
Explaining ALC Subsumption

Alex Borgida

Dept. of Computer Science

Rutgers University, USA

borgida@cs.rutgers.edu

Enrico Franconi and Ian Horrocks

Dept. of Computer Science

Univ. of Manchester, UK

{franconi|horrocks}@cs.man.ac.uk

Deborah McGuinness

Dept. of Computer Science

Stanford University, USA

dlm@ksl.stanford.edu

Peter F. Patel-Schneider

Database Systems Research Dept.

Bell Labs, USA

pfps@research.bell-labs.com

1 Introduction

The usability of Description Logic (DL) based knowledge
representation systems would be considerably enhanced
by the ability to explain subsumption inferences to non-
sophisticated users [McGuinness, 1996]. Explanation is
relatively natural for systems based on structural sub-
sumption algorithms [McGuinness and Borgida, 1995],
but such algorithms are unable to deal with a more
complex language such as ALC. Tableaux based sys-
tems, on the other hand, can deal with ALC (and much
more complex languages), but the reasoning method
does not lead to a natural explanation of subsump-
tion inferences. For example, non-sophisticated users
would probably not find it useful to have the subsump-
tion ∀R. (C ⊓ D) ⊑ ∀R.C explained by the fact that
(∀R. (C ⊓ D)) ⊓ ∃R.¬C is not satisfiable.1

Sequent calculi seem to offer both the ability to rea-
son with languages such as ALC, and a more natural way
of explaining subsumption inferences to users: sequent
rules are meant to axiomatise the entailment relation,
and this has an obvious parallel with the subsumption
relation. However, most sequent calculi also include rea-
soning rules that may be difficult for non-sophisticated
users to follow, in particular the negation rules. It would
also be undesirable to add explanation to tableaux based
systems by either replacing or duplicating the tableaux
reasoner: in the first case efficiency may suffer, while in
the second case implementation and maintenance costs
would be greatly increased.

1The explanation of non-subsumption is more natural for
tableaux based systems (a counter-example can be generated)
but is much less interesting for users.

The proposed solution is to use a modified sequent
calculus based on a larger but more easily explainable set
of rules (Section 2), and to demonstrate that a sequent
proof using these rules can be generated by a (slightly
extended) tableaux algorithm (Section 4).

2 A Sequent Calculus for ALC

We briefly introduce here a sequent calculus for ALC
subsumption. Sequent calculi for ALC are well known
from the modal logic literature [Fitting, 1983]: they
exploit the correspondence between ALC and the
multi-modal logic K(m), with the subsumption rela-
tion being encoded as the entailment relation in a
sequent. There have been already attempts (e.g.,
[Royer and Quantz, 1992]) to reuse standard sequent
calculi from the modal logic community in Description
Logics, but only with the goal of extending them with
the operators which are peculiar to Description Logics—
like, for example, number restrictions or ABoxes. Our
goal, however, is different: we want a set of sequent rules
which are “easily” explainable, and which parallel the
steps of a tableaux-based proof.

If we consider a standard sequent calculus, the main
undesirable thing we notice is the presence of ¬-rules,
which move formulæ from antecedents of sequents to
succedents and vice versa. If a sequent proof is used
as an explanation of subsumption, this results in shifts
of subsumers to subsumees and vice versa, which may
confuse the user. In order to get rid of the ¬-rules, we
propose to provide additional rules which explicitly con-
sider negation in front of every construct. Figure 1 ex-
emplifies how ∧-rules (first line) are doubled by adding
their dual negated rules (second line). The ∨-rules are

X , a , b ⊢ Y

X , a⊓b ⊢ Y
(l∧)

X ⊢ a , Y X ⊢ b , Y

X ⊢ a⊓b , Y
(r∧)

X , ¬a ⊢ Y X , ¬b ⊢ Y
X , ¬(a⊓b) ⊢ Y

(l¬∧)
X ⊢ ¬a , ¬b , Y
X ⊢ ¬(a⊓b) , Y

(r¬∧)

X , a ⊢ Y X , b ⊢ Y
X , a⊔b ⊢ Y

(l∨)
X ⊢ a , b , Y
X ⊢ a⊔b , Y

(r∨)

X , ¬a , ¬b ⊢ Y
X , ¬(a⊔b) ⊢ Y

(l¬∨)
X ⊢ ¬a , Y X ⊢ ¬b , Y

X ⊢ ¬(a⊔b) , Y
(r¬∨)

X , a ⊢ Y
X , ¬¬a ⊢ Y

(l¬¬)
X ⊢ a , Y

X ⊢ ¬¬a , Y
(r¬¬)

Figure 1: Rules for the propositional formulæ

X ′ ⊢ b , Y ′

X ⊢ ∀r.b , Y
(r2)

X ′ , b ⊢ Y ′

X , ∃r.b ⊢ Y
(l3)

X ′ , ¬b ⊢ Y ′

X , ¬∀r.b ⊢ Y
(l¬2)

X ′ ⊢ ¬b , Y ′

X ⊢ ¬∃r.b , Y
(r¬3)

where X ′ = {a | ∀r.a ∈ X} ∪ {¬a | ¬∃r. a ∈ X}, and

Y ′ = {a | ∃r.a ∈ Y } ∪ {¬a | ¬∀r. a ∈ Y }

Figure 2: Rules for the modal formulæ

simply the dual of the ∧-rules. The same can be done
for the 2-rule (top left rule in Figure 2): the rule is dou-
bled by considering explicit negation (bottom left rule in
Figure 2). Again, the 3-rules are simply the dual of the
2-rules (right rules in Figure 2). Another advantage of
having explicit negated rules is the avoidance of “normal-
isation” steps, which may confuse the user by changing
the appearance of the problem. In some cases, however,
it could be useful to re-introduce a normalisation sub-
step during an explanation proof, if this increases the
clarity of the explanation of that particular step (see the
example in Section 3).

Another non standard feature of our calculus is the
way we explicitly consider the applicability condition of
the 2- and 3-rules. The condition states that the rule
is applicable if all the homologous universal and exis-
tential formulæ are “gathered” together on the left and
right hand sides of the sequent in the precondition; the

X , a ⊢ a , Y X , ¬a ⊢ ¬a , Y

X , a , ¬a ⊢ Y X ⊢ a , ¬a , Y

X , ⊥ ⊢ Y X ⊢ ⊤ , Y

Figure 3: Termination axioms

rule is then applied only once. The peculiarity of these
rules is that the inference system is still complete with-
out any weakening rule (the discarding antecedent or
succedent formulæ). The calculus was designed in this
way in order to parallel the behaviour of the ∀- and ∃-
rules in the tableaux calculus (see Section 4). The ap-
plication of these rules, and in particular the gathering
process, may require some additional explanation to the
user, for example by explaining that the conjunction of
∃R.C and ∀R.D implies ∃R. (C ⊓ D). In some cases
it may be useful to enhance the quality of explanation
by re-introducing a weakening sub-step in the proof, or
by introducing a new formula implied by the existing
formulæ, as in the above explanation of gathering.

The proposed set of sequent calculus rules now has
the nice property that formulæ are never shifted from
antecedents of sequents to succedents or vice versa. This
is why additional termination axioms are needed (see
Figure 3). In fact, in the standard sequent calculus all
the termination axioms can be reduced to X , a ⊢ a , Y

by applying the ¬-rules, but the absence of these rules
forces an explicit treatment of all the cases.

3 Example

As an example, we show now how a sequent proof ex-
plaining the following subsumption could be obtained

from the devised calculus:2

∃child.⊤ ⊓ ∀child.¬((∃child.¬Doctor) ⊔ (∃child. Lawyer))

⊑ ∃child. ∀child. (Rich ⊔ Doctor)

Informally, the explanation for a sequent

a1 , . . . , an ⊢ b1 , . . . , bm

will usually be based on the existence of some ai and
bj such that ai ⊑ bj. The case when non-deterministic
rules are involved is more complex and may lead to rea-
soning by case; however, in each case the explanation
reduces to the above deterministic one.

We see no reason why the user should understand the
sequent representation, and as we are explaining sub-
sumption we have used ⊑ instead of ⊢ in the explana-
tion of the sequent steps. Moreover, since we feel that
the different meanings of a comma on the two sides of ⊢
may be confusing to the naive user, we make explicit the
fact that on the left hand side, it is conjunction, while on
the right hand side it is disjunction. Explanations of the
sequent (l∧) and (r∨) rules therefore seem superfluous,
and may be omitted.

In our example, the first step of the sequent proof—an
application of the (l∧) rule—is just such a case, and can
be omitted from the explanation. Therefore, as far as
the user is concerned, the proof starts by applying the
(l3) rule, which leads to following judgement:

⊤ ⊓ ¬((∃child.¬Doctor) ⊔ (∃child. Lawyer))

⊑ ∀child. (Rich ⊔ Doctor)

This step can be explained as: In order to check that

the combination of an ∃R.A concept and an ∀R.B is

subsumed by an ∃R.C concept, we can check whether

the conjunction of A and B is subsumed by C. This
step is clearly more complex than the proceeding ones,
and some users may require a more detailed explanation,
possibly utilising the fact that from the conjunction of
∃R.A and ∀R.B we can derive ∃R. (A⊓B); such detail
is, however, beyond the scope of this document.

Then, by applying the (l¬∨) rule, we obtain the fol-
lowing judgement:

⊤ ⊓ ¬(∃child.¬Doctor) ⊓ ¬(∃child. Lawyer)

⊑ ∀child. (Rich ⊔ Doctor)

This step can be explained as: Applying de Morgan’s

laws, we propagate negation inward.. An explanation of
de Morgan’s laws would of course be available if required.

2The explanation is not intended to be definitive, merely
to show that the calculus provides a reasonable basis for an
explanation.

Next, by applying the (r2) rule, we obtain the follow-
ing judgement:

¬¬Doctor ⊓ ¬Lawyer ⊑ Rich ⊔ Doctor

This step can be explained as: Let us first apply de Mor-

gan’s laws to the two existential quantifiers at the left to

give ∀child.¬¬Doctor and ∀child.¬Lawyer. In order

to check that the combination of an ∀R.A concept and

an ∀R.B concept is subsumed by an ∀R.C concept, we

can check whether the conjunction of A and B is sub-

sumed by C. Again, this is a more complex step that
may require further explanation, possibly utilising the
fact that from the conjunction of ∀R.A and ∀R.B we
can derive ∀R. (A ⊓ B).

Next, by applying the (l¬¬) rule, we obtain the fol-
lowing judgement:

Doctor ⊓ ¬Lawyer ⊑ Rich ⊔ Doctor

This step can be explained as: Apply the double negation

elimination rule.

Application of the sequent (r∨) rule can, as mentioned
above, be omitted from the explanation, and so we ob-
tain the termination axiom,

Doctor ⊑ Doctor

which can be explained as: Obviously, a concept sub-

sumes itself.

4 Correspondence with Tableaux

It is possible to obtain a sequent proof directly from
a standard tableaux algorithm, where applications of
tableaux rules correspond with steps in the sequent
proof, and clash detections correspond with termination
axioms. However, such a proof would begin with an ap-
plication of the ¬-rule (e.g., C ⊑ D iff C ⊓ ¬D ⊑ ⊥),
followed by a sequence of normalisation steps: exactly
those sequent rules we wish to avoid and which we have
eliminated in our modified calculus.

These problems can be solved using lazy unfolding

and tagging. Firstly, the tableaux algorithm can use
the lazy unfolding optimisation [Horrocks, 1998], which
treats compound concepts in the same way as atomic
concepts. This means that normalisation steps are per-
formed only as required by the progress of the tableaux
expansion, i.e., in order to apply a tableaux expansion
rule to a negated compound concept. A normalisation
step can then be combined with the subsequent rule ap-
plication to give a single sequent step. For example, nor-
malising ¬(a ⊓ b) to ¬a ⊔ ¬b, followed by an application
of the tableaux ⊔-rule, corresponds with an application
of the sequent (¬∧) rule.

Secondly, by tagging the subsumer concept D derived
from the initial transformation of the subsumption prob-
lem C ⊑ D into the satisfiability problem C ⊓ ¬D, and
by consistently tagging all concepts derived from it by
applications of tableaux rules, it is always possible to
determine whether a concept in a particular stage of the
tableaux corresponds with a (negated) succedent of a se-
quent, i.e., its negation plays the role of subsumer in the
explanation step. Thus, if in the previous example the
concept ¬(a ⊓ b) had been tagged (had been derived from
the initially tagged ¬D by a sequence of tableaux expan-
sion steps), then its tableaux expansion would have been
taken to correspond with an application of the sequent
(r∧) rule.

In the example from the previous section, the tableaux
algorithm would be used to demonstrate the unsat-
isfiability of ∃child.⊤ ⊓ ∀child.¬((∃child.¬Doctor) ⊔

(∃child. Lawyer)) and ¬∃child. ∀child. (Rich ⊔ Doctor),
where ¬∃child. ∀child. (Rich⊔ Doctor) is tagged. An ap-
plication of the tableaux ⊓-rule rule to the first concept
corresponds with the sequent (l∧) rule, because this con-
cept is not tagged.

The tableaux algorithm would then normalise
¬∃child. ∀child. (Rich ⊔ Doctor) and apply the ∃-rule

to ∃child.⊤ to generate the sub problem consist-
ing of ⊤, ¬((∃child.¬Doctor) ⊔ (∃child. Lawyer)) and
¬∀child. (Rich ⊔ Doctor), where ¬∀child. (Rich ⊔ Doctor)

is tagged because it was derived from a tagged concept.
This corresponds with the sequent (l3) rule because the
triggering concept, ∃child.⊤, is not tagged.

The next step in the tableaux algorithm would be a
normalisation of ¬((∃child.¬Doctor) ⊔ (∃child. Lawyer))

followed by an application of the ⊓-rule to give
∀child.¬¬Doctor and ∀child.¬Lawyer. The combination
of these two steps corresponds with the sequent (l¬∨)
rule.

The next step would be a normalisation of
¬∀child. (Rich⊔Doctor) followed by an application of the
∃-rule to give ¬(Rich ⊔ Doctor), ¬¬Doctor and ¬Lawyer,
where ¬(Rich⊔ Doctor) is tagged. The fact that the trig-
gering concept was tagged means that this expansion
corresponds with one of the sequent right rules, and the
preceeding normalisation step means that it corresponds
with the sequent (r2) rule.

The tableaux algorithm would then proceed with a
normalisation of ¬¬Doctor, corresponding with the se-
quent (l¬¬) rule, and a normalisation of ¬(Rich⊔Doctor)

followed by an application of the ⊓-rule to give ¬Rich

and ¬Doctor, where both are tagged. The combination
of the triggering concept being tagged and the normali-
sation step means that this expansion corresponds with
the sequent (r∨) rule.

Finally, the tableau algorithm detects a clash be-
tween Doctor and ¬Doctor. Because ¬Doctor is tagged,

this corresponds with the sequent termination axiom
Doctor ⊢ Doctor.

5 Discussion

We have proposed a methodology for explaining sub-
sumption relationships between ALC concepts based on
a modified sequent calculus, and shown how the sequence
of sequent rule applications can be derived from an opti-
mised implementation of a standard tableaux algorithm.
We do not claim that the sequent rules constitute an ex-
planation in themselves, but that they form a reasonable
foundation on which to base an explanation. Their main
advantages in this regard is that they preserve the orig-
inal structure of the two concepts and that concepts are
never shifted from subsumer to subsumee or vice versa.

Future work will include a study of methods to en-
hance the quality of explanations, for example by in-
troducing sub-steps such as weakening or the derivation
of new concepts. The extension of this methodology to
more expressive DLs will also be investigated.

References

[Fitting, 1983] Melvin Fitting. Proof Methods for Modal

and Intuitionistic Logics. Kluwer, 1983.

[Horrocks, 1998] I. Horrocks. Using an expressive de-
scription logic: FaCT or fiction? In Proc. of the 6 th

International Conference on Principles of Knowledge

Representation and Reasoning, pages 636–647, Trento,
Italy, 1998.

[McGuinness and Borgida, 1995] D. McGuinness and
A. Borgida. Explaining subsumption in description
logics. In Proc. of the IJCAI’95, pages 816–821, 1995.

[McGuinness, 1996] D. McGuinness. Explaining Rea-

soning in Description Logics. PhD thesis, Rutgers
University, 1996.

[Royer and Quantz, 1992] Veronique Royer and
Joachim Quantz. Deriving inference rules for
terminological logics. In D. Pearce and G. Wagner,
editors, Logics in AI, Proceedings of JELIA’92, pages
84–105. Springer, 1992.

