
A Proposal for a Description Logic Interface

Sean Bechhofer†, Ian Horrocks†, Peter F. Patel-Schneider‡

and Sergio Tessaris†

†University of Manchester ‡Bell Labs Research

Manchester, UK Murray Hill, New Jersey, USA

seanb|horrocks|tessaris@cs.man.ac.uk pfps@research.bell-labs.com

1 Introduction

Most description logic (DL) systems present the appli-
cation programmer with a functional interface, often de-
fined using a Lisp-like syntax. Such interfaces may be
more or less complex, depending on the sophistication of
the implemented system, and may be more or less com-
pliant with the KRSS description logic specification [8].

The Lisp style of the KRSS syntax reflects the fact
that Lisp is still the most common implementation lan-
guage for DLs. This can create considerable barriers to
the use of DL systems by application developers, who
often prefer other languages (in particular the currently
ubiquitous Java), and who are becoming more accus-
tomed to component based software development envi-
ronments.

In such an environment, a DL might naturally be
viewed as a self contained component, the details of
whose implementation, and even the precise location in
which its code is being executed, is hidden from the ap-
plication [2]. This approach has several advantages: the
issue of implementation language is finessed; the API
can be defined in some standard formalism intended for
the purpose; a mechanism is provided for applications
to communicate with the DL system, either locally or
remotely; and alternative DL components can be substi-
tuted without affecting the application.

2 A CORBA Server for DL Systems

We have used the Object Management Group’s
(OMG) Common Object Request Broker Architecture
(CORBA) [6] to build a generic DL server, to be used
initially with both the FaCT and iFaCT systems [5].
CORBA was chosen because it is not tied to any par-
ticular language or platform. In particular, CORBA can
be used with both Lisp and Java running on both Unix
and Microsoft platforms.

The CORBA solution has all the advantages men-
tioned above.

• It facilitates the use of the Lisp implementations
by non-Lisp client applications, for example in the

Tambis (Transparent Access to Multiple Biological
Information Systems) project, where the DL server
is used by a Java client [1].

• The generic API is defined using CORBA’s Interface
Definition Language (IDL), which can be mapped to
various target languages.

• The application communicates with the DL via a
CORBA Object Request Broker (ORB). The DL
server and client application may or may not be
running on the same physical machine.

• It would be possible to substitute FaCT or iFaCT
with another DL reasoner, for example DLP [7],
without client applications even being aware of the
change.

It has been decided not to pass concepts and roles as
objects: treating them as objects does not seem natu-
ral (as they have no functionality), and could lead to a
significant increase in overheads (as determining their
structure might require many object requests via the
ORB). However, the CORBA IDL does not support the
definition of the kinds of recursive data type that would
be required for the representation of DL concepts and
roles.

The solution adopted is to pass concepts and roles
as single data items using eXtended Markup Language
(XML) [9]. The advantages of using XML are that it is
becoming a widely accepted standard, it naturally lends
itself to the definition or recursive structures, and there
are parsers available for several languages (including Lisp
and Java). The disadvantage of XML is that it is more
verbose and (arguably) less human readable than the fa-
miliar Lisp style syntax. However, it must be emphasised
that XML is NOT intended as a user interface medium,
but only for data exchange between components of the
server and between the server and client applications.
Figure 1 shows an example of a definition in both KRSS
and XML syntax of the concept “Proud-Parent”, a per-
son whose children are all either Doctors or Lawyers.

KRSS:
(and Person

(some child Person)

(all child (or Doctor Lawyer)))

XML:
<CONCEPT>

<AND>

<PRIMITIVE NAME="Person"/>

<SOME>

<PRIMROLE NAME="child"/>

<PRIMITIVE NAME="Person"/>

</SOME>

<ALL>

<PRIMROLE NAME="child"/>

<OR>

<PRIMITIVE NAME="Doctor"/>

<PRIMITIVE NAME="Lawyer"/>

</OR>

</ALL>

</AND>

</CONCEPT>

Figure 1: KRSS and XML syntax

3 System Architecture

Only a minimal interface to the DL reasoner has been
defined. It is intended that additional functionality and
more sophisticated interfaces be provided by other com-
ponents, which would be clients of the DL reasoner.
Client applications would then interact with an inter-
face component. All these interactions make use of the
ORB bus, as shown in Figure 2.

ORB

DL
Reasoner

Interface
Component

Clients

Figure 2: FaCT server Architecture

This architecture provides a mechanism for develop-
ing a complete DL system with interchangeable reason-
ing and interface components. It is even envisaged that
sub-components of the DL system, such as subsump-
tion reasoner, Abox reasoner and hierarchy maintenance,
could be separated. This would facilitate the coopera-

tive development of systems and the rapid integration
of new components, regardless of their implementation
language.

4 The Client Interface Component

The interface provided by the DL reasoner is little more
than ORB access to a Lisp evaluate and print loop. A
separate Interface Component has been implemented (in
Java), and provides a more sophisticated object oriented
API for use by client applications. This API is seen
as an object in the CORBA namespace, and provides
operations which clients use to interact with the DL;
the interface seen by clients is thus separated from the
real reasoning engine. Even this API is very simple, and
it is anticipated that many applications would want to
augment it either directly or by interposing another level
of indirection. Moreover, the current API only considers
Tbox reasoning, and would need to be extended if an
Abox reasoner were added to the system.

The interface conforms to a standard “tell and ask”
format: facts are asserted to the knowledge base (KB)
and queries answered without the user specifying when
or how reasoning should be performed. In order to im-
prove efficiency, and to support the (future) possibility
of multi-user access to a KB, the interface has a simple
transaction control mechanism. This mechanism could
also be augmented with partial (complete) roll-back: the
ability to undo the last (an arbitrary number of) trans-
actions.

Before performing any tell operations, a client must
perform a begin transaction operation; if this is successful
it can be followed by any number of tell operations. A
transaction can be ended either with an end transaction or
an abort transaction operation, the latter having the effect
of discarding all the tell operations performed since the
transaction began. Any ask operations performed during
a transaction will be answered in the normal way, but
will not reflect any of the tell operations in the incom-
plete transaction. As well as providing a simple locking
mechanism, grouping tell operations in this way gives
the system a hint as to when it might be sensible to
perform some reasoning, without introducing an explicit
“classify” operation.

Errors are signaled by raising exceptions (a standard
feature of CORBA). The different types of exception are:

kr transaction required The requested operation can only
be performed in the context of a transaction.

kr op unimplemented The requested operation is not im-
plemented by the server.

kr expr error Concept or role syntax error. This also cov-
ers the case of unimplemented operators.

The small number of exception types is due to the sim-
plicity of the interface and the decision not to consider
any kind of KB condition (e.g., concept or KB unsat-
isfiability) as an error. Many kr op unimplemented errors
could of course be raised, depending on the capabilities
of the DL reasoner.

Return Operation Parameters Meaning
void defconcept CN CN v >
void defrole RN RN v >×>
void implies c C1, C2 C1 v C2

void equal c C1, C2 C1

.
= C2

void implies r R1, R2 R1 v R2

void equal r R1, R2 R1

.
= R2

void transitive RN RN is transitive
void functional RN RN is functional
void clear T := ∅

Table 1: Tell operations

The available tell and ask operations are summarised
in Table 1 and Table 2, where CN is a concept name,
RN is a role name, C is a concept, R is a role, CN is
a set of sets of concept names, RN is a set of sets of
role names, P is a triple (CN 1, CN 2, CN 3), and T is the
set of axioms that make up the KB. The CN and RN
data types are used to return sets of named concepts or
roles, each of which may have a set of synonyms; in such
cases no one name can or should be preferred over the
others. The P data type is used to return a concept’s po-
sition in the hierarchy, were it to be classified, in terms of
its direct subsumers (CN 1), synonyms (CN 2) and direct
subsumees (CN 3).

All concept and role names are assumed to be atomic
primitives, and the defconcept and defrole operations are
provided only for completeness. For efficiency, some op-
timisation would be required (either in the interface com-
ponent or the DL reasoner), e.g., the conversion of gen-
eral axioms to definition axioms whenever possible [4].

5 Discussion

It will be noted that the ask interface supports only tax-
onomic and logical queries; there is no provision for the
retrieval of concept definitions or other facts directly as-
serted to the KB. This is consistent with the view of
the DL as a reasoning component and with the specifi-
cation of the tell interface. The storage and retrieval of
asserted facts is not a logical operation, and if it is re-
quired this functionality could be provided within client
applications. On the other hand, given that the KB con-
sists of an arbitrary set of asserted facts, a name P may
have no “definition” (an axiom with P as its left hand
side), or it may have many. Moreover, the set of concept
expressions that subsume or are equivalent to P may
depend on other non-definitional axioms in the KB.

We are aware of the effort in the KR community to de-
velop a common API for accessing conceptually diverse
KRSs, in particular the promising OKBC project by the
Knowledge Systems Lab (KSL) at Stanford University
and the AI centre at SRI International [3]. OKBC is in-
tended to define a common API for different KRSs, with
the goal of enabling the sharing and reusability of KBs
written by knowledge engineers using different KRSs.

From a DL perspective, the problem we envisaged in
adopting OKBC is that, although it provides some lim-
ited support for logical KBs, its underlying assumption
is of a frame based knowledge model. Forcing a DL KRS
to conform to the OKBC view seems unnatural, and it
was therefore decided that the KRSS specification was
a more sensible starting point. However, we may con-
ceive of an OKBC compliant API as a wrapper around
our API, where the OKBC services are implemented as
logical services.

References

[1] P. G. Baker, A. Brass, S. Bechhofer, C. Goble, N. Pa-
ton, and R. Stevens. Tambis: Transparent access
to multiple bioinformatics information sources: an
overview. In Proceedings of the Sixth International
Conference on Intelligent Systems for Molecular Bi-
ology, ISMB98, 1998.

[2] S. K. Bechhofer, C. A. Goble, A. L. Rector, W. D.
Solomon, and W. A. Nowlan. Terminologies and Ter-
minology Servers for Information Environments. In
Eighth International Workshop on Software Technol-
ogy and Engineering Practice – STEP97, pages 484–
497, London, UK, 1997. IEEE Computer Society.

[3] V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp,
and J. P. Rice. OKBC: A programmatic founda-
tion for knowledge base interoperability. In Proceed-
ings of the 15th National Conference on Artificial
Intelligence (AAAI-98) and of the 10th Conference
on Innovative Applications of Artificial Intelligence
(IAAI-98), pages 600–607. AAAI Press, jul 1998.

[4] I. Horrocks. Optimising Tableaux Decision Proce-
dures for Description Logics. PhD thesis, University
of Manchester, 1997.

[5] I. Horrocks. FaCT and iFaCT. In Collected Papers
from the International Description Logics Workshop
(DL’99), to appear.

[6] The Object Management Group. The Common Ob-
ject Request Broker: Architecture and Specification,
1998.

[7] P. F. Patel-Schneider. DLP system description. In
E. Franconi, G. De Giacomo, R. M. MacGregor,
W. Nutt, C. A. Welty, and F. Sebastiani, editors,
Collected Papers from the International Description

Return Operation Parameters Meaning
CN direct supers c CN direct subsumers of CN
CN all supers c CN all subsumers of CN
CN direct subs c CN direct subsumees of CN
CN all subs c CN all subsumees of CN
RN direct supers r RN direct subsumers of RN
RN all supers r RN all subsumers of RN
RN direct subs r RN direct subsumees of RN
RN all subs r RN all subsumees of RN
P taxonomy position C taxonomy position of C

boolean satisfiable C (⊥ @ C)?
boolean subsumes C1, C2 (C1 v C2)?
boolean equivalent C1, C2 (C1

.
= C2)?

Table 2: Ask operations

Logics Workshop (DL’98), pages 87–89. CEUR, May
1998.

[8] P. F. Patel-Schneider and B. Swartout. Description
logic specification from the KRSS effort, June 1993.

[9] Extensible markup language (XML) 1.0. W3C
Recommendation TR REC-xml-19980210, February
1998. Editors T. Bray, J. Paoli, C. M. Sperberg-
McQueen.

