALCIR+
We start by introducing the Description Logic (DL)ALCIR+ , which is the exten-
sion of the well-known DLALC [SSS91] withtransitively closed rolesandinverse
(converse) roles. The set of transitive role namesR+ is a subset of the set of role
namesR. Interpretations map role names to binary relations on the interpretation
domain, and transitive role names to transitive relations.In addition, for any roleR 2 R, the roleR� is interpreted as the inverse ofR.

Definition 1 LetNC be a set ofconcept namesand letR be a set ofrole nameswith
transitive role namesR+ � R. The set ofALCIR+-roles isR [fR� j R 2 Rg.
The set ofALCIR+-conceptsis the smallest set such that

1. every concept name is a concept and

2. if C andD are concepts andR is anALCIR+-role, then(C uD), (C tD),(:C), (8R:C), and(9R:C) are concepts. Both> and? are also concepts.

An interpretationI = (�I ; �I) consists of a set�I , called thedomainof I, and a
function �I which maps every concept to a subset of�I and every role to a subset
of �I ��I such that, for all conceptsC;D, the properties in Figure 1 are satisfied.>I = �I?I = ;(C uD)I = CI \DI ;(C tD)I = CI [DI ;:CI = �I n CI ;(9S:C)I = fx 2 �I j There existsy 2 �I with hx; yi 2 SI andy 2 CIg;(8S:C)I = fx 2 �I j For ally 2 �I , if hx; yi 2 SI , theny 2 CIg;

ForS 2 R : hx; yi 2 SI iff hy; xi 2 S�I; and

ForR 2 R+ : if hx; yi 2 RI andhy; zi 2 RI , thenhx; zi 2 RI:
Figure 1: Semantics ofALCIR+-concepts

A conceptC is calledsatisfiableiff there is some interpretationI such thatCI 6= ;. Such an interpretation is called amodel ofC. A conceptD subsumes
a conceptC (written C v D) iff CI � DI holds for each interpretationI. For
an interpretationI, an individualx 2 �I is called aninstanceof a conceptC iffx 2 CI .

2

In order to make the following considerations easier, we introduce two functions
on roles:

1. The inverse relation on roles is symmetric, and to avoid considering roles such
asR��, we define a functionInv which returns the inverse of a role. More
precisely,Inv(R) = R� if R is a role name, andInv(R) = S if R = S�.

2. Obviously, a roleR is transitive if and only ifInv(R) is transitive. However,
this may be established by eitherR or Inv(R) being inR+. We therefore de-
fine a functionTrans which returnstrue iff R is a transitive role—regardless
of whether it is a role name or the inverse of a role name. More precisely,Trans(R) = true iff R 2 R+ or Inv(R) 2 R+.

2 Blocking

Before we introduce the new notion of blocking which allows for a space efficient
implementation of theALCIR+-algorithm, let us recall the reason why we employ
blocking at all, and the additional complexities introduced by inverse roles. We will
also examine the weaknesses in the previous version [HS98a]of blocking for theALCIR+-algorithm which lead to an inefficient use of space.

The algorithm presented in [HS98a] for deciding satisfiability of ALCIR+-
concepts used the tableaux method [HN90], in which the satisfiability of a conceptD is tested by trying to construct a model ofD. The model is represented by a tree
in which nodes correspond to individuals and edges correspond to roles. Each nodex is labelled with a set of conceptsL(x) that the individual must satisfy, and each
edge is labelled with a role name.

An algorithm starts with a single node labelledfDg, and proceeds by repeatedly
applying a set ofexpansion rulesthat recursively decompose the concepts in node
labels; new edges and nodes are added as required in order to satisfy9R:C concepts.
The construction terminates either when none of the rules can be applied in a way
that extends the tree, or when the discovery of obvious contradictions demonstrates
thatD has no model.

In order to prove that such an algorithm is a sound and complete decision proce-
dure for concept satisfiability in a given logic, it is necessary to demonstrate that the
models it constructs are valid with respect to the semantics, that it will always find
a model if one exists, and that it always terminates. The firsttwo points can usually
be dealt with by proving that the expansion rules preserve satisfiability, and that in
the case of non-deterministic expansion (e.g., of disjunctions) all possibilities are
exhaustively searched. For logics such asALC, termination is mainly due to the
fact that the expansion rules can only add new concepts that are strictly smaller than

3

the decomposed concept, so the model must stabilise when allconcepts have been
fully decomposed.

Termination is not, however, guaranteed for logics that include transitive roles,
as the expansion rules can introduce new concepts that are the same size as the
decomposed concept. In particular,8R:C concepts, whereR is a transitive role,
are dealt with by propagating the whole concept acrossR-labelled edges [Sat96].
For example, given a leaf nodex labelledfC; 9R:C; 8R:(9R:C)g, whereR is a
transitive role, the combination of the9R:C and8R:(9R:C) concepts would cause
a new nodey to be added to the tree with an identical label tox. The expansion
process could then be repeated indefinitely.

This problem can be dealt with byblocking: halting the expansion process when
a cycle is detected [Baa90; BDS93]. For logics without inverse roles, the general
procedure is to check the label of each new nodey, and if it is asubset[BBH96]
of the label of an existing nodex, then no further expansion ofy is performed:x
is said to blocky. The resulting tree corresponds to a cyclical model in whichy
is identified withx.1 The validity of the cyclical model is an easy consequence of
the fact that the9R:C concept whichy must satisfy must also be satisfied byx,
becausex’s label is a superset ofy’s. Termination is guaranteed by the fact that all
concepts in node labels are ultimately derived from the decomposition ofD, so all
node labels must be a subset of the subconcepts ofD, and a cycle must therefore
occur within a finite number of expansion steps.

2.1 Dynamic Blocking

Blocking is, however, more problematical when inverse roles are added to the logic,
and a key feature of the algorithms presented in [HS98a] was the introduction of
a dynamic blockingstrategy. Besides using label equality instead of subset, this
strategy allowed blocks to be established, broken, and re-established. With in-
verse roles the blocking condition has to be considered morecarefully because
roles are now bi-directional, and additional concepts inx’s label could invalidate
the model with respect toy’s predecessor. Taking the above example of a node la-
belledfC; 9R:C; 8R:(9R:C)g, if the successor of this node were blocked by a node
whose label additionally included8R�::C, then the cyclical model would clearly
be invalid.

In [HS98a] this problem was overcome by allowing a nodex to be blocked by
one of its ancestorsy if and only if they were labelled with the same sets of concepts.

Another difficulty introduced by inverse roles is the fact that it is no longer
possible to establish a block on a once and for all basis when anew node is added

1For logics with a transitive closure operator it is necessary to check the validity of the cyclical
model created by blocking [Baa90], but for logics that only support transitive roles the cyclical
model is always valid [Sat96].

4

R
L(x) = fA; : : : g

R Sxy
zP 2 R+ L(z) = L(y)) z blocked byyv L(v) = fCg

w
L(y) = f9R:>;9P:>;8R:C;8P:(9R:>);8P:(9P:>);8P:(8R:C)g

Figure 2: A tableau where dynamic blocking is crucial

to the tree. This is because further expansion in other partsof the tree could lead
to the labels of the blocking and/or blocked nodes being extended and the block
being invalidated. Consider the example sketched in Figure2, which shows parts of
a tableau that was generated for the conceptA u 9S:(9R:> u 9P:> u 8R:C u 8P:(9R:>) u 8P:(8R:C) u 8P:(9P:>));
whereC represents the concept8R�:(8P�:(8S�::A)):
This concept is clearly not satisfiable:w has to be an instance ofC, which implies
thatx is an instance of:A—which is inconsistent withx being an instance ofA.

As P is a transitive role, all universal value restrictions overP are propagated
from y to z, henceL(y) = L(z) andz is blocked byy. If the blocking ofz were not
subsequently broken when8P�:(8S�::A) is added toL(y) from C 2 L(v), then:A would never be added toL(x) and the inconsistency would not be detected.

As well as allowing blocks to be broken, it is also necessary to continue with
some expansion of blocked nodes, because8R:C concepts in their labels bcould
affect other parts of the tree. Again, let us consider the example in Figure 2. After
the blocking ofz is broken and8P�:(8S�::A) is added toL(z) from C 2 L(w),z is again blocked byy. However, the universal value restriction8P�:(8S�::A) 2L(z) has to be expanded in order to detect the inconsistency.

These problems are overcome by using dynamic blocking: allowing blocks to
be dynamically established and broken as the expansion progresses, and continuing
to expand8R:C concepts in the labels of blocked nodes.

5

2.2 Refined blocking

As mentioned before, in [HS98a] blocking of nodes was definedusing label equal-
ity. This led to major problems when trying to establish a polynomial bound on
the length of paths in the tree. If a node can only be blocked byan ancestor when
the labels coincide, then there could be exponentially manyancestors in a path be-
fore blocking actually occurs. Due to the non-deterministic nature of the expansion
rules, these subsets might actually be generated; the algorithm would then need to
store the node labels of a path of exponential length, thus consuming exponential
space.

This problem is already present when one tries to implement atableau algorithm
for the logicALCR+ [Sat96], where the non-deterministic nature of the expansion
rules for disjunction might lead to the generation of a chainof exponential size
before blocking occurs. Consider, for example, the conceptD = 9R:C u 8R:(9R:C)C = (A1 t B1) u (A2 t B2) u � � � u (An t Bn)
whereR is a transitive role. ForALCR+, a polynomial bound on the path length is
obtained by applying a simple strategy: a new successor is only generated when no
other rule can be applied, and theu- andt-rules are only applied if neither the8-
nor the8+-rule can be applied. With this strategy, it is sufficient to test for (subset-
)blocking before applying au- ort-rule for the first time to a nodex. Since no new
concepts are propagated “upwards” in a completion tree, we can proceed in this
way, effectively ignoringnon-deterministic choices due to propositional operators.

However, in the presence of inverse roles, this strategy is no longer possible.
Indeed, the expansion rules forALCIR+ as they have been presented in [HS98b]
based on set equality might already lead to a tableau with paths of exponential
length—even if the tested concept does not contain any inverse roles. This is due to
the fact that blocking is established on the basis of label equality and that disjunction
is resolved in a non-deterministic way which could lead to the generation of2n
different expansions of the conceptC.

A possible solution to this problem is to generate new tableau nodes when ex-
panding disjunction concepts [HM92; Sat96]. In this way, the labels of the nodes
don’t become cluttered with information which is not relevant for the correctness of
blocking. However, in the presence of inverse roles, and when aiming for an effi-
cient implementation, this solution is less then optimal: while in theALCR+-case it
was possible to restrict the application of expansion rulesto the leaves of the tree,
this is no longer the case forALCIR+ since concepts of the form8R:F may con-
strain both successor and predecessor nodes. If the conceptF contains disjunction,
this could necessitate the insertion of additional nodes inside the tree which would
at least make the resulting tableaux algorithm less comprehensible.

6

In order to gain the benefits of the method sketched above without paying the
conceptual overhead, we will keep the information which is relevant for block-
ing separated from the “irrelevant” information (due to propositional expansion) in
a way which allows for a simple and comprehensible tableaux algorithm. In the
following, we will explain this “separation” idea in detail, especially which rules
propagate which kind of information.

SS B(x);L(x)
B(y) � L(x); L(y)= Inv(S) = L(x)= Inv(S)y

y0
x

Figure 3: A blocking situation

Figure 3 shows a blocking situation. Consider nodey to be blocked by nodex.
When generating a model from this tree, the blocked nodey will be omitted andy0
will get x as anS-successor, which is indicated by the backwards arrow. On the one
hand, this construction yields a newS-successorx of y0, a situation which is taken
care of by the subset blocking used in the normalALCR+ tableaux algorithms. On
the other hand,x receives a newS�-successory0. Now blocking has to make sure
that, if a concept of the form8S�:C is in the label ofx, thenC (and8S�:C if S is
a transitive role) occurs in the label ofy0.

This was dealt with by equality blocking in [HS98a]. In the following algorithm
it will be dealt with by extending the node labelling and changing the blocking
condition into two conditions, one of which is a subset condition. In addition to the
labelL, each node now has a second labelB, where the latter is always a subset of
the former. The labelL contains complete information, whereasB only contains
information relevant to blocking. Thus, propositional consequences of concepts inL and concepts being propagated “upwards” in the tree are stored inL only. This
allows the blocking conditions to be modified as follows:� A first condition requires thatB of the blocked nodey be contained in the

labelL of the blocking nodex. Due to the restriction toB, this condition is
less strict than equality blocking: expansions of disjunctions are only stored
in L and thus cannot prevent a node from being blocked.

7

� A second condition takes care of the fact that the predecessor y0 of the blocked
nodey becomes a newS�-successor of the blocking nodex. It requires theS�-consequences of the blocked nodey to be equal to theS�-consequences
of the blocking nodex, and hence deals with the extra problems which come
with the introduction of inverse roles.

More precisely, the new definition of blocking reads as follows:
A nodey is blockedif for some ancestorx, x is blocked orB(y) � L(x) and L(y)= Inv(S) = L(x)= Inv(S)

wherey0 is the predecessor ofy in the completion tree andL(hy0; yi) = S. We
define L(y)= Inv(S) = f8 Inv(S):C 2 L(y)g:

Summing up, we build a completion tree in a way that, for all nodesx,� we haveB(x) � L(x),� B(x) contains only concepts which comedownthe tree,� L(x) contains, additionally, all concepts which comeup the tree, and� expansion of disjunctions and conjunctions only affectL(x).
3 A Tableaux Algorithm for ALCIR+
We now present a tableaux algorithm derived from the one presented in [HS98a].
We shape the rules in a way that allows for the separation of the concepts which are
relevant for the two parts of the blocking condition. A slight modification of this
algorithm will run using only polynomial space.

Like other tableaux algorithms, theALCIR+ algorithm tries to prove the satis-
fiability of a conceptD by constructing a model ofD. The model is represented
by a so-calledcompletion tree, a tree some of whose nodes correspond to individ-
uals in the model, each node being labelled with two sets ofALCIR+-concepts.
When testing the satisfiability of anALCIR+-conceptD, these sets are restricted to
subsets ofsub(D), wheresub(D) is the set of subconcepts ofD. Subconcepts are
defined as follows:

sub(A) = fAg for concept namesA 2 NC ;
sub(C uD) = fC uDg [sub(C) [sub(D);
sub(C tD) = fC tDg [sub(C) [sub(D);
sub(8R:C) = f8R:Cg [sub(C); and
sub(9R:C) = f9R:Cg [sub(C)

8

For ease of construction, we assume all concepts to be innegation normal form
(NNF), that is, negation occurs only in front of concept names. AnyALCIR+-
concept can easily be transformed to an equivalent one in NNFby pushing negations
inwards [HN90].

The soundness and completeness of the algorithm will be proved by showing
that it creates atableaufor D. We have chosen to take the (not so) long way round
tableaux definition method for proving properties of tableaux algorithms because
once tableaux are defined and Lemma 3 is proven the remaining proofs are consid-
erably easier.

Definition 2 If D is anALCIR+-concept in NNF andRD is the set of roles occur-
ring in D, together with their inverses, a tableauT for D is defined to be a triple(S;L;E) such that:S is a set of individuals,L : S! 2sub(D) maps each individual
to a set of concepts which is a subset ofsub(D), E : RD ! 2S�S maps each role
in RD to a set of pairs of individuals, and there is some individuals 2 S such thatD 2 L(s). For alls; t 2 S, C;E 2 sub(D), andR 2 RD, it holds that:

1. ? 62 L(s), and ifC 2 L(s), then:C =2 L(s),
2. if C u E 2 L(s), thenC 2 L(s) andE 2 L(s),
3. if C t E 2 L(s), thenC 2 L(s) orE 2 L(s),
4. if 8R:C 2 L(s) andhs; ti 2 E(R), thenC 2 L(t),
5. if 9R:C 2 L(s), then there is somet 2 S such thaths; ti 2 E(R) andC 2 L(t),
6. if 8R:C 2 L(s), hs; ti 2 E(R) andTrans(R), then8R:C 2 L(t), and

7. hs; ti 2 E(R) iff ht; si 2 E(Inv(R)).
Lemma 3 An ALCIR+-conceptD is satisfiable iff there exists a tableau forD.

Proof: For theif direction, ifT = (S;L;E) is a tableau forD with D 2 L(s0), a
modelI = (�I ; �I) of D can be defined as:�I = SAI = fs j A 2 L(s)g for all concept names A insub(D)RI = � E(R)+ if Trans(R)E(R) otherwise

whereE(R)+ denotes the transitive closure ofE(R). DI 6= ; becauses0 2 DI.
Transitive roles are obviously interpreted as transitive relations. By induction on
the structure of concepts, we show that, ifE 2 L(s), thens 2 EI . LetE 2 L(s).

9

1. If E is a concept name, thens 2 EI by definition.

2. If E = :C, thenC =2 L(s) (due to Property 1 in Definition 2), sos 2�I n CI = EI.

3. If E = (C1 u C2), thenC1 2 L(s) andC2 2 L(s), so by inductions 2 CI1
ands 2 CI2 . Hences 2 (C1 u C2)I.

4. The caseE = (C1 t C2) is analogous to 3.

5. If E = (9S:C), then there is somet 2 S such thaths; ti 2 E(S) andC 2L(t). By definition, hs; ti 2 SI and by inductiont 2 CI. HenceS 2(9S:C)I .

6. If E = (8S:C) andhs; ti 2 SI, then either

(a) hs; ti 2 E(S) andC 2 L(t), or

(b) hs; ti 62 E(S) and there exists a path of lengthn � 1 such thaths; s1i;hs1; s2i; : : : ; hsn; ti 2 E(S). Due to Property 6 in Definition 2,8S:C 2L(si) for all 1 6 i 6 n, and we haveC 2 L(t).
In both cases, we have by inductiont 2 CI , and hences 2 (8S:C)I .

For the converse, ifI = (�I ; �I) is a model ofD, then a tableauT = (S;L;E)
for D can be defined as: S = �IE(R) = RIL(s) = fC 2 sub(D) j s 2 CIg

It only remains to demonstrate thatT is a tableau forD:

1. T satisfies properties 1–5 in Definition 2 as a direct consequence of the se-
mantics ofALCIR+ concepts.

2. If d 2 (8R:C)I , hd; ei 2 RI andTrans(R), thene 2 (8R:C)I unless there
is somef such thathe; fi 2 RI andf =2 CI . However, if hd; ei 2 RI,he; fi 2 RI andR 2 R+, thenhd; fi 2 RI andd =2 (8R:C)I. T therefore
satisfies Property 6 in Definition 2.

3. T satisfies Property 7 in Definition 2 as a direct consequence ofthe semantics
of inverse relations.

10

3.1 Constructing anALCIR+ Tableau

From Lemma 3, an algorithm that constructs a tableau for anALCIR+-conceptD
can be used as a decision procedure for the satisfiability ofD. Such an algorithm
will now be described in detail.

The tableaux algorithm works on acompletion tree. This is a tree in which
each nodex is labelled with two setsL(x) andB(x), where both sets are subsets
of sub(D). Furthermore, each edgehx; yi of the tree is labelledL(hx; yi) = R
for some (possibly inverse) roleR occurring insub(D). Edges are added when
expanding9R:C and9R�:C terms; they correspond to relationships between pairs
of individuals and are always directed from the root node to the leaf nodes. The
algorithm expands the tree by extendingL(x) (and possiblyB(x)) for some nodex, or by adding new leaf nodes.

A completion treeT is said to contain aclashif, for a nodex in T, it holds that? 2 L(x) or there is a conceptC such thatfC;:Cg � L(x).
If nodesx andy are connected by an edgehx; yi, theny is called asuccessor

of x andx is called apredecessorof y. If L(hx; yi) = R, theny is called anR-
successorof x andx is called anInv(R)-predecessorof y. Ancestoris the transitive
closure ofpredecessoranddescendantis the transitive closure ofsuccessor. A nodey is called anR-neighbourof a nodex if either y is anR-successor ofx or y is anR-predecessor ofx.

A nodey is blockedif for some ancestorx, x is blocked orB(y) � L(x) and L(y)= Inv(S) = L(x)= Inv(S)
wherey0 is the predecessor ofy in the completion tree andL(hy0; yi) = S. The setL(y)= Inv(S) is defined byL(y)= Inv(S) = f8 Inv(S):C 2 L(y)g:

The algorithm initialises a treeT to contain a single nodex0, called theroot
node, withL(x0) = B(x0) = fDg, whereD is the concept to be tested for satisfia-
bility. T is then expanded by repeatedly applying the rules from Figure 4.

The completion tree iscompletewhen for some nodex, L(x) contains a clash
or when none of the rules is applicable. If, for an input concept D, the expansion
rules can be applied in such a way that they yield a complete, clash-free completion
tree, then the algorithm returns “D is satisfiable”; otherwise, the algorithm returns
“D is unsatisfiable”.

3.2 Soundness and Completeness

The soundness and completeness of the algorithm will be demonstrated by proving
that, for anALCIR+-conceptD, it always terminates and that it returnssatisfiable
if and only ifD is satisfiable.

11

u-rule: if 1.C1 u C2 2 L(x) and
2. fC1; C2g 6� L(x)

thenL(x) �! L(x) [fC1; C2gt-rule: if 1.C1 t C2 2 L(x) and
2. fC1; C2g \ L(x) = ;

thenL(x) �! L(x) [fCg for someC 2 fC1; C2g8-rule: if 1. 8S:C 2 L(x) and
2. there is anS-successory of x with C =2 B(y)

thenL(y) �! L(y) [fCg andB(y) �! B(y) [fCg or
2’. there is anS-predecessory of x with C =2 L(y)

thenL(y) �! L(y) [fCg.8+-rule: if 1. 8S:C 2 L(x) andTrans(S) and
2. there is anS-successory of x with 8S:C =2 B(y)

thenL(y) �! L(y) [f8S:Cg andB(y) �! B(y) [f8S:Cg or
2’. there is anS-predecessory of x with 8S:C =2 L(y)

thenL(y) �! L(y) [f8S:Cg.9-rule: if 1. 9S:C 2 L(x), x is not blocked and no other rule
is applicable to any of its ancestors, and

2. x has noS-neighboury with C 2 B(y)
then create a new nodey with L(hx; yi) = S andL(y) = B(y) = fCg

Figure 4: Tableaux expansion rules forALCIR+
Lemma 4 LetT be a completion tree obtained by applying the expansion rules to
anALCIR+-conceptD, then, for every nodex in T,B(x) � L(x).
Proof: By a simple induction on the number of rule applications.

Lemma 5 For eachALCIR+-conceptD, the tableaux algorithm terminates.

Proof: Let m = jsub(D)j. Obviously,m is linear in the length ofD. Termination
is a consequence of the following properties of the expansion rules:

1. The expansion rules never remove nodes from the tree or concepts from node
labels.

2. Successors are only generated for concepts of the form9R:C, and for any
node each of these concepts triggers the generation of at most one successor.
Sincesub(D) contains at mostm 9R:C concepts, the out-degree of the tree
is bounded bym.

12

3. Nodes are labelled with nonempty subsets ofsub(D). If a pathp is of length
at least22m, then there are 2 nodesx; y on p, with L(x) = L(y) andB(x) =B(y), and blocking occurs. Since a path on which nodes are blockedcannot
become longer, paths are of length at most22m.

Together with Lemma 3, the following lemma implies soundness of the tableaux
algorithm.

Lemma 6 If the expansion rules can be applied to anALCIR+-conceptD such
that they yield a complete and clash-free completion tree, thenD has a tableau.

Proof: Let T be the complete and clash-free completion tree constructedby the
tableaux algorithm forD. A tableauT = (S;L;E) can be defined with:S = fx j x is a node inT, andx is not blockedg;L = the restriction of the labellingL in T to S,E(R) = fhx; yi 2 S� S j 1: y is anR-neighbour ofx or2:L(hx; zi) = R andy blocksz or3:L(hy; zi) = Inv(R) andx blockszg;
and it can be shown thatT is a tableau forD:

1. D 2 L(x0) for the rootx0 of T and, asx0 has no predecessors, it cannot be
blocked. HenceD 2 L(s) for somes 2 S.

2. Property 1 of Definition 2 is satisfied becauseT is clash-free.

3. Properties 2 and 3 of Definition 2 are satisfied because neither theu-rule nor
thet-rule apply to anyx 2 S.

4. Property 4 in Definition 2 is satisfied because for allx 2 S, if 8R:C 2 L(x)
andhx; yi 2 E(R) we have three possible cases:

(a) y is anR-neighbour ofx. The8-rule guaranteesC 2 L(y).
(b) L(hx; zi) = R, y blocksz. Then by the8-rule we haveC 2 B(z) and

by the definition of blockingB(z) � L(y). HenceC 2 L(y).
(c) L(hy; zi) = Inv(R), x blocksz. From the definition of blocking we have

thatL(z)= Inv(Inv(R)) = L(x)= Inv(Inv(R)). Hence8R:C 2 L(z) and
the8-rule guaranteesC 2 L(y).

5. Property 5 in Definition 2 is satisfied because for allx 2 S, if 9R:C 2 L(x),
then the9-rule ensures that there is either:

13

(a) anR-predecessory with C 2 B(y) � L(y) (see Lemma 4). Becausey
is a predecessor ofx it cannot be blocked, soy 2 S andhy; xi 2 E(R).

(b) anR-successory with C 2 B(y) � L(y) (again, see Lemma 4). Ify is
not blocked, theny 2 S andhx; yi 2 E(R). Otherwise,y is blocked by
somez with B(y) � L(z). HenceC 2 L(z), z 2 S andhx; zi 2 E(R).

6. Property 6 in Definition 2 is satisfied because for allx 2 S, if 8R:C 2 L(x)
andhx; yi 2 E(R) andTrans(R) then we have three possible cases:

(a) y is anR-neighbour ofx. The8+-rule guarantees8R:C 2 L(y).
(b) L(hx; zi) = R, y blocksz. Then by the8+-rule we have8R:C 2 B(z)

and by the definition of blockingB(z) � L(y). Hence8R:C 2 L(y).
(c) L(hy; zi) = Inv(R), x blocksz. From the definition of blocking we

have thatL(z)=R = L(x)=R. Hence8R:C 2 L(z) and the8+-rule
guarantees8R:C 2 L(y).

7. Property 7 in Definition 2 is satisfied because for eachhx; yi 2 E(R), either:

(a) x is anR-neighbour ofy, soy is anInv(R)-neighbour ofx andhy; xi 2E(Inv(R)).
(b) L(hx; zi) = R andy blocksz, soL(hx; zi) = Inv(Inv(R)) andhy; xi 2E(Inv(R)).
(c) L(hy; zi) = Inv(R) andx blocksz, sohy; xi 2 E(Inv(R)).

Lemma 7 If D has a tableau, then the expansion rules can be applied in sucha way
that the tableaux algorithm yields a complete and clash-free completion tree forD.

Proof: Let T = (S;L;E) be a tableau forD. UsingT , we trigger the application
of the expansion rules such that they yield a completion treeT that is both com-
plete and clash-free. We start withT consisting of a single nodex0, the root, withB(x0) = L(x0) = fDg.T is a tableau, hence there is somes0 2 S with D 2 L(s0). When applying the
expansion rules toT, the application of the non-deterministict-rule is driven by
the labelling in the tableauT . To this purpose, we define a mapping� which maps
the nodes ofT to elements ofS, and we steer the application of thet-rule such thatL(x) � L(�(x)) holds for all nodesx of the completion tree.

More precisely, we define� inductively as follows:� �(x0) = s0.
14

t0-rule: if 1.C1 t C2 2 L(x), x is not blocked, and
2. fC1; C2g \ L(x) = ;

thenL(x) �! L(x) [fCg for someC 2 fC1; C2g \ L(�(x))
Figure 5: Thet0-rule� If �(xi) = si is already defined, and a successory of xi was generated for9R:C 2 L(xi), then�(y) = t for somet 2 S with C 2 L(t) andhsi; ti 2E(R).

To make sure that we haveL(xi) � L(�(xi)), we use thet0-rule given in Figure 5
instead of thet-rule. The expansion rules given in Figure 4 with thet-rule replaced
by thet0-rule are called themodifiedexpansion rules in the following.

It is easy to see that, if a treeT was generated using the modified expansion
rules, then the expansion rules can be applied in such a way that they yieldT.
Hence Lemma 6 and Lemma 5 still apply, and thus using thet0-rule instead of thet-rule preserves soundness and termination.

We will now show by induction that, ifL(x) � L(�(x)) holds for all nodesx inT, then the application of an expansion rule preserves this subset-relation. To start
with, we clearly havefDg = L(x0) � L(s0).

If the u-rule can be applied tox in T with C = C1 u C2 2 L(x), thenC1; C2
are added toL(x). SinceT is a tableau,fC1; C2g � L(�(x)), and hence theu-rule
preservesL(x) � L(�(x)).

If the t0-rule can be applied tox in T with C = C1 t C2 2 L(x), thenE 2fC1; C2g is in L(�(x)), andE is added toL(x) by thet0-rule. Hence thet0-rule
preservesL(x) � L(�(x)).

If the 9-rule can be applied tox in T with C = 9R:C1 2 L(x), thenC 2L(�(x)) and there is somet 2 S with h�(x); ti 2 E(R) andC1 2 L(t). The9-rule
creates a new successory of x for which �(y) = t for somet with C1 2 L(t).
Hence we haveL(y) = fC1g � L(�(y)).

If the 8-rule can be applied tox in T with C = 8R:C1 2 L(x) andy is anR-neighbour ofx, thenh�(x); �(y)i 2 E(R), and thusC1 2 L(�(y)). The8-rule
addsC1 toL(y) and thus preservesL(x) � L(�(x)).

If the 8+-rule can be applied tox in T with C = 8R:C1 2 L(x), Trans(R),
andy being anR-neighbour ofx, thenh�(x); �(y)i 2 E(R), and thus8R:C1 2L(�(y)). The8+-rule adds8R:C1 toL(y) and thus preservesL(y) � L(�(y)).

Summing up, the tableau-construction triggered byT terminates with a com-
plete tree, and sinceL(x) � L(�(x)) holds for all nodesx inT,T is clash-free due
to Property 1 of Definition 2.

15

Theorem 8 The tableaux algorithm is a decision procedure for the satisfiability and
subsumption ofALCIR+-concepts.

Theorem 8 is an immediate consequence of Lemmata 3, 5, 6 and 7.Moreover,
sinceALCIR+ is closed under negation, subsumptionC v D can be reduced to
the unsatisfiability ofC u :D.

4 Complexity results

We will now turn our attention to the complexity of the tableaux algorithm in terms
of memory consumption. We assume that the reader is familiarwith the following
complexity classes and the relationships between them:

Definition 9 DSPACE(f(m)) is the class of all sets which are decidable by adeter-
ministicTuring machine which needs no more thenO(f(m)) space for an input of
lengthm.

NSPACE(f(m)) is the class of all sets which are decidable by anon-determinis-
tic Turing machine which needs no more thenO(f(m)) space for an input of lengthm.

PSPACE = [i2IN DSPACE(mi)
NPSPACE = [i2IN NSPACE(mi)
A setX is calledhard for a complexity classC, iff for all Y 2 C there exists a

reduction function� which can be calculated in polynomial time such thaty 2 Y iff �(y) 2 X:
Remark: When started with the inputD, a non-deterministic Turing machine

acceptsD iff all runs terminate and there is at least one run that givesa positive
answer. The inputD is rejected iff all runs terminate and lead to a negative answer.

Obviously, the following inclusions hold:

DSPACE(f(m)) � NSPACE(f(m)) and PSPACE � NPSPACE

Furthermore, if aC-hard setX can be reduced to a setX 0, thenX 0 is alsoC-hard.

Fact 10 ([SSS91])SAT(ALC) = fC j C is a satisfiableALC-conceptg is PSPACE-
complete.

In [Sat96], it was shown thatALC extended with transitive roles is still in
PSPACE—in contrast toALC extended with thetransitive closure of roles, which
yields EXPTIME-hardness. We claimed in [HS98c], and will prove in the following,

16

thatALC with transitive and inverse roles is still in PSPACE. Moreover, this result
is tightened in Section 5, where we show that number restrictions can be added toALCIR+ without leaving PSPACE.

For the moment, we are interested in the complexity class of the following set.

Definition 11 SAT(ALCIR+) = fC j C is a satisfiableALCIR+-conceptg.
Since SAT(ALC) is obviously reducible to SAT(ALCIR+) we immediately

get the following:

Theorem 12 SAT(ALCIR+) is PSPACE-hard.

It remains to provide a PSPACE upper bound. Due to the following relationship
it is sufficient to present a non-deterministic PSPACE algorithm in order to prove
that a problem is in deterministic PSPACE.

Fact 13 (Savitch’s Theorem, [Sav70])PSPACE = NPSPACE:
We will start by mentioning some basic facts which follow immediately by in-

spection of the tableau rules.
For each nodex of the completion tree,B(x) only contains two kinds of con-

cepts: the concept which triggered the generation of the nodex, denoted byCx, and
concepts which were propagateddownthe completion tree by the first alternative of
the8- and8+-rules. AlsoB(x) � L(x) holds for any node in the completion tree.

In Lemma 14 and 15, we establish a polynomial bound on the length of paths
in the completion tree in a similar manner to that used for themodal logicS4 andALC R+ in [HM92; Sat96]. It then only remains to show that such a treecan be
constructed using only polynomial space.

Lemma 14 Let m = jsub(D)j, n � m3, andR be a role withTrans(R). Letx1; : : : ; xn be successive nodes of a completion tree withL(hxi; xi+1i) = R for1 � i < n. If the 8- or the8+-rule cannot be applied to these nodes, then there is a
blockedxi among them.

Proof: Firstly, consider the elements ofB(xi) for i > 1. Again, letCxi denote the
concept that caused the generation of the nodexi. ThenB(xi) � fCxig contains
only concepts which have been inserted using the8-rule or the8+-rule. LetC 2B(xi) � fCxig. Then either8R:C 2 L(xi�1) and the8+-rule makes sure that8R:C 2 B(xi), orC is already of the from8R:C 0 and has been inserted intoB(xi)
by an application of the8+-rule toxi�1. In both cases it follows that the8- or the8+-rule yieldC 2 B(xi+1). Hence we haveB(xi)� fCxig � B(xi+1) for all 1 � i < n;

17

which implies, since we havem choices forCxi,jfB(xi) j 1 � i � ngj � m2:
Secondly, considerL(xi)= Inv(R). Again, the8- and the8+-rule yieldL(xi)= Inv(R) � L(xi�1)= Inv(R) for all 1 < i � n;
which implies jfL(xi)= Inv(R) j 1 � i � ngj � m:
Summing up, withinm3 nodes there must be at least two nodesxj; xk which satisfyB(xj) = B(xk) and L(xj)= Inv(R) = L(xk)= Inv(R):
This implies that one of these nodes is blocked by the other.

We will now use this lemma to give a polynomial bound on the length of paths
in a completion tree generated by the tableaux rules.

Lemma 15 The paths of a completion tree for a conceptD have a length of at mostm4 wherem = jsub(D)j.
Proof: We definè (x) = maxfjCj j C 2 L(x)g, wherejCj denotes the length of
the conceptC. If x is an predecessor ofy in the tree this implies̀(x) � `(y). If
notTrans(R) andL(hx; yi) = R, then this implies̀ (x) > `(y). Furthermore, forR1 6= R2 (but possiblyR1 = Inv(R2)), L(hx; yi) = R1 andL(hy; zi) = R2 implies`(x) > `(z).

The only way that the maximal length of concepts does not decrease is along a
pureR-path withTrans(R). However, the8- and the8+-rule must be applied before
the9-rule may generate a new successor. Together with Lemma 14, this guarantees
that these pureR-paths have a length of at mostm3.

Summing up, we can have a path of length at mostm3 before decreasing the
maximal length of the concept in the node labels (or blockingoccurs), which can
happen at mostm times and thus yields an upper bound ofm4 on the length of paths
in a completion tree.

18

Note that the extra condition for the9-rule, which delays its application until
no other rules are applicable, is necessary to prevent the generation of paths of
exponential length. Consider the following example for someR with Trans(R):D = 9R:C u 8R:(9R:C) u 8R�:A0C = (8R�:A1 t 8R�:B1) u � � � u (8R�:An t 8R�:Bn)

When started with a root nodex0 labelledB(x0) = L(x0) = fDg, the tableaux
algorithm generates a successor nodex1 withB(x1) = fC; 9R:C; 8R:(9R:C)g
which, in turn, is capable of generating a further successorx2 with B(x2) = B(x1).
This would lead to an infinite chain of nodes if it were not for blocking. Obviously,
the first part of the blocking condition is satisfied sinceB(x2) � B(x1). However,
the second condition causes a problem since, in this example, we can generate2n
different sets ofR�-consequences for each node. If we can apply the9-rule freely,
then the algorithm might generate all of these2n nodes to find out (after finally
applying the8+-rule) thatx2 is blocked byx1.
4.1 The PSPACE algorithm

At this stage, it is possible to give a PSPACE decision procedure for SAT(ALCIR+)
by using acut rulesimilar to the one in [GMar] for an EXPTIME-hard extension ofALCIR+ . However, forALCIR+ , this technique is more non-deterministic than
necessary and therefore only briefly sketched:

Whenever we process a new nodex, we don’t bother using the rules to calculateL(x) but just guessL(x) such thatB(x) � L(x) � sub(D). After that, we test if
theu- ort-rules are applicable tox or if the8- and8+-rules can be applied tox in
a way that extends the labelling of its predecessor. If this is the case, we terminate
the algorithm returning ”D is unsatisfiable” (please recall the remark below Defini-
tion 9). If we find none of these rules to be applicable andL(x) to be clash-free, we
start generating successors reusing space.

If there exists a complete and clash-free completion tree, then there is a run of
this algorithm which will always guess correctly and hence find this clash-free com-
pletion tree. Since the length of the paths is limited bym4 and we only need to keep
one path in memory, this is a valid PSPACE-algorithm for deciding SAT(ALCIR+).
However, an “efficient” implementation of this algorithm seems to be impossible
due to its high degree of unguided non-determinism, which results from the guess-
ing of arbitrary supersets ofB(x) for L(x).

In this section, we will modify the expansion rules given in Figure 4 such that
they yield a PSPACE algorithm, namely one which we believe will serve as a basis

19

80-rule: if 1. 8S:C 2 L(x) and
2. there is anS-successory of x with C =2 B(y)

thenL(y) �! L(y) [fCg andB(y) �! B(y) [fCg or
2’. there is anS-predecessory of x with C =2 L(y)

thenL(y) �! L(y) [fCg and deleteall descendants ofy.80+-rule: if 1. 8S:C 2 L(x)
2. there is anS-successory of x with 8S:C =2 B(y)

thenL(y) �! L(y) [f8S:Cg andB(y) �! B(y) [f8S:Cg or
2’. there is anS-predecessory of x with and8S:C =2 L(y)

thenL(y) �! L(y) [f8S:Cg and deleteall descendants ofy.

Figure 6: The80- and80+-rules

for an “efficient” implementation. This modification is necessary because the orig-
inal algorithm must keep the whole completion tree in its memory—which needs
exponential space even though the length of its paths is bounded polynomially. The
original algorithm may not forget about branches because restrictions which are
pushedupwardsin the tree might make it necessary to revisit paths which have
been considered before. A simple trick (which essentially only uses the fact that
we are dealing with a tree and that we never remove concepts from the labels) can
overcome this problem:

Figure 6 shows the modified rules. Whenever a concept is addedto the label of
a predecessor, the rules delete the entire subtree below that predecessor—including
the node from which this concept originated.

This modification does not affect the proof of soundness and completeness for
the algorithm, but we have to re-prove termination as it formerly relied on the fact
that we never removed any nodes from the completion tree.

Lemma 16 For eachALCIR+-conceptD, the tableaux algorithm with the modi-
fied80- and80+-rules terminates.

Proof: Letm = jsub(D)j. Again, the algorithm has the following properties:

1. Concepts are never removed from the labels of the nodes.

2. Successors are only generated for concepts of the form9R:C, and for any
node each of these concepts triggers the generation of at most one successor.
Sincesub(D) contains at mostm 9R:C concepts, the out-degree of the tree
is bounded bym.

3. We have shown that a path in the completion tree will never become longer
thenm4 nodes.

20

Let us assume the algorithm is non-terminating. Since the size of the completion
tree is bounded, there have to be infinitely many deletions ofsubtrees in order to
yield non-termination of the algorithm. Please note that each node is deleted at most
once, but may trigger the deletion of its successors severaltimes.

The root of the completion tree cannot be deleted because it has no predecessor.
Hence there are nodes which are never deleted. Choose one of these nodesx with
maximum distance from the root, i.e., which has a maximum number of predeces-
sors. Suppose thatx’s successors are deleted only finitely many times. This cannot
be the case because, after the last deletion ofx’s successors, the “new” successors
were never deleted and thusx would not have maximum distance from the root.
Hencex triggers the deletion of its successors infinitely many times. However, the8- and the8+-rule are the only rules that lead to a deletion, and they simultaneously
lead to an increase ofL(x), namely by the missing concept which caused the dele-
tion of x’s successors. Since we never remove any concepts from the labels, this
implies the existence of an infinitely increasing chain of subsets ofsub(D), which
is clearly impossible.

Theorem 17 SAT(ALCIR+) 2 PSPACE:
Proof: Letm = jsub(D)j. For each nodex we can store the labelsL(x) andB(x)
usingm bits for each set. We apply the expansion rules as given in Figure 4 and 6.
If a clash is generated, we exit the algorithm and return ”D is unsatisfiable” (please
recall the remark below Definition 9). Otherwise, we can evaluate the completion
in a depth-first way: we keep track of exactly one path of the completion tree by
memorising, for each nodex, which of the9R:C-concepts inL(x) successors have
yet to be generated. This can be done using an additionalm bits for each node.
The “deletion” of all successors in the8- or the8+-rule of a nodex is then simply
realised by setting all these additional bits to “has yet to be generated”. There are
three possible results of an investigation of a subtree below x:� A clash is detected. This stops the algorithm with “D is unsatisfiable”.� The8- or the8+-rule lead to an increase ofL(x). We re-consider all subtrees

belowx, re-using the space used for former subtrees ofx.� Neither of these first two cases happen. We can then forget about this subtree
and start the investigation of another subtree ofx. If all subtrees have been
investigated, we considerx’s predecessor.

Proceeding like this, the algorithm can be implemented using 2m +m bits for
each node, where the2m bits are used to store the labels of the node, whilem
bits are used to keep track of the successors already generated. Since we reuse the

21

memory for the successors, we only have to store one path of the completion tree at
a time. From Lemma 15, the length of this path is bounded bym4. Summing up,
we can test for the existence of a completion tree using at most O(m5) bits.

Unfortunately, due to thet-rule, we are dealing with a non-deterministic al-
gorithm. However, Savitch’s theorem tells us that there is adeterministic imple-
mentation of this algorithm using at mostO(m10) bits, which is still a polynomial
boundary.

Theorem 12 and Theorem 17 imply:

Corollary 18 SAT(ALCIR+) is PSPACE-complete.

Unlike the algorithm using the cut rule, this algorithm seems to suggest an ef-
ficient implementation for an algorithm that decides the satisfiability of ALCIR+
concepts. The only problems which have to be overcome are dealing with the non-
determinism introduced by thet-rule and developing suitable optimisation tech-
niques. Unlike other logics where this kind of non-determinism can be handled by
an implementation using backtracking or back-jumping, in the presence of inverse
roles things get more involved: not only do nodes in the completion tree influence
nodes further down the tree (which are discarded during backtracking) but they also
influence nodes further up the tree.

There is an immediate optimisation of the algorithm which has been omitted for
the sake of the clarity of the presentation. We have only disallowed the application
of the 9-rule to a blocked node, which is sufficient to guarantee the termination
of the algorithm. It is also possible to disallow the application of more rules to a
blocked node without violating the soundness or the completeness of the algorithm,
if the notion of blocking is slightly adapted. It then becomes necessary to distin-
guish directly and indirectly blocked nodes. More details can be found in [HS98b].
The technique presented there will stop the expansion of a blocked node earlier dur-
ing the runtime of the algorithm and hence will save some work. The development
of a suitable deterministic algorithm and suitable optimisation techniques will be
part of future work, as will their implementation and evaluation.

It should be noted that, independently from the work presented in this paper, sat-
isfiability of the tense modal logicK4t has been shown to be PSPACE-complete [Spa93]
using a technique similar to the refined blocking used here (K4t is a syntactical
variant ofALCIR+ with only a single role name).

5 Number restrictions

A useful extension ofALCIR+ is obtained by allowing, additionally, for number
restrictions, a well-known means of restricting the numberof role fillers for mem-
bers of concepts. We now show that the above methods are also applicable to the

22

resulting logicALCNIR+; that is, we show that reasoning inALCNIR+ is also in
PSPACE.

5.1 Syntax and semantics ofALCNIR+
The syntax ofALCNIR+ is a simple extension of that ofALCIR+ .

Definition 19 The set ofALCNIR+ concepts is obtained by adding the following
rule to the Definition 1.

3. if n 2 IN andR is anALCIR+-role with :Trans(R) then (� n R) and(� n R) are concepts.

An ALCNIR+ interpretationI must satisfy, in addition to Definition 1, the
following equations:(� n R)I = fx 2 �I j jfy 2 �I j hx; yi 2 RIgj � ng and(� n R)I = fx 2 �I j jfy 2 �I j hx; yi 2 RIgj � ng:

Due to the following equivalences,ALCNIR+-concepts can easily be trans-
formed into negation normal form::(� n R) � � (� (n� 1) R) if n � 1;? if n = 0;:(� n R) � (� (n+ 1) R):
Moreover, we will not consider number restrictions of the form (� 0R) or (� 0R)
since we suppose that they have been eliminated using the following equivalences:(� 0 R) � 8R:?(� 0 R) � >

The following definition extends the notion of a tableau to capture the semantics
of number restrictions.

Definition 20 A tableau for anALCNIR+-conceptD in NNF is defined in the
same way as in Definition 2, with the additional properties:

8. if (� n R) 2 L(s), thenjft 2 S j L(hs; ti) = Rgj � n, and

9. if (� n R) 2 L(s), thenjft 2 S j L(hs; ti) = Rgj � n.

The proof of Lemma 3 can be adapted in a straightforward way toLemma 20
and is therefore omitted here.

Lemma 21 AnALCNIR+-conceptD is satisfiable iff there exists a tableau forD.

23

5.2 Constructing anALCNIR+ Tableau

In the following, we modify the tableaux algorithm forALCIR+ in such a way that
it yields a PSPACE decision procedure forALCNIR+ . We start by investigating
the blocking condition. Let us recall the definition of blocking forALCIR+:

A nodey is blockedif for some ancestorx, x is blocked orB(y) � L(x) and L(y)= Inv(S) = L(x)= Inv(S)
wherey0 is the predecessor ofy in the completion tree andL(hy0; yi) = S. We
define L(y)= Inv(S) := f8 Inv(S):C 2 L(y)g:

Unfortunately, this definition of blocking no longer works in the presence of
number restrictions because a blocking nodexmay obtain an additional role succes-
sor—which might clash with an “at most” number restriction on x. Such a situation
is shown in figure 7. Supposey is blocked byx. When constructing the tableau from
this completion tree,x becomes anS-neighbour ofy0. Hence the tableau generated
by this construction is not valid sincex has twoS�-neighbours.

SS
B(y) � L(x); L(y)= Inv(S) = L(x)= Inv(S)y

y0
x (� 1 S�) 2 B(x);L(x)S�z

Figure 7: A counterexample to refined blocking

There are at least two ways to overcome this problem. One is toemploy a dif-
ferent technique for the construction of a tableau from a completion tree as has been
done in [HS98b]. There, a valid tableau is constructed by “unraveling” the cycles
introduced by blocking situations. Completion trees whichcontain blocked nodes
will thus give rise to infinite tableaux. While this is necessary in the presence of role
hierarchies as they have been studied in [HS98b] (sinceALCNIR+ augmented by
role hierarchies lacks the finite model property), this is not necessary in the case of
plainALCNIR+.

24

�-rule: if 1. (� n S) 2 L(x) and
2. n = 1 andx has noS-neighbour, orn � 2 andx has noS-successor, and
3. no other rule is applicable,

then create a new nodey with L(hx; yi) = S andL(y) = B(y) = fg�-rule: if 1. (� n S) 2 L(x) and
2. x hasm > n S-neighboursy1; : : : ; ym

then pick two nodesyi1 andyi2 such thatyi1 is not a predecessor ofx,
setL(yi2) = L(yi2) [L(yi1) and deleteyi1 from the tree.

Figure 8: Additional expansion rules forALCNIR+
We solve the problem by modifying the blocking condition. Problems can occur

when a nodex blocks a nodey which is anS-successor of a nodey0 while L(x)
contains a number restriction limiting the number ofInv(S)-neighbours ofx. We
overcome this problem by disallowing the blocking of nodes which have anS-
predecessor with:Trans(S). Since we don’t allow transitive roles to appear in
number restrictions, this solves the problem mentioned above.

The definition of a completion tree remains fundamentally the same, with only
minor changes being incorporated. The new definition of blocking for theALCNIR+
algorithm reads as follows:

A nodey is blockedif for some ancestorx, x is blocked or� y is anS-successor ofy0,� B(y) � L(x) and L(y)= Inv(S) = L(x)= Inv(S), and� Trans(S).
A completion treeT is said to contain aclashif, for a nodex in T and a conceptC, fC;:Cg � L(x), or for somen;m 2 IN with n < m:f(� n R); (� m R)g � L(x):

In addition to the expansion rules from figure 4, we introducein Figure 8 two
additional rules to cope with number restrictions .

5.2.1 Soundness and Completeness

The proof of soundness and completeness is quite similarly to the one for theALCIR+ tableaux algorithm. We start with Lemma 22 and 23 which implyter-
mination.

25

Lemma 22 The paths of a completion tree for aALCNIR+-conceptD have a
length of at mostm4 wherem = jsub(D)j.
Proof: Lemma 14 still applies because it only talks about a chain of nodes con-
nected by a transitive role for which the definition of blocking has not changed.
Hence the proof of Lemma 15 is also still valid for theALCNIR+-case.

We also have to re-prove the termination of the algorithm. Since the�-rule in
Figure 8 deletes nodes from the tree this is not as straightforward as in theALCIR+-
case.

Lemma 23 For eachALCNIR+-conceptD, the tableaux algorithm terminates.

Proof: Letm = jsub(D)j. Again,m is obviously linear in the length ofD. Termi-
nation is a consequence of the following properties of the expansion rules:

1. The expansion rules never remove concepts from the labels.

2. The depth of the completion tree is limited bym4.
3. Whenever the�-rule leads to the deletion of a nodey, its labelL(y) is added

to a neighboury0 of its predecessorx. Assume thaty had been generated
by an application of the9-rule for a concept9R:Cy 2 L(x). Then this rule
can not be applied tox again for the same concept, since after the deletionCy 2 L(y0). More generally, ifx has anR-successory which has been
generated by an application of the9-rule to a concept9R:Cy 2 L(x), then
there will always be anR-neighboury0 of x such thatCy 2 L(y0). Hence the9-rule can be applied at mostm times to a node in the completion tree. Also,
the�-rule can be applied at most once to a node in the tree.

Unfortunately, the completion tree generated by the expansion rules cannot be
transformed into a tableau as easily as in theALCIR+-case. This is due to the
fact that, for constraints of the form(� n R), the�-rule generates at most one
successor. The next lemma shows that this suffices: If the constraints on the single
successor do not yield a clash, then this successor (together with its successors) can
be “copied”n�1 times to yield a tableau having “enough”, namelyn,R-successors.

Lemma 24 Let D be anALCNIR+-concept. LetT be a complete and clash-free
completion tree forD. There exists a complete and clash free completion treeT0
for D which satisfies: Ifx is a node ofT0 with (� n R) 2 L(x), thenjfy j y isR-neighbour ofxgj � n: (?)

26

Proof: Let k be the depth of the completion treeT, i.e., the maximum length of
a path inT. We will prove this lemma by giving an algorithm which generates a
sequence of completion treesT0; : : : ;Tk, with T = T0 andT0 = Tk, by adding
“missing” neighbours. By induction we will show that the transformation preserves
both completeness and clash-freeness.Ti+1 is obtained fromTi by applying the following transformation: For eachx 2 Ti such that� x has a distance ofk � i to the root (that is,x hask � 1 ancestors),� L(x) contains a number restriction(� n R) with n � 2, and� jfy j y isR-neighbour ofxgj = ` < n
pick an arbitraryR-successor2 y of x. Maken � ` disjoint copies of the subtree
below and includingy. Rename all nodes in thej-th of the copied subtrees by
adding a subscriptj, thus obtaining a nodezj for each nodez. The labellings of
the edges and nodes in thej-th subtree are copied as well, that is,L(zj) = L(z),B(zj) = B(z), L(hzj; wi) = L(hz; wi), andL(hw; zji) = L(hw; zi). Add thesen� ` subtrees toT.
Claim: This transformation preserves completeness and introduces no clashes.

Suppose on the contrary that there is anx 2 Ti such thatL(x) contains a
clash andTi�1 is clash-free. Then eitherx was already a node inTi�1—which is
a contradiction since thenTi�1 would have contained a clash—orx is a copy of
a nodex0 in Ti�1. SinceL(x) = L(x0), this would also imply thatTi�1 is not
clash-free, which again is a contradiction.

Now assume thatTi is not complete. If any of theft;u; 8; 8+;�g-rules were
applicable, this would immediately lead to a contradiction. If the�-rule was appli-
cable, then either it was already applicable inTi�1, leading to a contradiction, or
the rule was not applicable before, which would imply that the generation of new
successors would have enabled the rule. This cannot be the case since this would
imply a clash of the formf(� n R); (� m R)g with n > m in Ti�1.

By construction,T0 satisfies the condition(?).
Lemma 25 If the expansion rules can be applied to anALCNIR+-conceptD such
that they yield a complete and clash-free completion tree, thenD has a tableau.

Proof: LetT be such a completion tree forD. By Lemma 24 there exists a complete
and clash-free completion treeT0 for D which satisfies, additionally,(?). A tableauT = (S;L;E) for D can be defined with

2Please note that such a successor must exist because, by induction,Ti is complete and hence
the�-rule is not applicable.

27

S = fx j x is a node inT0 andx is not blockedg;L = the restriction of the labellingL in T0 to S,E(R) = fhx; yi 2 S� S j 1: y is anR-neighbour ofx or2:L(hx; zi) = R andy blocksz or3:L(hy; zi) = Inv(R) andx blockszg;
It remains to show thatT is indeed a tableau forD. The proof of Lemma 6

still applies. We only have to show that the additional properties involving number
restrictions are satisfied.� Property 8 of Definition 20 is satisfied because, for allx 2 S, its predeces-

sor cannot be blocked (because thenx would be blocked and hencex would
not be inS). If (� n R) 2 L(x), its R-successors cannot be blocked be-
cause:Trans(R) (if R were transitive, then number restrictions onx’s R-
successors would not be allowed). Thus allR-neighbours ofx in T0 are inS. This together with the fact thatT0 satisfies(?) implies that Property 8 is
satisfied.� Suppose Property 9 of Definition 20 were not satisfied; that is, for somex 2 S
with (� n R) 2 L(x) we havejfy 2 S j hx; yi 2 E(R)gj > n. Now, eachR-successor ofx is anR-neighbour ofx inT0. If, on the contrary, we assume
that there exists ay 2 S such thathx; yi 2 E(R) andy is not anR-neighbour
of x in T0, then this implies the existence of az such that either:

– L(hx; zi) = R andy blocksz, which contradicts the definition of block-
ing becauseR would need to be transitive;

– L(hy; zi) = Inv(R) andx blocksz, which yields the same contradiction
of the definition of blocking.

Hence, if Property 9 were not satisfied, thenT0 would not be complete, would
not satisfy condition(?), or would contain a clash. As this would contradict
the initial assumption we can infer that Property 9 is satisfied.

Lemma 26 If D has a tableau, then the expansion rules can be applied in sucha
way that the tableaux algorithm yields a complete and clash-free completion tree
for D.

Proof: While the expansion-rules forALCIR+ contained only a single non-deter-
ministic rule, we now have two such rules, namely thet-rule and the�-rule. We
have to guide the application of both rules. We use the same method as was used in
the proof of Lemma 7.

28

Let T = (S;L;E) be a tableau forD. UsingT , we trigger the application of the
expansion rules such that they yield a completion treeT that is both complete and
clash-free. We start withT consisting of a single nodex0, the root, withB(x0) =L(x0) = fDg.T is a tableau, hence there is somes0 2 S with D 2 L(s0). When applying
the expansion rules toT, the application of the non-deterministict- and�-rules is
driven by the labelling ofT . To this purpose we again define a mapping� which
maps the nodes ofT to elements ofS, and we steer the application of these rules
such thatL(x) � L(�(x)) holds for all nodesx of the completion tree.

Exactly as in the proof of Lemma 7, we define� inductively as follows:� �(x0) = s0.� If �(xi) = si is already defined and a successory of xi is generated for9R:C 2 L(xi), then�(y) = t for somet 2 S with C 2 L(t) andhsi; ti 2E(R).
In addition to thet0-rule already shown in Figure 5, we also modify the�-rule as
shown in Figure 9.�0-rule: if 1. (� n S) 2 L(x) and

2. x hasm > n S-neighboursy1; : : : ym
then pick two nodesyi1 andyi2 such thatyi1 is not a predecessor ofx,

and�(yi1) = �(yi2),
setL(yi2) = L(yi2) [L(yi1) and deleteyi1 from the tree.

Figure 9: The�0-rule

Again, it is easy to see that, if a complete and clash-free completion treeT was
generated using the modified rule, there is also a sequence ofapplications of the
original rules which yield the same tree. This implies the soundness and termination
of the modified algorithm.

The same arguments as in the proof of Lemma 7 suffice to show that L(x) �L(�(x)) is preserved by the application of the modified expansion rules. The only
new case is the�0-rule (because the�-rule adds a node with an empty label, which
is the trivial subset of all other labels):

Consider a node with(� n R) 2 L(x), which implies by induction(� n R) 2L(�(x)). Since�(x) is a node in a tableau, it has at mostn R-successors. Fur-
thermore, for eachR-neighboury of x we haveh�(x); �(y)i 2 E(R)—hence,
if the �0-rule is applicable, there are two nodesyi1 and yi2 such that�(yi1) =

29

�(yi2). By inductionL(yi1) � L(�(yi1)) andL(yi2) � L(�(yi2)), and this impliesL(yi1) [L(yi2) � L(�(yi1)).
The tableau construction therefore finishes with a completetree, and since we

haveL(x) � L(�(x)) for all nodesx in the tree, it is also clash-free.

Theorem 27 The tableaux algorithm is a decision procedure for the satisfiability
and subsumption ofALCNIR+-concepts.

Proof: This is a direct consequence of Lemma 23, Lemma 25, and Lemma 26.

5.3 A PSPACE-algorithm

Once again, the expansion rules do not immediately induce analgorithm which con-
sumes only polynomial space. In particular, the�-rule requires several successors
of a node to be present at the same time, and this cannot be combined with the con-
straint that we only want to have a single path of the completion tree in the memory
at one time.

What we can do instead is to postpone the generation of successors by the9-
rule until the moment when we know all number restrictions, and then to guess a
“distribution” of the conceptsEi required by concepts of the form9R:Ei to the
maximum number ofR-successors allowed by(� n R) number restrictions.

More precisely, we:� replace the9-rule by the two rules shown in Figure 10,� remove the�-rule from the set of expansion rules, and� use the80- and the80+-rules from Figure 6.

Summing up, the so-calledmodifiedALCNIR+-algorithmuses the rules from
the setfu;t; 80; 80+; 901; 902;�g.

To make sure that the two90-rules do not lead to an incorrect algorithm, we delay
the generation ofR-successors of a nodex until all number restrictions of the form(� n R) whichx has to satisfy are known. This can be achieved by postponing the
generation of successors ofx until no non-generatingrules are applicable tox or
any of its ancestors, where the90-rules and the�-rule are the only generating rules
(because they generate new nodes inT): all other rules are called non-generating
rules. Note that this gives the90-rules precedence over the�-rule since this rule is
postponed until no other rule can be applied to a node or its ancestors.

An n-partition of a setM is a finite sequence of setsM1; : : : ;Mn such thatMi 6= ;,Mi \Mj = ; for i 6= j, andM = Sni Mi.
30

901-rule: if 1. 9R:C 2 L(x) andx has noR-predecessor, and
2. there is noR-successory of x such thatC 2 L(y), and
3. no non-generating rule is applicable tox or any of its ancestors,

then delete allR-successors ofx;
let nmin be the minimaln such that(� n R) 2 L(x);
letM = fE j 9R:E 2 L(x) g
guessm 2 f1; : : : ; nming and a partitionM1; : : : ;Mm of M
createm successorsy1; : : : ; ym and setL(yi) = B(yi) = Mi
setL(hx; yii) = R)902-rule: if 1. 9R:C 2 L(x) andx has anR-predecessorx0, and

2. there is noR-neighboury of x such thatC 2 L(y), and
3. no non-generating rule is applicable tox or any of its ancestors,

then delete allR-successors ofx;
let nmin be the minimaln such that(� n R) 2 L(x);
letM = fE j 9R:E 2 L(x) g
guess anm 2 f1; : : : ; nming and a partitionM1; : : : ;Mm of M
if M1 6� L(x0) thenL(x0) �! L(x0) [M1 and delete all descendants ofx0
else createm� 1 successorsy2; : : : ; ym

and setL(yi) = B(yi) = Mi, setL(hx; yii) = R.

Figure 10: The90-rules

31

Guessing a distribution of conceptsEi for (9R:Ei) concepts is an inevitable
non-determinism which was already present, although perhaps less obvious, in the
former�-rule. The extra complexity of guessing anm � nmin makes the com-
pleteness proof easier for the modified algorithm—without guessing thism, in the
case where the tableau which triggers the application of therules has less thannminR-successors we would have to argue that another tableau forD exists havingnminR-successors.

5.3.1 Soundness and completeness of the modified algorithm

Lemma 28 For eachALCNIR+-conceptD, the modifiedALCNIR+ algorithm
terminates.

Proof: Letm = jsub(D)j. Again, the algorithm has the following properties:

1. Concepts are never removed from the labels of the nodes.

2. The depth of the tree is limited bym4.
3. The out-degree of the tree is limited bym.

4. Whenever nodes are deleted, either the label of the predecessor of the deleted
nodes grows, or the deleted nodes are replaced by “fresh” ones, in which case
the rule which caused the deletion no longer applies.

Lemma 29 For eachALCNIR+-conceptD, if the modifiedALCNIR+ algorithm
generates a complete and clash-free tree, thenD has a tableau.

Proof: This lemma is a (nearly) immediate consequence of Lemma 25. The deletion
of nodes does not affect the soundness of the algorithm. Moreover, each transfor-
mation of the completion tree caused by an application of oneof the90-rules can be
imitated by successive applications of the9- and the�-rules in the original algo-
rithm. This is possible since none of the successors generated by the90-rules has an
empty label. Hence each complete and clash-free completiontree generated by the
modifiedALCNIR+ algorithm could also be generated by the original algorithm,
which implies the soundness of the modifiedALCNIR+ algorithm.

Lemma 30 Let D be anALCNIR+-concept: IfD has a tableau, then the expan-
sion rules can be applied in such a way that the modifiedALCNIR+ algorithm
yields a complete and clash-free completion tree forD.

Given a tableau forD, we can guide the application of the90-rules in the same
way as before: we can use the tableau to trigger the guessing of the “correct” dis-
juncts, the “correct” number of successors and the “correct” partitioning. The proof
is quite similar to the one of Lemma 26 and is therefore omitted.

32

Theorem 31 The modified tableaux algorithm is a decision procedure for the sat-
isfiability and subsumption ofALCNIR+-concepts.

Proof: This theorem is an immediate consequence of Lemma 28, Lemma 29, and
Lemma 30.

5.3.2 An efficient implementation of the modified algorithm.

Theorem 32 SAT(ALCNIR+) 2 PSPACE.

Proof: LetD be anALCNIR+ concept andm = jsub(D)j. We know that a path in
a completion tree forD has a size of at mostm4. All that remains to show is that we
can check for the existence of a complete and clash-free treefor D in a depth-first
manner, and that we only need polynomial storage for each node in a path.

The only new features in theALCNIR+ algorithm as compared to theALCIR+
algorithm which might cause trouble are the90-rules. However, if we store the in-
formation about the number of successors already generatedand the concepts which
have already been distributed to these successors, then we can re-use the space allo-
cated for the testing of the successors. Hence we need an additionalm bits to store
the concepts which still have to be distributed to successors, as well asjRDj counters
to keep track of the numbers of successors already generated. The numbers to be
stored in these counters will always be limited by the maximum number appearing
in a number restriction insub(D). Hence the algorithm can be implemented using
only polynomial space. Of course, this is again a non-deterministic algorithm, but
due to Savitch’s theorem it is enough to establish the upper complexity bound.

Corollary 33 SAT(ALCNIR+) is PSPACE-complete.

Proof: Just as forALCIR+ , SAT(ALCNIR+) is also PSPACE-hard, and it is also
in PSPACE as the previous theorem showed.

Unlike theALCIR+-algorithm, which probably can be implemented in an ef-
ficient manner, the modifiedALCNIR+ algorithm seems to forbid such an imple-
mentation. This is due to the large rôle of non-determinismin the application of the901- and902-rules. The numberp of distinctm-partitions in the901-rule is given by
the formula: p = mjM=Rjm! :
SincejM=Rj is linear in the size ofD andm might be small, this allows an ex-
ponential number of possibilities for the901-rule. A similar formula holds for the902-rule.

33

Acknowledgements

Thanks to Nicolette Bonnette for carefully reading an earlier version of this paper
and pointing out a subtle error in theALCIR+-algorithm.

References

[Baa90] F. Baader. A formal definition of the expressive power of knowl-
edge representation languages. Research Report RR-90-05,Deutsches
Forschungszentrum für Künstliche Intelligenz GmbH (DFKI), April
1990.

[BBH96] F. Baader, M. Buchheit, and B. Hollunder. Cardinality restrictions on
concepts.Artificial Intelligence, 88(1–2):195–213, 1996.

[BDS93] M. Buchheit, F. M. Donini, and A. Schaerf. Decidablereasoning in ter-
minological knowledge representation systems.Journal of Artificial In-
telligence Research, 1:109–138, 1993.

[GMar] Giuseppe De Giacomo and Fabio Massacci. Combining deduction and
model checking into tableaux and algorithms for converse-pdl. Informa-
tion and Computation, to appear.

[HM92] J. Y. Halpern and Y. Moses. A guide to completeness andcomplexity for
model logics of knowledge and belief.Artificial Intelligence, 54(3):319–
379, April 1992.

[HN90] B. Hollunder and W. Nutt. Subsumption algorithms forconcept lan-
guages. InProceedings of the 9th European Conference on Artificial
Intelligence (ECAI’90), pages 348–353. John Wiley & Sons Ltd., 1990.

[HS98a] I. Horrocks and U. Sattler. A description logic withtransitive and con-
verse roles and role hierarchies. Technical Report 98-05, LuFg Theoret-
ical Computer Science, RWTH Aachen, 1998.

[HS98b] I. Horrocks and U. Sattler. A description logic withtransitive and inverse
roles and role hierarchies. 1998. Submitted for the JLC special issue on
Description Logics.

[HS98c] I. Horrocks and U. Sattler. A description logic withtransitive and inverse
roles and role hierarchies. In E. Franconi, G. De Giacomo, R.M. Mac-
Gregor, W. Nutt, C. A. Welty, and F. Sebastiani, editors,Collected Papers
from the International Description Logics Workshop (DL’98), pages 72–
81, 1998.

34

[Sat96] U. Sattler. A concept language extended with different kinds of transitive
roles. In G. Görz and S. Hölldobler, editors,20. Deutsche Jahrestagung
für Künstliche Intelligenz, number 1137 in Lecture Notes in Artificial
Intelligence, pages 333–345. Springer Verlag, 1996.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deter-
ministic tape complexities.Journal of Computer and System Sciences,
4(2):177–192, April 1970.

[SSS91] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions
with complements.Artificial Intelligence, 48:1–26, 1991.

[Spa93] E. Spaan. The complexity of propositional tense logics. In M. de Ri-
jke, editor,Diamonds and Defaults, pages 287–307. Kluwer Academic
Publishers, Dordrecht, 1993.

35

