Aachen University of Technology
Theoretical Computer Science

LTCS—Report

A P SpPAcE-algorithm for deciding
ALCNT p+-satisfiability

lan Horrocks Ulrike Sattler Stephan Tobies

LTCS-Report 98-08

RWTH Aachen Ahornstr. 55
LuFg Theoretische Informatik 52074 Aachen
http://www-Iti.informatik.rwth-aachen.de Germany

A PSpacE-algorithm for deciding
ALCNT +-satisfiability

lan Horrock$ Ulrike Sattlef Stephan Tobiés
July 27, 2000

Abstract

ALCNT p+—ALCNaugmented with transitive and inverse roles—is an
expressive Description Logic which is especially welltedifor the repre-
sentation of complex, aggregated objects. Despite itsesspreness, it has
been conjectured that concept satisfiability for this logpald be decided in
a comparatively efficient way. In this paper we prove the exrress of this
conjecture by presenting a P&E algorithm for deciding satisfiability and
subsumption ofALCNZr+-concepts. The space-efficiency of this tableau-
based algorithm is due to a sophisticated guidance of threlséar a solution.
Moreover, this space-efficiency is not paid for with timexsomption; on the
contrary, the guidance technique leads to very early reduaThis algorithm
will be the basis for an efficient implementation.

*This work was partially supported by the Esprit Project 224®WQ and the DFG.
tDepartment of Computer Science, University of Manchester.
tResearch Group for Theoretical Computer Science, UniyesiTechnology Aachen.

1

1 Syntax and Semantics ofALCZ j+

We start by introducing the Description Logic (DIALCZ »+, which is the exten-
sion of the well-known DLALC [SSS91] withtransitively closed roleandinverse
(converse) roles. The set of transitive role narResis a subset of the set of role
namesR.. Interpretations map role names to binary relations onnberpretation
domain, and transitive role names to transitive relatidnsaddition, for any role
R € R, the roleR~ is interpreted as the inverse Bf

Definition 1 Let N be a set oEoncept nameand letR be a set ofole namegwith
transitive role nameR ;. C R. The set ofALCZy+-rolesisRU{R™ | R € R}.
The set ofALCZ z+-conceptss the smallest set such that

1. every concept name is a concept and

2. if C andD are concepts anft is an.ALCZ z+-role, then(C' 1 D), (C U D),
(=C), (VR.C'), and(3R.C') are concepts. Both and_L are also concepts.

An interpretationZ = (AZ,.%) consists of a sefZ, called thedomainof Z, and a
function-Z which maps every concept to a subset\df and every role to a subset
of AT x AT such that, for all concepts, D, the properties in Figure 1 are satisfied.

T — AZ
17—
(Crn D)t =C*n D%,
(Cu D)t =CtuD?,
~CT = AT\ (7,
(35.C)* = {x € AT | There existy € AT with (z,y) € ST andy € C7},
(VS.0)F = {z € AT | Forally € A%, if (z,y) € S%, theny € C*},
ForSeR: (z,y) e STiff (y,z) e SF, and
ForR e R, : if (z,y) € Rf and(y, z) € R%, then(z, z) € RZ.

Figure 1: Semantics olLCZ ,+-concepts

A conceptC is calledsatisfiableiff there is some interpretatio such that
CT # (. Such an interpretation is callednaodel of C. A conceptD subsumes
a conceptC (written C C D) iff CZ C D? holds for each interpretatiah. For
an interpretatior?, an individualz € AZ? is called aninstanceof a concept iff
x € C7,

In order to make the following considerations easier, weuhice two functions
on roles:

1. Theinverse relation on roles is symmetric, and to avomsitering roles such
as R~—, we define a functiotnv which returns the inverse of a role. More
preciselylnv(R) = R~ if Ris arole name, anbhv(R) = Sif R =5".

2. Obviously, a roleR is transitive if and only ifinv(R) is transitive. However,
this may be established by eith®ror Inv(R) being inR . We therefore de-
fine a functionTrans which returnsrue iff R is a transitive role—regardless
of whether it is a role name or the inverse of a role name. Moeeigely,
Trans(R) = trueiff R € Ry orlnv(R) € R,.

2 Blocking

Before we introduce the new notion of blocking which allows & space efficient
implementation of thed LCZ +-algorithm, let us recall the reason why we employ
blocking at all, and the additional complexities introddit®y inverse roles. We will
also examine the weaknesses in the previous version [H@8&ddcking for the
ALCT r+-algorithm which lead to an inefficient use of space.

The algorithm presented in [HS98a] for deciding satisfigbibf ALCZ p+-
concepts used the tableaux method [HN9O0], in which thefgdiibty of a concept
D is tested by trying to construct a modelbf The model is represented by a tree
in which nodes correspond to individuals and edges correstmoroles. Each node
x is labelled with a set of conceptsx) that the individual must satisfy, and each
edge is labelled with a role name.

An algorithm starts with a single node labellgB }, and proceeds by repeatedly
applying a set oéxpansion ruleshat recursively decompose the concepts in node
labels; new edges and nodes are added as required in ordéisfp3R.C' concepts.
The construction terminates either when none of the rulaseaapplied in a way
that extends the tree, or when the discovery of obvious aditions demonstrates
that D has no model.

In order to prove that such an algorithm is a sound and complstision proce-
dure for concept satisfiability in a given logic, it is necaysto demonstrate that the
models it constructs are valid with respect to the semartties it will always find
a model if one exists, and that it always terminates. Thetfirstpoints can usually
be dealt with by proving that the expansion rules preserisfigdility, and that in
the case of non-deterministic expansion (e.g., of disjons) all possibilities are
exhaustively searched. For logics such48C, termination is mainly due to the
fact that the expansion rules can only add new conceptsrhatractly smaller than

the decomposed concept, so the model must stabilise whearalepts have been
fully decomposed.

Termination is not, however, guaranteed for logics thaluite transitive roles,
as the expansion rules can introduce new concepts that areathe size as the
decomposed concept. In particulsilz.C' concepts, wherd? is a transitive role,
are dealt with by propagating the whole concept aci@dabelled edges [Sat96].
For example, given a leaf nodelabelled{C,3R.C,VR.(3R.C)}, whereR is a
transitive role, the combination of thR.C’' andVR.(3R.C') concepts would cause
a new nodey to be added to the tree with an identical label:toThe expansion
process could then be repeated indefinitely.

This problem can be dealt with ipjocking halting the expansion process when
a cycle is detected [Baa90; BDS93]. For logics without iseeroles, the general
procedure is to check the label of each new ngdand if it is asubse{BBH96]
of the label of an existing node, then no further expansion gfis performed:z
is said to blocky. The resulting tree corresponds to a cyclical model in which
is identified withz.> The validity of the cyclical model is an easy consequence of
the fact that thedR.C' concept whichy must satisfy must also be satisfied by
because’s label is a superset afs. Termination is guaranteed by the fact that all
concepts in node labels are ultimately derived from the agaasition of D, so all
node labels must be a subset of the subconcepi3, @ind a cycle must therefore
occur within a finite number of expansion steps.

2.1 Dynamic Blocking

Blocking is, however, more problematical when inversesealee added to the logic,
and a key feature of the algorithms presented in [HS98a] ivasntroduction of
a dynamic blockingstrategy. Besides using label equality instead of subbit, t
strategy allowed blocks to be established, broken, andtabkshed. With in-
verse roles the blocking condition has to be considered roarefully because
roles are now bi-directional, and additional concepts’slabel could invalidate
the model with respect tg's predecessor. Taking the above example of a node la-
belled{C,3R.C,VR.(3R.C)}, if the successor of this node were blocked by a node
whose label additionally includedRz—.—~C', then the cyclical model would clearly
be invalid.

In [HS98a] this problem was overcome by allowing a nade be blocked by
one of its ancestongif and only if they were labelled with the same sets of congept

Another difficulty introduced by inverse roles is the facatthit is no longer
possible to establish a block on a once and for all basis whewanode is added

IFor logics with a transitive closure operator it is necegsaicheck the validity of the cyclical
model created by blocking [Baa90], but for logics that onlypgort transitive roles the cyclical
model is always valid [Sat96].

L(y)= {3R.T,3P.T,VR.C,

/y VP.(3R.T),VP.(3P.T),VP.(YR.C)}
R
PeRy

» 0 L(z) =L(y) = = blocked byy

Figure 2: A tableau where dynamic blocking is crucial

to the tree. This is because further expansion in other pattse tree could lead
to the labels of the blocking and/or blocked nodes beingreldd and the block
being invalidated. Consider the example sketched in Figuwehich shows parts of
a tableau that was generated for the concept

AMN3S.(IR.TNIP.TNOVR.CNOVP.(IR.T)NVP.(VR.C)NVP.(IP.T)),
where(C' represents the concept
VR™.(VP~.(VS™.—A)).

This concept is clearly not satisfiable:has to be an instance 6f, which implies
thatx is an instance ofiA—which is inconsistent with: being an instance od.

As P is a transitive role, all universal value restrictions oyare propagated
fromy to z, hencel(y) = L(z) andz is blocked byy. If the blocking ofz were not
subsequently broken whefP~.(VS~—.—A) is added tol(y) from C' € L(v), then
—A would never be added t(x) and the inconsistency would not be detected.

As well as allowing blocks to be broken, it is also necessargantinue with
some expansion of blocked nodes, becavuBe” concepts in their labels bcould
affect other parts of the tree. Again, let us consider thenpta in Figure 2. After
the blocking ofz is broken and/P~.(VS—.—A) is added tol(z) from C € L(w),

z is again blocked by. However, the universal value restrictigi?—.(VS—.—A) €
L(z) has to be expanded in order to detect the inconsistency.

These problems are overcome by using dynamic blockingwailp blocks to
be dynamically established and broken as the expansiomgs®gs, and continuing
to expandv/R.C' concepts in the labels of blocked nodes.

2.2 Refined blocking

As mentioned before, in [HS98a] blocking of nodes was defingdg label equal-
ity. This led to major problems when trying to establish aypomial bound on
the length of paths in the tree. If a node can only be blockedrbgncestor when
the labels coincide, then there could be exponentially nzarogstors in a path be-
fore blocking actually occurs. Due to the non-deterministiture of the expansion
rules, these subsets might actually be generated; thethlgowould then need to
store the node labels of a path of exponential length, thaswaing exponential
space.

This problem is already present when one tries to implemtatilaau algorithm
for the logic ALC z+ [Sat96], where the non-deterministic nature of the exmansi
rules for disjunction might lead to the generation of a chafirexponential size
before blocking occurs. Consider, for example, the concept

D =3R.CNVR.(3R.C)
C=(AUB)N(AUBy)M---M (A, U By,)

whereR is a transitive role. FOALC r+, a polynomial bound on the path length is
obtained by applying a simple strategy: a new successotygy@merated when no
other rule can be applied, and the andL-rules are only applied if neither the
nor theV_ -rule can be applied. With this strategy, it is sufficientdsttfor (subset-
)blocking before applying a- or L-rule for the first time to a node. Since no new
concepts are propagated “upwards” in a completion tree, amepcoceed in this
way, effectively ignoringnon-deterministic choices dagtopositional operators.

However, in the presence of inverse roles, this strategyiknger possible.
Indeed, the expansion rules fatLCT -+ as they have been presented in [HS98b]
based on set equality might already lead to a tableau withspat exponential
length—even if the tested concept does not contain anyseveles. This is due to
the fact that blocking is established on the basis of labahkty and that disjunction
is resolved in a non-deterministic way which could lead te generation oR"
different expansions of the concept

A possible solution to this problem is to generate new tableades when ex-
panding disjunction concepts [HM92; Sat96]. In this way kabels of the nodes
don’t become cluttered with information which is not relet/for the correctness of
blocking. However, in the presence of inverse roles, andwdiming for an effi-
cient implementation, this solution is less then optimdiilevin the ALC +-case it
was possible to restrict the application of expansion rtdetbe leaves of the tree,
this is no longer the case fot LCZ r+ since concepts of the formR.F' may con-
strain both successor and predecessor nodes. If the cafiaapitains disjunction,
this could necessitate the insertion of additional nodsslethe tree which would
at least make the resulting tableaux algorithm less congmshle.

6

In order to gain the benefits of the method sketched abovebuiithaying the
conceptual overhead, we will keep the information whichekevant for block-
ing separated from the “irrelevant” information (due toositional expansion) in
a way which allows for a simple and comprehensible tabledgarghm. In the
following, we will explain this “separation” idea in detaigspecially which rules
propagate which kind of information.

T

B(x), L(x)

o
y'o

S

Y0 Bly) € L(x), L(y)/Inv(S) = L(z)/Inv(S5)

Figure 3: A blocking situation

Figure 3 shows a blocking situation. Consider ngde be blocked by node.
When generating a model from this tree, the blocked nodél be omitted andy’
will get = as anS-successor, which is indicated by the backwards arrow. ©@ote
hand, this construction yields a nésvsuccessor: of 3/, a situation which is taken
care of by the subset blocking used in the nortddlC + tableaux algorithms. On
the other handy receives a news —-successoy’. Now blocking has to make sure
that, if a concept of the forrS—.C' is in the label ofr, thenC (andvS—.C if S'is
a transitive role) occurs in the label gf

This was dealt with by equality blocking in [HS98a]. In thddaving algorithm
it will be dealt with by extending the node labelling and chisng the blocking
condition into two conditions, one of which is a subset ctindi In addition to the
label £, each node now has a second laBelvhere the latter is always a subset of
the former. The labell contains complete information, whereBsonly contains
information relevant to blocking. Thus, propositional sequences of concepts in
L and concepts being propagated “upwards” in the tree aredstoil only. This
allows the blocking conditions to be modified as follows:

e A first condition requires thaB of the blocked node be contained in the
label L of the blocking node:. Due to the restriction t@, this condition is
less strict than equality blocking: expansions of disjiorg are only stored
in £ and thus cannot prevent a node from being blocked.

7

e A second condition takes care of the fact that the predecgssbthe blocked
nodey becomes a new-successor of the blocking node It requires the
S~ -consequences of the blocked nagi® be equal to thé -consequences
of the blocking node;, and hence deals with the extra problems which come
with the introduction of inverse roles.

More precisely, the new definition of blocking reads as foHo
A nodey is blockedif for some ancestar, « is blocked or

B(y) € L(x) and L(y)/Inv(S) = L(x)/ Inv(S)

wherey' is the predecessor of in the completion tree and ((y',y)) = S. We
define

L(y)/ Inv(S) = {VInv(S).C € L(y)}.
Summing up, we build a completion tree in a way that, for atlesx,
e we haveB(x) C L(z),
e B(x) contains only concepts which cordewnthe tree,
e [(x) contains, additionally, all concepts which comethe tree, and

e expansion of disjunctions and conjunctions only affétt).

3 A Tableaux Algorithm for ALCZ p+

We now present a tableaux algorithm derived from the oneepted in [HS98a].
We shape the rules in a way that allows for the separationeofdimcepts which are
relevant for the two parts of the blocking condition. A slighodification of this
algorithm will run using only polynomial space.

Like other tableaux algorithms, th&CCZ »+ algorithm tries to prove the satis-
fiability of a conceptD by constructing a model ab. The model is represented
by a so-calledcompletion trega tree some of whose nodes correspond to individ-
uals in the model, each node being labelled with two setd 6£7 ;+-concepts.
When testing the satisfiability of ahLCT +-conceptD, these sets are restricted to
subsets oBul(D), wheresul(D) is the set of subconcepts &f. Subconcepts are
defined as follows:

) = {A} for concept named € N¢,

) {C N D}UsulC)UsulD),
sufCuD) = {CuD}UsulC)UsulD),

)

)

{VR.C} UsulC), and
= {3IR.C}UsuhC)

8

For ease of construction, we assume all concepts to begation normal form
(NNF), that is, negation occurs only in front of concept namény ALCZ j+-
concept can easily be transformed to an equivalent one inyNeishing negations
inwards [HN9O].

The soundness and completeness of the algorithm will beeprby showing
that it creates #ableaufor D. We have chosen to take the (not so) long way round
tableaux definition method for proving properties of tabbealgorithms because
once tableaux are defined and Lemma 3 is proven the remainodspare consid-
erably easier.

Definition 2 If D is anALCTZz+-conceptin NNF an® p is the set of roles occur-
ring in D, together with their inverses, a tableauor D is defined to be a triple
(S, L, &) such thatsS is a set of individuals{ : S — 2544P) maps each individual
to a set of concepts which is a subsesaf D), € : Rp — 25%5 maps each role
in Rp to a set of pairs of individuals, and there is some individual S such that
D e L(s). Foralls,t € S,C, E € sub(D), andR € Rp, it holds that:

1. L € L(s),and ifC € L(s), then=C ¢ L(s),

2. ifCNE € L(s), thenC € L(s) andE € L(s),
3. ifCUE € L(s), thenC € L(s) or E € L(s),

4. if VR.C € L(s) and(s,t) € E(R), thenC € L(t),
5

. if AR.C € L(s), then there is some € S such that(s,t) € E(R) and
C e L(t),

6. if VR.C € L(s), (s,t) € E(R) andTrans(R), thenVR.C' € L(t), and
7. (s,t) € E(R)Iff (t,s) € E(Inv(R)).
Lemma 3 An ALCZr+-conceptD is satisfiable iff there exists a tableau for

Proof: For theif direction, ifT" = (S, L, £) is a tableau foiD with D € L(sy), a
modelZ = (A%, -%) of D can be defined as:

AT =S
AT = {s| AeL(s)} forallconceptnames A isul(D)
{ E(R)T if Trans(R)

T
I E(R) otherwise

where&(R)™ denotes the transitive closure &R). DY # () becausey, € DT,
Transitive roles are obviously interpreted as transitelations. By induction on

the structure of concepts, we show thatfiE L(s), thens € EZ. LetE € L(s).

9

1. If £ is a concept name, thenc E7 by definition.

2. If E = =C, thenC ¢ L(s) (due to Property 1 in Definition 2), so €
AT\ CT = E~.

3. If E=(C,n(Cy), thenC, € L(s) andC, € L(s), so by inductiors € CT
ands € C%. Hences € (C, 11 Cy)~.

4. The casé® = (C, L () is analogous to 3.

5. If E = (35.C), then there is some € S such that(s,t) € £(S) andC ¢
L(t). By definition, (s,t) € ST and by inductiont € C?. HenceS ¢
(35.0)%.

6. If E = (VS.C) and(s, t) € S7, then either

(@) (s,t) € E(S)andC € L(t), or

(b) (s,t) & E(S) and there exists a path of length> 1 such that(s, s,),
(s1,82),..., (sp,t) € E(S). Due to Property 6 in Definition 2/S.C' €
L(s;) forall1 <i < n,and we hav€' € L(t).

In both cases, we have by inductior CZ, and hence € (VS.C)%.

For the converse, if = (A%, -?) is a model ofD, then a tableal” = (S, £, &)
for D can be defined as:

S = Af
&R) = R*
L(s) = {CesulD)|seC?}

It only remains to demonstrate thtis a tableau foiD:

1. T satisfies properties 1-5 in Definition 2 as a direct consetpienthe se-
mantics ofALCZ p+ concepts.

2. If d € (VR.C)%, (d,e) € R* andTrans(R), thene € (VR.C)* unless there
is somef such that(e, f) € R* andf ¢ C*. However, if(d,e) € RZ,
(e, f)y € R andR € R, then(d, f) € R andd ¢ (VR.C)*. T therefore
satisfies Property 6 in Definition 2.

3. T satisfies Property 7 in Definition 2 as a direct consequentieecfemantics
of inverse relations. .

10

3.1 Constructing anALCZr+ Tableau

From Lemma 3, an algorithm that constructs a tableau fQd 867 -+ -conceptD
can be used as a decision procedure for the satisfiabilify.ofuch an algorithm
will now be described in detail.

The tableaux algorithm works on@mpletion tree This is a tree in which
each noder is labelled with two set€ (z) andB(z), where both sets are subsets
of su(D). Furthermore, each edde, y) of the tree is labelled.((x,y)) = R
for some (possibly inverse) rolB occurring insub(D). Edges are added when
expandingdR.C anddR~.C terms; they correspond to relationships between pairs
of individuals and are always directed from the root nodehwleaf nodes. The
algorithm expands the tree by extendifigr) (and possiblyB(z)) for some node
x, or by adding new leaf nodes.

A completion tre€l is said to contain alashif, for a nodex in T, it holds that
1 € L(x) or there is a concept such thafC,-C'} C L(x).

If nodesz andy are connected by an edde, y), theny is called asuccessor
of z andz is called apredecessoof y. If L({z,y)) = R, theny is called ank-
successoof z andz is called aninv(R)-predecessoof y. Ancestoris the transitive
closure ofpredecessoanddescendant the transitive closure gluccessarA node
y is called anR-neighbourof a noder if eithery is an R-successor of or y is an
R-predecessor of.

A nodey is blockedif for some ancestar, x is blocked or

B(y) € L(x) and L(y)/Inv(S) = L(x)/ Inv(S)

wherey' is the predecessor gfin the completion tree and((y', y)) = S. The set
L(y)/ Inv(S) is defined by

L(y)/ Inv(S) = {VInv(S).C € L(y)}.

The algorithm initialises a tre® to contain a single nodg,, called theroot
node, withl(z¢) = B(x¢) = {D}, whereD is the concept to be tested for satisfia-
bility. T is then expanded by repeatedly applying the rules from Eigur

The completion tree isompletewhen for some node, £(x) contains a clash
or when none of the rules is applicable. If, for an input cqude, the expansion
rules can be applied in such a way that they yield a complitshdree completion
tree, then the algorithm returng>is satisfiablé; otherwise, the algorithm returns
“D is unsatisfiabl&

3.2 Soundness and Completeness

The soundness and completeness of the algorithm will be dstraded by proving
that, for anALCZ »+-conceptD, it always terminates and that it retursatisfiable
if and only if D is satisfiable.

11

M-rule: if 1.C;NCy € L(x) and
2. {Cl, 02} Z L(.ZC)
thenL(z) — L(z) U {C4, Cy}

U-rule: if 1.C, U Cy € L(x) and
2. {Cl, 02} N L(ZU) == @
thenL(z) — L(x) U {C} for someC' € {Cy, Cy}

V-rule: if 1.VS.C' € L(z) and
2. there is arb-successoy of z with C' ¢ B(y)
thenL(y) — L(y) U{C} andB(y) — B(y) U{C} or
2'. there is anS-predecessoy of = with C' ¢ L(y)
thenL(y) — L(y) U {C}.

V., -rule:if 1.VS.C' € L(z) andTrans(S) and
2. there is arb-successoy of = with VS.C ¢ B(y)
thenL(y) — L(y) U {VS.C} andB(y) — B(y) U {VS.C'} or
2'. there is anS-predecessoy of = with VS.C' ¢ L(y)
thenL(y) — L(y) U {VS.C}.

3-rule: if 1.35.C € L(z), = is not blocked and no other rule
is applicable to any of its ancestors, and
2. z has noS-neighboury with C' € B(y)
then create a new nodewith L({x,y)) = S andL(y) = B(y) = {C'}

Figure 4: Tableaux expansion rules faCCZ p+

Lemma 4 Let T be a completion tree obtained by applying the expansiors itole
an ALCZT p+-conceptD, then, for every node in T, B(x) C L(x).

Proof: By a simple induction on the number of rule applications. .

Lemma 5 For eachALCZ+-conceptD, the tableaux algorithm terminates.

Proof: Letm = |sul(D)|. Obviously,m is linear in the length o). Termination
is a consequence of the following properties of the expansites:

1. The expansion rules never remove nodes from the tree ceptsfrom node
labels.

2. Successors are only generated for concepts of the #dtra’, and for any
node each of these concepts triggers the generation of aiomesuccessor.

Sincesul(D) contains at most: 3R.C' concepts, the out-degree of the tree

is bounded byn.

12

3. Nodes are labelled with nonempty subsetsudf D). If a pathp is of length
at least?™, then there are 2 nodesy on p, with £(z) = L(y) andB(x) =
B(y), and blocking occurs. Since a path on which nodes are blockedot
become longer, paths are of length at ni¥&t. .

Together with Lemma 3, the following lemma implies soundrafghe tableaux
algorithm.

Lemma 6 If the expansion rules can be applied to A6CZ r+-conceptD such
that they yield a complete and clash-free completion tteen D has a tableau.

Proof: Let T be the complete and clash-free completion tree construmtettie
tableaux algorithm foD. A tableaul’ = (S, £, £) can be defined with:

S = {z | x is a node ifT’, andz is not blocked,
L = the restriction of the labelling in T to S,

E(R) = {{(z,y) € Sx S| l.yisanR-neighbourofr or
2.L({z,2)) = R andy blocksz or
3.L((y, z)) = Inv(R) andz blocksz},

and it can be shown thdt is a tableau foD:

1. D € L(x) for the rootz, of T and, ast, has no predecessors, it cannot be
blocked. HenceD € L(s) for somes € S.

2. Property 1 of Definition 2 is satisfied becaBés clash-free.

3. Properties 2 and 3 of Definition 2 are satisfied becauskerditer-rule nor
thel-rule apply to any: € S.

4. Property 4 in Definition 2 is satisfied because foradt S, if VR.C € L(x)
and(z,y) € £(R) we have three possible cases:

(a) vy is anR-neighbour ofc. TheV-rule guarantee€’ € L(y).

(b) L((z,z)) = R, y blocksz. Then by thev-rule we haveC' € B(z) and
by the definition of blockingB(z) C L(y). HenceC' € L(y).

(¢) L((y, z)) = Inv(R), z blocksz. From the definition of blocking we have
thatL(z)/ Inv(Inv(R)) = L(x)/ Inv(Inv(R)). HenceVR.C' € L(z) and
theV-rule guarantee§’ € L(y).

5. Property 5 in Definition 2 is satisfied because foradl S, if IR.C' € L(x),
then the3-rule ensures that there is either:

13

(a) anR-predecessoy with C' € B(y) C L(y) (see Lemma 4). Becauge
is a predecessor afit cannot be blocked, s € S and(y, x) € E(R).

(b) anR-successoy with C' € B(y) C L(y) (again, see Lemma 4). Ifis
not blocked, they € S and(z,y) € £E(R). Otherwisey is blocked by
somez with B(y) C L(z). HenceC' € L(z), z € Sand(z, z) € E(R).

6. Property 6 in Definition 2 is satisfied because foradt S, if VR.C' € L(z)
and(z,y) € £(R) andTrans(R) then we have three possible cases:

(a) vy is anR-neighbour ofc. TheV. -rule guaranteegR.C' € L(y).

(b) L((z,z)) = R, y blocksz. Then by thev, -rule we haverR.C' € B(z)
and by the definition of blockin®(z) C L(y). HenceVR.C' € L(y).

() L((y,z)) = Inv(R), = blocksz. From the definition of blocking we
have thatl(z)/R = L(x)/R. HenceVR.C' € L(z) and theY_-rule
guarantee¥R.C' € L(y).

7. Property 7 in Definition 2 is satisfied because for eachy) € £(R), either:

(a) = is anR-neighbour ofy, soy is aninv(R)-neighbour ofr and(y, =) €

E(Inv(R)).

(b) L((z,2)) = R andy blocksz, soL({(z, z)) = Inv(Inv(R)) and(y, z) €
E(Inv(R)).

() L(({y, 2)) = Inv(R) andx blocksz, so(y, z) € E(Inv(R)). .

Lemma 7 If D has atableau, then the expansion rules can be applied irasuahn
that the tableaux algorithm yields a complete and clask-damnpletion tree fop.

Proof: LetT = (S, L, £) be a tableau foD. UsingT’, we trigger the application
of the expansion rules such that they yield a completion Tteébat is both com-
plete and clash-free. We start wilhconsisting of a single node,, the root, with

B(zy) = L(xy) = {D}.

T is a tableau, hence there is somec S with D € L(sq). When applying the
expansion rules td", the application of the non-deterministicrule is driven by
the labelling in the tableadl. To this purpose, we define a mappingvhich maps
the nodes of" to elements 08, and we steer the application of therule such that
L(x) C L(n(z)) holds for all nodes: of the completion tree.

More precisely, we define inductively as follows:

o 7(xp) = So.

14

L'-rule: if 1.C, U Cy € L(z), z is not blocked, and
2. {Cl, 02} N L(l‘) == @
thenL(z) — L(x) U {C} for someC € {C,Cy} N L(w(x))

Figure 5: The'-rule

e If 7(z;) = s; is already defined, and a succesgaf x; was generated for
AR.C € L(x;), thenm(y) = t for somet € S with C' € L(t) and(s;,t) €
E(R).

To make sure that we havgz;) C L(n(z;)), we use the'-rule given in Figure 5
instead of thel-rule. The expansion rules given in Figure 4 with theule replaced
by thell'-rule are called thenodifiedexpansion rules in the following.

It is easy to see that, if a tréB was generated using the modified expansion
rules, then the expansion rules can be applied in such a vedythby yieldT.
Hence Lemma 6 and Lemma 5 still apply, and thus using theile instead of the
LI-rule preserves soundness and termination.

We will now show by induction that, if.(x) C L(=(x)) holds for all nodes: in
T, then the application of an expansion rule preserves tliseftrelation. To start
with, we clearly havg D} = L(xg) C L(sy).

If the M-rule can be applied to in T with C = C, 1 Cy € L(x), thenCy, Cy
are added td(z). SinceT is a tableau{C, C,} C L(w(x)), and hence tha-rule
preserves.(z) C L(n(x)).

If the L-rule can be applied to in T with C = C, U Cy € L(z), thenE €
{C1,Cs}isin L(w(x)), and E is added tol(x) by theL/-rule. Hence the/-rule
preserves.(z) C L(n(x)).

If the 3-rule can be applied te in T with C' = JR.C; € L(z), thenC €
L(m(x)) and there is somee S with (r(z),t) € E(R) andC; € L(t). The3-rule
creates a new successpof x for which 7(y) = t for somet with C; € L(¢).
Hence we havé (y) = {C1} C L(7(y)).

If the V-rule can be applied ta in T with C = YR.C, € L(z) andy is an
R-neighbour ofr, then(r(z), 7(y)) € £(R), and thusC; € L(n(y)). TheV-rule
addsC, to L(y) and thus preserves(z) C L(w(x)).

If the V. -rule can be applied te in T with C' = VR.C, € L(z), Trans(R),
andy being anR-neighbour ofz, then(r(z),n(y)) € E(R), and thusvR.C; €
L(m(y)). TheV,-rule addsvR.C| to L(y) and thus preserves(y) C L(n(y)).

Summing up, the tableau-construction triggeredi/bterminates with a com-
plete tree, and sincg(x) C L(w(x)) holds for all nodes: in T, T is clash-free due
to Property 1 of Definition 2. .

15

Theorem 8 The tableaux algorithm is a decision procedure for thefsatisity and
subsumption ofALCZ ,+-concepts.

Theorem 8 is an immediate consequence of Lemmata 3, 5, 6 avidréover,
since ALCZ i+ is closed under negation, subsumpti@n= D can be reduced to
the unsatisfiability of” M —D.

4 Complexity results

We will now turn our attention to the complexity of the tahleaalgorithm in terms
of memory consumption. We assume that the reader is familtarthe following
complexity classes and the relationships between them:

Definition 9 DSPACE(f(m)) is the class of all sets which are decidable leter-
ministic Turing machine which needs no more th@ff (m)) space for an input of
lengthm.

NSPACE(f(m)) is the class of all sets which are decidable moa-determinis-
tic Turing machine which needs no more th@(f (m)) space for an input of length
m.

PPACE = | | DSPACE(m)
1€IN

NPSPACE = | | NSPACE(m')

1€IN
A set X is calledhard for a complexity clasg, iff for all Y € C there exists a
reduction functiony which can be calculated in polynomial time such that

y € Yiff x(y) € X.

Remark: When started with the inpub, a non-deterministic Turing machine
acceptsD iff all runs terminate and there is at least one run that gv@®sitive
answer. The inpubD is rejected iff all runs terminate and lead to a negative answ

Obviously, the following inclusions hold:

DSPACE(f(m)) C NSPACE(f(m)) and P®ACE C NPSPACE
Furthermore, if &-hard setX can be reduced to a s&t, thenX' is alsoC-hard.

Fact 10 ([SSS91])SAT(ALC) = {C'| C'is a satisfiabled LC-concep} is PSPACE
complete.

In [Sat96], it was shown thatlLC extended with transitive roles is still in
PSPACE—in contrast taALC extended with theransitive closure of roleswhich
yields ExPTIME-hardness. We claimed in [HS98c], and will prove in the foilaog,

16

that ALC with transitive and inverse roles is still in P&CE. Moreover, this result
is tightened in Section 5, where we show that number restnistcan be added to
ALCT + without leaving P8ACE.

For the moment, we are interested in the complexity classeofdllowing set.

Definition 11 SAT(ALCZy+) = {C | C'is a satisfiableALCZ y+-concep}.

Since SATALC) is obviously reducible to SATALCZr+) we immediately
get the following:

Theorem 12 SAT(ALCZy+) is PSACE-hard.

It remains to provide a PEACE upper bound. Due to the following relationship
it is sufficient to present a non-deterministicRASE algorithm in order to prove
that a problem is in deterministic IPSCE.

Fact 13 (Savitch’s Theorem, [Sav70])PSPACE = NPSPACE.

We will start by mentioning some basic facts which follow iredmately by in-
spection of the tableau rules.

For each node of the completion treeB(z) only contains two kinds of con-
cepts: the concept which triggered the generation of the mpdenoted by”,, and
concepts which were propagatéolwnthe completion tree by the first alternative of
theV- andv_ -rules. AlsoB(x) C L(x) holds for any node in the completion tree.

In Lemma 14 and 15, we establish a polynomial bound on thetheoigpaths
in the completion tree in a similar manner to that used fomtleelal logicS4 and
ALC p+ in [HM92; Sat96]. It then only remains to show that such a tae be
constructed using only polynomial space.

Lemma 14 Let m = |subD)|, n > m?, and R be a role withTrans(R). Let
xy,...,x, be successive nodes of a completion tree Wlitkx;, z;1)) = R for

1 <i < n. IftheV- or theV -rule cannot be applied to these nodes, then there is a
blockedz; among them.

Proof: Firstly, consider the elements @f(x;) for i > 1. Again, letC,, denote the
concept that caused the generation of the nadeThenB(z;) — {C,,} contains
only concepts which have been inserted usingwrale or thev -rule. LetC' €
B(z;) — {C,,}. Then eitheWR.C € L(z; ;) and theV -rule makes sure that
VR.C € B(x;), or C'is already of the fronvR.C" and has been inserted irBjz;)
by an application of th& . -rule tox;_;. In both cases it follows that th& or the
V. -ruleyieldC' € B(z;11). Hence we have

B(x;) — {Cy,} € B(wiyq) forall 1l <i < mn,

17

which implies, since we have choices forC,,,
{Bw:) |1 <i<n}f<m’

Secondly, considet(z;)/ Inv(R). Again, theV- and thev . -rule yield

L(z;)/ Inv(R) C L(z;—1)/ Inv(R) forall 1 < i < n,
which implies
{L(z)/ Inv(R) |1 <@ <n}|<m.
Summing up, withinn? nodes there must be at least two nodgs:;, which satisfy
B(rj) = Blze) and L(z;)/ Inv(R) = L(zy)/ Inv(R).

This implies that one of these nodes is blocked by the other. .

We will now use this lemma to give a polynomial bound on theytarof paths
in a completion tree generated by the tableaux rules.

Lemma 15 The paths of a completion tree for a concéphhave a length of at most
m* wherem = [sub(D)].

Proof: We definel(z) = max{|C| | C € L(z)}, where|C| denotes the length of
the concepC'. If x is an predecessor gfin the tree this implieg(z) > ((y). If
not Trans(R) andL((z,y)) = R, then this implied(z) > ¢(y). Furthermore, for
Ry, # R, (but possiblyR; = Inv(Ry)), L({z,y)) = R, andL({(y, 2)) = R, implies
l(x) > l(2).

The only way that the maximal length of concepts does notedeser is along a
pureR-path withTrans(R). However, thé/- and thev , -rule must be applied before
thed-rule may generate a new successor. Together with Lemmai$4guarantees
that these puré&-paths have a length of at mos®.

Summing up, we can have a path of length at moes$tbefore decreasing the
maximal length of the concept in the node labels (or blockingurs), which can
happen at most times and thus yields an upper bound:ofon the length of paths
in a completion tree. .

18

Note that the extra condition for th&rule, which delays its application until
no other rules are applicable, is necessary to prevent therggon of paths of
exponential length. Consider the following example for sdinwith Trans(R):

D =3R.CNVR.(3R.C) NVYR™. A,
C= (VR A UVR .B))n---N (VR .A,UVR .B,)

When started with a root nods labelledB(x) = L(zy) = {D}, the tableaux
algorithm generates a successor nodevith

B(z1) = {C,IR.C,VR.(3R.C)}

which, in turn, is capable of generating a further successerith B(z,) = B(x;).
This would lead to an infinite chain of nodes if it were not fémdking. Obviously,
the first part of the blocking condition is satisfied sirger,) C B(z;). However,
the second condition causes a problem since, in this examplean generat2”
different sets of? “-consequences for each node. If we can applyithale freely,
then the algorithm might generate all of the¥enodes to find out (after finally
applying thev , -rule) thatz, is blocked byz; .

4.1 The P$ACE algorithm

At this stage, itis possible to give a P&E decision procedure for SATALCZ r+)

by using acut rulesimilar to the one in [GMar] for an ¥°TIME-hard extension of
ALCZ+. However, forALCT i+, this technique is more non-deterministic than
necessary and therefore only briefly sketched:

Whenever we process a new nadave don’t bother using the rules to calculate
L(x) but just gues€(z) such thatB(x) C L(x) C sul(D). After that, we test if
ther- or L-rules are applicable te or if the V- andV_ -rules can be applied toin
a way that extends the labelling of its predecessor. If §iihé case, we terminate
the algorithm returning D is unsatisfiable” (please recall the remark below Defini-
tion 9). If we find none of these rules to be applicable &rd) to be clash-free, we
start generating successors reusing space.

If there exists a complete and clash-free completion tiesn there is a run of
this algorithm which will always guess correctly and henod this clash-free com-
pletion tree. Since the length of the paths is limitedibyand we only need to keep
one path in memory, this is a valid P& Ealgorithm for deciding SATALCT z+).
However, an “efficient” implementation of this algorithmeses to be impossible
due to its high degree of unguided non-determinism, whishlte from the guess-
ing of arbitrary supersets & () for L(x).

In this section, we will modify the expansion rules given iglfe 4 such that
they yield a PBACE algorithm, namely one which we believe will serve as a basis

19

V'-rule: if 1.¥S.C € L(x) and
2. there is arb-successoy of z with C' ¢ B(y)
thenL(y) — L(y) U{C} andB(y) — B(y) U{C} or
2'. there is anS-predecessoy of z with C' ¢ L(y)
thenL(y) — L(y) U {C} and deletall descendants of.

V' -rule: if 1.VS.C € L(x)
2. there is arb-successoy of = with VS.C ¢ B(y)
thenL(y) — L(y) U {VS.C} andB(y) — B(y) U {VS.C'} or
2'. there is anS-predecessoy of x with andVvS.C' ¢ L(y)
thenL(y) — L(y) U {V¥S.C} and deletall descendants of.

Figure 6: They'- andY’_-rules

for an “efficient” implementation. This modification is nesary because the orig-
inal algorithm must keep the whole completion tree in its mgm-which needs
exponential space even though the length of its paths isdezlipolynomially. The
original algorithm may not forget about branches becausticgons which are
pushedupwardsin the tree might make it necessary to revisit paths whickehav
been considered before. A simple trick (which essentiatily ses the fact that
we are dealing with a tree and that we never remove conceptstfre labels) can
overcome this problem:

Figure 6 shows the modified rules. Whenever a concept is addée label of
a predecessor, the rules delete the entire subtree beloprdtecessor—including
the node from which this concept originated.

This modification does not affect the proof of soundness amdpteteness for
the algorithm, but we have to re-prove termination as it fenignrelied on the fact
that we never removed any nodes from the completion tree.

Lemma 16 For eachALCZ z+-conceptD, the tableaux algorithm with the modi-
fiedV'- andV’ _-rules terminates.

Proof: Letm = |sul(D)|. Again, the algorithm has the following properties:

1. Concepts are never removed from the labels of the nodes.

2. Successors are only generated for concepts of the #dtra’, and for any
node each of these concepts triggers the generation of atomesuccessor.
Sincesul(D) contains at most: 3R.C' concepts, the out-degree of the tree
is bounded byn.

3. We have shown that a path in the completion tree will neeeome longer
thenm* nodes.

20

Let us assume the algorithm is non-terminating. Since tteecfithe completion
tree is bounded, there have to be infinitely many deletiorsubfrees in order to
yield non-termination of the algorithm. Please note thahe®de is deleted at most
once, but may trigger the deletion of its successors setiaras.

The root of the completion tree cannot be deleted becauss nd predecessor.
Hence there are nodes which are never deleted. Choose dmesefriodes with
maximum distance from the root, i.e., which has a maximumbemof predeces-
sors. Suppose thats successors are deleted only finitely many times. This@ann
be the case because, after the last deletiorisofuccessors, the “new” successors
were never deleted and thuswould not have maximum distance from the root.
Hencex triggers the deletion of its successors infinitely many sntdowever, the
V- and thev, -rule are the only rules that lead to a deletion, and they kaneously
lead to an increase d&f(z), namely by the missing concept which caused the dele-
tion of x's successors. Since we never remove any concepts fromlibés |dhis
implies the existence of an infinitely increasing chain disets ofsul{ D), which
is clearly impossible. .

Theorem 17 SAT(ALCZR+) € PSPACE.

Proof: Letm = |sul(D)|. For each node we can store the labels(z) andB(x)
usingm bits for each set. We apply the expansion rules as given ur€ig and 6.
If a clash is generated, we exit the algorithm and returns unsatisfiable” (please
recall the remark below Definition 9). Otherwise, we can eatd the completion
in a depth-first way: we keep track of exactly one path of themetion tree by
memorising, for each node which of the3R.C-concepts il (x) successors have
yet to be generated. This can be done using an additienaits for each node.
The “deletion” of all successors in the or theV -rule of a noder is then simply
realised by setting all these additional bits to “has yeta@agybnerated”. There are
three possible results of an investigation of a subtreedbelo

e A clash is detected. This stops the algorithm with s unsatisfiable”.

e TheV- or theV, -rule lead to an increase &f(x). We re-consider all subtrees
belowz, re-using the space used for former subtrees. of

e Neither of these first two cases happen. We can then forgeit &tie subtree
and start the investigation of another subtree off all subtrees have been
investigated, we considefs predecessor.

Proceeding like this, the algorithm can be implementedgugin + m bits for
each node, where than bits are used to store the labels of the node, while
bits are used to keep track of the successors already gedefihce we reuse the

21

memory for the successors, we only have to store one patle @tfmpletion tree at
a time. From Lemma 15, the length of this path is bounded:by Summing up,
we can test for the existence of a completion tree using at @0s°) bits.
Unfortunately, due to thel-rule, we are dealing with a non-deterministic al-
gorithm. However, Savitch’s theorem tells us that there teegerministic imple-
mentation of this algorithm using at ma8t{m!°) bits, which is still a polynomial
boundary. .

Theorem 12 and Theorem 17 imply:

Corollary 18 SAT(ALCZp+) is PSPACE-complete.

Unlike the algorithm using the cut rule, this algorithm seem suggest an ef-
ficient implementation for an algorithm that decides thes§ability of ALCZ +
concepts. The only problems which have to be overcome atandeeth the non-
determinism introduced by the-rule and developing suitable optimisation tech-
niques. Unlike other logics where this kind of non-deterisimcan be handled by
an implementation using backtracking or back-jumpinghia presence of inverse
roles things get more involved: not only do nodes in the cetigrh tree influence
nodes further down the tree (which are discarded duringtbeaking) but they also
influence nodes further up the tree.

There is an immediate optimisation of the algorithm whick been omitted for
the sake of the clarity of the presentation. We have onlylidisad the application
of the 3-rule to a blocked node, which is sufficient to guarantee émmination
of the algorithm. It is also possible to disallow the apgii@a of more rules to a
blocked node without violating the soundness or the corapks of the algorithm,
if the notion of blocking is slightly adapted. It then becamecessary to distin-
guish directly and indirectly blocked nodes. More detada be found in [HS98Db].
The technique presented there will stop the expansion afekbtl node earlier dur-
ing the runtime of the algorithm and hence will save some wdHe development
of a suitable deterministic algorithm and suitable optatien techniques will be
part of future work, as will their implementation and evdian.

It should be noted that, independently from the work presbint this paper, sat-
isfiability of the tense modal logiK 4; has been shown to be P&E-complete [Spa93]
using a technique similar to the refined blocking used hBré, (is a syntactical
variant of ALCZ p+ with only a single role name).

5 Number restrictions
A useful extension ofALCZ -+ is obtained by allowing, additionally, for number

restrictions, a well-known means of restricting the nuntdferole fillers for mem-
bers of concepts. We now show that the above methods are gitioable to the

22

resulting logicALCN Zy+; that is, we show that reasoning ®iCCN Z -+ is also in
PSPACE.

5.1 Syntax and semantics aALCN I i+
The syntax ofALCN I+ is a simple extension of that 6fLCZ +.

Definition 19 The set ofALCN IR+ concepts is obtained by adding the following
rule to the Definition 1.

3. ifn € INandR is an ALCZ p+-role with = Trans(R) then(> n R) and
(< n R) are concepts.

An ALCN TR+ interpretationZ must satisfy, in addition to Definition 1, the
following equations:

(= n R = {v € AT ||{y € AT | (z,) € RT}| = n} and
(< nRT ={re AT ||{y € AT | (z,y) € RT}| < n}.

Due to the following equivalencesALCN T +-concepts can easily be trans-
formed into negation normal form:

_J (£ (n=1)R) ifn>1,
(2 ”R):{L it =0,

(€ nR) = (= (n+1) R).

Moreover, we will not consider number restrictions of thenid> 0 R) or (< 0 R)
since we suppose that they have been eliminated using tbevfiot) equivalences:

(S OR)=VR.L
(>0R) =T

The following definition extends the notion of a tableau tptose the semantics
of number restrictions.

Definition 20 A tableau for anALCN Zx+-conceptD in NNF is defined in the
same way as in Definition 2, with the additional properties:

8. if (> n R) € L(s), then|{t € S | L({s,1)) = R}| > n, and
9. if (< n R) € L(s), then|{t € S | L({s,1)) = R}| < n.

The proof of Lemma 3 can be adapted in a straightforward wdyetaoma 20
and is therefore omitted here.

Lemma 21 An ALCNTy+-conceptD is satisfiable iff there exists a tableau for

23

5.2 Constructing an ALCN I+ Tableau

In the following, we modify the tableaux algorithm fgtLCZ + in such a way that
it yields a P®ACE decision procedure fadLCNZr+. We start by investigating
the blocking condition. Let us recall the definition of blawl for ALCT -+ :

A nodey is blockedif for some ancestar, x is blocked or

B(y) € L(x) and L(y)/Inv(S) = L(x)/ Inv(S)

wherey' is the predecessor of in the completion tree and ((y',y)) = S. We
define

L(y)/ Inv(S) :={¥Inv(5).C € L(y)}.

Unfortunately, this definition of blocking no longer works the presence of
number restrictions because a blocking nodeay obtain an additional role succes-
sor—which might clash with an “at most” number restrictioruo Such a situation
is shown in figure 7. Suppogeas blocked by:. When constructing the tableau from
this completion treey becomes ay-neighbour ofy’. Hence the tableau generated
by this construction is not valid sinaehas twoS ~—-neighbours.

T

(€ 185) € B(x),L(x)

G-

o
yo zo0o

S

Y0 Bly) € L(x), L(y)/Inv(S) = L(z)/Inv(S5)

Figure 7: A counterexample to refined blocking

There are at least two ways to overcome this problem. Oneesigoy a dif-
ferent technique for the construction of a tableau from apgetion tree as has been
done in [HS98b]. There, a valid tableau is constructed bydualing” the cycles
introduced by blocking situations. Completion trees wigohtain blocked nodes
will thus give rise to infinite tableaux. While this is necasgsin the presence of role
hierarchies as they have been studied in [HS98b] (shEEN T+ augmented by
role hierarchies lacks the finite model property), this ismecessary in the case of
plain ACCNT p+.

24

>-rule: if 1. (> n S) € L(z) and
2.n = 1 andz has naS-neighbour, or
n > 2 andz has naS-successor, and
3. no other rule is applicable,
then create a new nodewith L((z,y)) = S andL(y) = B(y) = {}

<-rule:if 1. (< n S) € L(z) and
2. x hasm > n S-neighboursy, ..., ym

then pick two nodeg;, andy;, such thaty;, is not a predecessor of
setl(y;,) = L(yi,) U L(y;,) and deletey;, from the tree.

Figure 8: Additional expansion rules fgtLCNZ +

We solve the problem by modifying the blocking conditionollems can occur
when a noder blocks a node; which is anS-successor of a nodg while L(x)
contains a number restriction limiting the numberwf(.S)-neighbours ofc. We
overcome this problem by disallowing the blocking of noddso have anS-
predecessor with Trans(S). Since we don't allow transitive roles to appear in
number restrictions, this solves the problem mentioned&bo

The definition of a completion tree remains fundamentalgygsame, with only
minor changes being incorporated. The new definition oftohagfor the ACCN Z i+
algorithm reads as follows:

A nodey is blockedif for some ancestar, x is blocked or

e yis anS-successor of’,
e B(y) CL(x) and L(y)/Inv(S) = L(x)/Inv(S), and
e Trans(S).

A completion tre€T is said to contain &lashif, for a nodex in T and a concept
C,{C,~C} C L(x), or for somen, m € IN with n < m:

{(< nR), (> mR)} CL(x).
In addition to the expansion rules from figure 4, we introdurcEigure 8 two
additional rules to cope with number restrictions .
5.2.1 Soundness and Completeness

The proof of soundness and completeness is quite similarlheé one for the
ALCT p+ tableaux algorithm. We start with Lemma 22 and 23 which intply
mination.

25

Lemma 22 The paths of a completion tree for. &LCNZ+-conceptD have a
length of at mostn* wherem = |sul(D)].

Proof: Lemma 14 still applies because it only talks about a chainoafes con-
nected by a transitive role for which the definition of blaukihas not changed.
Hence the proof of Lemma 15 is also still valid for tHe&CN'Z r+-case. .

We also have to re-prove the termination of the algorithnmc&ithe<-rule in
Figure 8 deletes nodes from the tree this is not as straigtefol as in thed LCZ -+ -
case.

Lemma 23 For eachALCN T i+-conceptD, the tableaux algorithm terminates.

Proof: Letm = |sul(D)|. Again,m is obviously linear in the length ab. Termi-
nation is a consequence of the following properties of thEaasion rules:

1. The expansion rules never remove concepts from the labels
2. The depth of the completion tree is limited 1y .

3. Whenever thel-rule leads to the deletion of a nogeits labelL(y) is added
to a neighbour)’ of its predecessar. Assume thaty had been generated
by an application of thé-rule for a concep8R.C, € L(x). Then this rule
can not be applied t@ again for the same concept, since after the deletion
C, € L(y'). More generally, ifr has anR-successoy which has been
generated by an application of tHerule to a concep8R.C, € L(z), then
there will always be ami-neighboury’ of z such thatC,, € L(y'). Hence the
J-rule can be applied at most times to a node in the completion tree. Also,
the >-rule can be applied at most once to a node in the tree. .

Unfortunately, the completion tree generated by the exparsiles cannot be
transformed into a tableau as easily as in #héCZy+-case. This is due to the
fact that, for constraints of the fortt®™ n R), the >-rule generates at most one
successor. The next lemma shows that this suffices: If thsti@nts on the single
successor do not yield a clash, then this successor (tagettets successors) can
be “copied’n—1 times to yield a tableau having “enough”, name|y?-successors.

Lemma 24 Let D be anALCNZ,+-concept. Lefl' be a complete and clash-free
completion tree forD. There exists a complete and clash free completionee
for D which satisfies: Ifr is a node ofI” with (> n R) € L(x), then

{y | vy is R-neighbour ofc}| > n. (%)

26

Proof: Let k be the depth of the completion tr8g i.e., the maximum length of
a path inT. We will prove this lemma by giving an algorithm which gerntesaa
sequence of completion tredy, ..., Ty, with T = T, andT’ = T}, by adding
“missing” neighbours. By induction we will show that thertsiormation preserves
both completeness and clash-freeness.

T, is obtained fromT; by applying the following transformation: For each
x € T; such that

e 1 has a distance df — i to the root (that isy: hask — 1 ancestors),
e L(x) contains a number restrictidir n R) with n > 2, and

e |{y | yis R-neighbourotc}| =¢<n

pick an arbitraryR-success@ry of z. Maken — /¢ disjoint copies of the subtree
below and including;. Rename all nodes in thgth of the copied subtrees by
adding a subscript, thus obtaining a node; for each node:. The labellings of
the edges and nodes in th¢h subtree are copied as well, thatfs(z;) = L(2),
B(zj) = B(2), L((z;,w)) = L({z,w)), andL((w, 2;)) = L((w, z)). Add these
n — ¢ subtrees td".

Claim: This transformation preserves completeness and intreduzelashes.

Suppose on the contrary that there isaare T; such thatl(x) contains a
clash andT';_, is clash-free. Then eithar was already a node ilr;_;—which is
a contradiction since their;_; would have contained a clash—eris a copy of
a nodez’ in T, ;. Sincel(x) = L(z'), this would also imply thafl; ; is not
clash-free, which again is a contradiction.

Now assume thdT; is not complete. If any of théLl, M,V, V., >}-rules were
applicable, this would immediately lead to a contradictibthe <-rule was appli-
cable, then either it was already applicablé€lin |, leading to a contradiction, or
the rule was not applicable before, which would imply tha ¢eneration of new
successors would have enabled the rule. This cannot be s$keesazce this would
imply a clash of the forr{(> n R), (< m R)} withn > m inT;_;.

By constructionT” satisfies the conditiof). .

Lemma 25 If the expansion rules can be applied toA8CNZ +-conceptD such
that they yield a complete and clash-free completion tteen D has a tableau.

Proof: Let T be such a completion tree f&r. By Lemma 24 there exists a complete
and clash-free completion tr&& for D which satisfies, additionallyx). A tableau
T = (S,L, &) for D can be defined with

2Please note that such a successor must exist because, lstiondiT’; is complete and hence
the>-rule is not applicable.

27

S = {z | x is a node ifI" andz is not blocked,
L = the restriction of the labelling in T to S,
E(R) = {{(z,y) € Sx S| l.yisanR-neighbourofr or
2.L({x, z)) = R andy blocksz or
3.L((y, z)) = Inv(R) andz blocksz},

It remains to show thdl’ is indeed a tableau fab. The proof of Lemma 6
still applies. We only have to show that the additional prps involving number
restrictions are satisfied.

e Property 8 of Definition 20 is satisfied because, forzalk S, its predeces-
sor cannot be blocked (because thewould be blocked and heneewould
not be inS). If (> n R) € L(x), its R-successors cannot be blocked be-
cause— Trans(R) (if R were transitive, then number restrictions @8 R-
successors would not be allowed). Thuslheighbours ofr in T’ are in
S. This together with the fact th&t’ satisfies(x) implies that Property 8 is
satisfied.

e Suppose Property 9 of Definition 20 were not satisfied; th&isomer € S
with (< n R) € L(x) we havel{y € S | (z,y) € E(R)}| > n. Now, each
R-successor af is anR-neighbour ofr in T'. If, on the contrary, we assume
that there exists a € S such thatz, y) € £(R) andy is not anRk-neighbour
of x in T, then this implies the existence otauch that either:

— L((x, z)) = R andy blocksz, which contradicts the definition of block-
ing because? would need to be transitive;

— L((y, z)) = Inv(R) andx blocksz, which yields the same contradiction
of the definition of blocking.

Hence, if Property 9 were not satisfied, tiErwould not be complete, would
not satisfy conditior(x), or would contain a clash. As this would contradict
the initial assumption we can infer that Property 9 is s&tisfi .

Lemma 26 If D has a tableau, then the expansion rules can be applied inasuch
way that the tableaux algorithm yields a complete and cfeeth-completion tree
for D.

Proof: While the expansion-rules fod LCZ r+ contained only a single non-deter-
ministic rule, we now have two such rules, namely theule and the<-rule. We
have to guide the application of both rules. We use the santieati@s was used in
the proof of Lemma 7.

28

LetT = (S, L, &) be atableau foD. UsingT', we trigger the application of the
expansion rules such that they yield a completion Feat is both complete and
clash-free. We start witll' consisting of a single node,, the root, withB(z,) =

T is a tableau, hence there is somec S with D € L(sy). When applying
the expansion rules t@, the application of the non-deterministic and<-rules is
driven by the labelling off’. To this purpose we again define a mappinghich
maps the nodes df to elements o, and we steer the application of these rules
such that®(z) C L(x(x)) holds for all nodes: of the completion tree.

Exactly as in the proof of Lemma 7, we defimenductively as follows:

o 7(xp) = So.

e If m(z;) = s; is already defined and a succesgoof x; is generated for
AR.C € L(x;), thenm(y) = t for somet € S with C' € L(t) and(s;,t) €
E(R).

In addition to the_'-rule already shown in Figure 5, we also modify tieule as
shown in Figure 9.

<'-rule:if 1. (< n S) € L(x) and
2. x hasm > n S-neighboursy, ...y,
then pick two nodeg;, andy;, such thaty;, is not a predecessor of
andﬂ-(yh) = ﬂ-(yh)’
setL(y;,) = L(yi,) U L(y;,) and deletey;, from the tree.

Figure 9: The<'-rule

Again, it is easy to see that, if a complete and clash-freepbetion treeT was
generated using the modified rule, there is also a sequeragptitations of the
original rules which yield the same tree. Thisimplies therginess and termination
of the modified algorithm.

The same arguments as in the proof of Lemma 7 suffice to shawltha C
L(m(x)) is preserved by the application of the modified expansioestuThe only
new case is the’-rule (because the-rule adds a node with an empty label, which
is the trivial subset of all other labels):

Consider a node with< n R) € L(x), which implies by inductio< n R) €
L(n(z)). Sincer(z) is a node in a tableau, it has at mastk-successors. Fur-
thermore, for eachik-neighboury of = we have(r(x),n(y)) € &(R)—hence,
if the <'-rule is applicable, there are two nodgs andy;, such thatr(y;,) =

29

7(y;,). By inductionL(y;,) € L(m(y;,)) andL(y;,) € L(7(yi,)), and this implies
L(yh) U L(yiz) C L(ﬂ-(yil))'

The tableau construction therefore finishes with a comptets and since we
havel(z) C L(x(x)) for all nodesr in the tree, it is also clash-free. n

Theorem 27 The tableaux algorithm is a decision procedure for the featidity
and subsumption Qi LCN T r+-concepts.

Proof: This is a direct consequence of Lemma 23, Lemma 25, and LerBma 2

5.3 A PS;AcE-algorithm

Once again, the expansion rules do notimmediately indueggamithm which con-
sumes only polynomial space. In particular, theule requires several successors
of a node to be present at the same time, and this cannot berenkith the con-
straint that we only want to have a single path of the comptettiee in the memory
at one time.

What we can do instead is to postpone the generation of ssmseky thed-
rule until the moment when we know all number restrictions] ¢hen to guess a
“distribution” of the conceptdy; required by concepts of the foraR.E; to the
maximum number ofz-successors allowed < » R) number restrictions.

More precisely, we:

e replace thel-rule by the two rules shown in Figure 10,
e remove the<-rule from the set of expansion rules, and
e use thev'- and thev’_-rules from Figure 6.

Summing up, the so-calledodified ALCN I +-algorithmuses the rules from
the set{r, L, V',V , 3}, 35, >}

To make sure that the tw#-rules do not lead to an incorrect algorithm, we delay
the generation ol?-successors of a nodeuntil all number restrictions of the form
(< n R)whichz has to satisfy are known. This can be achieved by postpohéeng t
generation of successors ofuntil no non-generatingules are applicable to or
any of its ancestors, where tRAerules and the>-rule are the only generating rules
(because they generate new noded')n all other rules are called non-generating
rules. Note that this gives th€é-rules precedence over therule since this rule is
postponed until no other rule can be applied to a node or dsstars.

An n-partition of a setM is a finite sequence of sefd, ..., M, such that
M; # 0, M; N M; =0 fori# j,andM = |J! M,.

30

Ji-rule: if 1.3R.C’' € L(z) andz has noR-predecessor, and
2. there is naR-successoy of = such thatC' € L(y), and
3. no non-generating rule is applicabletor any of its ancestors,
then delete alR-successors af;

let nmin be the minimak such tha{< n R) € L(x);
let M ={F |3R.F € L(z) }
guessn € {1,...,nmin} and a partitionV/y, ..., M,, of M
createm successorg, . .., y,, and setl(y;) = B(y;) = M;
setl((z,v:)) = R)

3,-rule: if 1. 3R.C’ € L(z) andz has anR-predecessat’, and
2. there is nak-neighboury of = such thatC € L(y), and
3. no non-generating rule is applicableitor any of its ancestors,
then delete alRk-successors af;
let nmin be the minimakh such tha{< n R) € L(x);
letM ={E |3R.E € L(z) }
guess amn € {1,...,nmin} and a partition, . .., M, of M
if My ¢ L(2') then
L(x') — L(2") U M, and delete all descendantsadf
else createn — 1 successorg,, ..., ¥,
and setC(y;) = B(y;) = M;, setlL((z, y;)) = R.

Figure 10: Thed'-rules

31

Guessing a distribution of concepi for (3R.E;) concepts is an inevitable
non-determinism which was already present, although jpsrtess obvious, in the
former <-rule. The extra complexity of guessing an < nnyi, makes the com-
pleteness proof easier for the modified algorithm—withawggsing thisn, in the
case where the tableau which triggers the application ofitles has less thai,,
R-successors we would have to argue that another tabledw éxists havingimin
R-successors.

5.3.1 Soundness and completeness of the modified algorithm

Lemma 28 For eachALCN T x+-conceptD, the modifiedALCN Z g+ algorithm
terminates.

Proof: Letm = |sul(D)|. Again, the algorithm has the following properties:

1. Concepts are never removed from the labels of the nodes.
2. The depth of the tree is limited by*.

3. The out-degree of the tree is limited by

4

. Whenever nodes are deleted, either the label of the peedercof the deleted
nodes grows, or the deleted nodes are replaced by “fresls, onehich case
the rule which caused the deletion no longer applies. .

Lemma 29 ForeachALCNTx+-conceptD, if the modifiedALCN T g+ algorithm
generates a complete and clash-free tree, ihdias a tableau.

Proof: Thislemmais a (nearly) immediate consequence of Lemmal2&dé&letion

of nodes does not affect the soundness of the algorithm. dWergeach transfor-
mation of the completion tree caused by an application ofafitiee 3'-rules can be
imitated by successive applications of theand the<-rules in the original algo-
rithm. This is possible since none of the successors gestebgtthed'-rules has an
empty label. Hence each complete and clash-free complegergenerated by the
modified ALCN T+ algorithm could also be generated by the original algorjthm
which implies the soundness of the modifiddCA T+ algorithm. .

Lemma 30 Let D be anALCNZy+-concept: IfD has a tableau, then the expan-
sion rules can be applied in such a way that the modifiet’ N'Z+ algorithm
yields a complete and clash-free completion tree/jor

Given a tableau foD, we can guide the application of tRerules in the same
way as before: we can use the tableau to trigger the gueskthg tcorrect” dis-
juncts, the “correct” number of successors and the “carpantitioning. The proof
is quite similar to the one of Lemma 26 and is therefore omhitte

32

Theorem 31 The modified tableaux algorithm is a decision procedureHerdat-
isfiability and subsumption el LCN'Z ;+-concepts.

Proof: This theorem is an immediate consequence of Lemma 28, LerSman2
Lemma 30. .

5.3.2 An efficient implementation of the modified algorithm.
Theorem 32 SAT(ALCNIk+) € PSPACE.

Proof: Let D be anALCN Z g+ conceptandn = [subl(D)|. We know that a path in
a completion tree fob has a size of at most*. All that remains to show is that we
can check for the existence of a complete and clash-freddrel in a depth-first
manner, and that we only need polynomial storage for each imoa path.

The only new features in thd LCN T+ algorithm as compared to th&LCZ -+
algorithm which might cause trouble are therules. However, if we store the in-
formation about the number of successors already genexatktthe concepts which
have already been distributed to these successors, thesmwe-tise the space allo-
cated for the testing of the successors. Hence we need aiadtiin bits to store
the concepts which still have to be distributed to succasssrwell asiR, | counters
to keep track of the numbers of successors already generahednumbers to be
stored in these counters will always be limited by the maxilmmumber appearing
in a number restriction isul(D). Hence the algorithm can be implemented using
only polynomial space. Of course, this is again a non-detestic algorithm, but
due to Savitch’s theorem it is enough to establish the uppaptexity bound. =

Corollary 33 SAT(ALCNZIy+) is PSACE-complete.

Proof: Just as fotALCZ r+, SAT(ALCN Zg+) is also P®ACE-hard, and it is also
in PSPACE as the previous theorem showed. .

Unlike the ALCZ +-algorithm, which probably can be implemented in an ef-
ficient manner, the modified LCN T i+ algorithm seems to forbid such an imple-
mentation. This is due to the large role of non-deterministhe application of the
3}- andd}-rules. The numbep of distinctm-partitions in thed!-rule is given by
the formula:

M/

p = ’
m!

Since|M/R| is linear in the size o> andm might be small, this allows an ex-
ponential number of possibilities for thé-rule. A similar formula holds for the
3,-rule.

33

Acknowledgements

Thanks to Nicolette Bonnette for carefully reading an eaniersion of this paper
and pointing out a subtle error in th&LCZ r+-algorithm.

References

[Baa90] F. Baader. A formal definition of the expressive powé knowl-

[BBHO6]

[BDS93]

[GMar]

edge representation languages. Research Report RR-I0edfsches
Forschungszentrum fur Kunstliche Intelligenz GmbH (DR KApril
1990.

F. Baader, M. Buchheit, and B. Hollunder. Cardibaliestrictions on
conceptsAtrtificial Intelligence 88(1-2):195-213, 1996.

M. Buchheit, F. M. Donini, and A. Schaerf. Decidabéasoning in ter-
minological knowledge representation systerdsurnal of Artificial In-
telligence Researgti:109-138, 1993.

Giuseppe De Giacomo and Fabio Massacci. Combinimfyiclon and
model checking into tableaux and algorithms for converdledpforma-
tion and Computatioyto appear.

[HM92] J.Y. Halpern and Y. Moses. A guide to completeness@mdplexity for

[HN9O]

model logics of knowledge and beliédrtificial Intelligence 54(3):319—
379, April 1992.

B. Hollunder and W. Nutt. Subsumption algorithms fayncept lan-

guages. InProceedings of the 9th European Conference on Atrtificial

Intelligence (ECAI'90)pages 348-353. John Wiley & Sons Ltd., 1990.

[HS98a] I. Horrocks and U. Sattler. A description logic withnsitive and con-

verse roles and role hierarchies. Technical Report 98-0bglLTheoret-
ical Computer Science, RWTH Aachen, 1998.

[HS98b] I. Horrocks and U. Sattler. A description logic withnsitive and inverse

[HS98c]

roles and role hierarchies. 1998. Submitted for the JLCiapissue on
Description Logics.

I. Horrocks and U. Sattler. A description logic withnsitive and inverse
roles and role hierarchies. In E. Franconi, G. De GiacomdyIRMac-
Gregor, W. Nutt, C. A. Welty, and F. Sebastiani, edit@sllected Papers
from the International Description Logics Workshop (DL)9Bages 72—
81, 1998.

34

[Sat96] U. Sattler. A concept language extended with dsfiekinds of transitive
roles. In G. Gorz and S. Holldobler, editogs). Deutsche Jahrestagung
fur Kunstliche Intelligenznumber 1137 in Lecture Notes in Artificial
Intelligence, pages 333-345. Springer Verlag, 1996.

[Sav70] Walter J. Savitch. Relationships between nondetestic and deter-
ministic tape complexitiesJournal of Computer and System Sciences
4(2):177-192, April 1970.

[SSS91] M. Schmidt-Schau3 and G. Smolka. Attributive cphaescriptions
with complementsArtificial Intelligence 48:1-26, 1991.

[Spa93] E. Spaan. The complexity of propositional tenséckogin M. de Ri-
jke, editor,Diamonds and Defaultgpages 287-307. Kluwer Academic
Publishers, Dordrecht, 1993.

35

