
FaCT and iFaCT

Ian Horrocks

University of Manchester, Manchester, UK

horrocks@cs.man.ac.uk

FaCT (Fast Classification of Terminologies) is a De-
scription Logic (DL) classifier which has been imple-
mented as a test-bed for a sound and complete tableaux
satisfiability/subsumption testing algorithm. FaCT’s
novelty lies in its relatively expressive logic and its highly
optimised implementation of the tableaux algorithm.
iFaCT is an extension of FaCT that supports reason-
ing with inverse roles. The resulting logic is particularly
interesting as it no longer has the finite model property.

Language

The logics implemented in FaCT and iFaCT are both
based on ALCR+ , an extension of ALC to include tran-
sitive roles [Sattler, 1996]. For compactness, this logic
will be called S (due to its relationship with the propo-
sition multi-modal logic S4(m) [Schild, 1991]). FaCT ex-
tends S with a hierarchy of roles and functional roles (at-
tributes) to give SHF , while iFaCT adds inverse roles
to give SHIF .

The constructs used by the two logics are described
in Figure 1, where A is an atomic concept, R and S are
roles, C and D are concepts, R+ is the set of transitive
role names and F is the set of functional role names
(there is an additional restriction that R+ and F must
be disjoint). The meaning of concepts and roles is given
by an interpretation I = (∆I , ·I), consisting of a set
∆I , called the domain of I, and a function ·I which
maps every concept to a subset of ∆I and every role to
a subset of ∆I ×∆I such that the properties in Figure 1
are satisfied.

It is easy to show that SHIF does not have the finite
model property: given R ∈ R+ (R is transitive), F ∈ F

(F is functional) and F ⊑ R, then the concept

¬C ⊓ ∃F−.C ⊓ ∀R−.(∃F−.C)

is satisfiable, but all its models must contain in infinite
sequence of individuals, each related to a single succes-
sors by an F− role, and each satisfying C ⊓ ∃F−.C, the
∃F−.C term being propagated along the sequence by the
transitive super-role R. Terminating the sequence in a

cycle back to the first element would result in a con-
tradiction between C and ¬C, while a cycle back to any
subsequent element would conflict with the functionality
of F .

Both FaCT and iFaCT accept a variety of different
input syntax, including a format compatible with the
Kris system [Baader and Hollunder, 1991], and provide
a wide range of functions and macros for constructing,
classifying and querying a knowledge bases (KBs). In
both systems, KBs can contain arbitrary (general con-
cept inclusion) axioms, as well as the usual concept and
role introduction axioms.

Other Features

Due to correspondences with propositional (multi)
modal logics, FaCT can also be used as a reasoner for
K(m), KT(m), K4(m) and S4(m); an interface is pro-
vided for testing the satisfiability of formulae in any of
these logics.

In addition, iFaCT has an optional interface that al-
lows it to reason (via a satisfiability maintaining map-
ping) with concepts and relationships (of arbitrary arity)
in DLR, a logic which can be used to reasoning about
database schemata [Calvanese et al., 1998a].

Implementation

FaCT and iFaCT are implemented in Common Lisp, and
have run successfully with several commercial and free
lisps, including Allegro, Liquid (formerly Lucid), Lisp-
works and GNU.

Both FaCT and iFaCT transform subsumption prob-
lems into satisfiability problems, and solve these us-
ing sound and complete tableaux algorithms. Both
algorithms use a form of loop checking called block-

ing to guarantee termination. In iFaCT, a spe-
cial pair-wise dynamic blocking technique is used
to deal with the additional complexities of inverse
roles [Horrocks and Sattler, to appear]. Using this tech-
nique, the algorithm is able to generate finite represen-
tations of (possibly) infinite tableaux.



Construct Name Syntax Semantics
atomic concept A AI ⊆ ∆I

atomic role R RI ⊆ ∆I × ∆I

transitive role R ∈ R+ RI = (RI)+

conjunction C ⊓ D CI ∩ DI S
disjunction C ⊔ D CI ∪ DI

negation ¬C ∆I \ CI

exists restriction ∃R.C {x | ∃y.〈x, y〉 ∈ RI and y ∈ CI}
value restriction ∀R.C {x | ∀y.〈x, y〉 ∈ RI implies y ∈ CI}
role hierarchy R ⊑ S RI ⊆ SI H
inverse role R− {〈x, y〉 | 〈y, x〉 ∈ RI} I
functional role R ∈ F {〈x, y〉, 〈x, z〉} ⊆ RI implies y = z F

Figure 1: Syntax and semantics of the SHF and SHIF

In order to make the FaCT system usable in re-
alistic DL applications, a wide range of optimisa-
tion techniques are used in the implementation of
the SHF satisfiability testing algorithm. These in-
clude axiom absorption, lexical normalisation, seman-
tic branching search, simplification, dependency di-
rected backtracking, heuristic guided search and caching.
The use of these (and other) optimisation techniques
has now become standard in tableaux implementa-
tions [Patel-Schneider, 1998, Haarslev et al., 1998].

Performance

FaCT has performed well in a number of tests, including
those using randomly generated or hand crafted formu-
lae in some propositional modal logic. However, FaCT
performs especially well when classifying KBs as several
of its optimisations are specifically designed to take ad-
vantage of their typical structure.

Initial experiments with iFaCT have been en-
couraging. These experiments used a KB repre-
senting (fragments of) database schemata and inter
schema assertions from a data warehousing applica-
tion [Calvanese et al., 1998a] (a slightly simplified ver-
sion of the proposed encoding was used to generate
a SHIF KB). iFaCT was able to classify this KB,
which contains 19 concepts and 42 axioms, in less
than 0.1s of (266MHz Pentium) CPU time. In con-
trast, eliminating inverse roles using an embedding tech-
nique [Calvanese et al., 1998b] gives an equisatisfiable
FaCT KB with an additional 84 axioms, but one which
FaCT is unable to classify in 12 hours of CPU time. This
is because the embedding generates general inclusion ax-
ioms (of the form C ⊑ D, where C and D are arbitrary
concepts) of a kind that are not, in general, amenable
to absorption [Horrocks, 1998], an optimisation which is
crucial for efficient reasoning w.r.t. general KBs.

The current implementation of iFaCT is a relatively
naive modification of the FaCT system: it does not use

the more efficient form of pair-wise blocking described
in [Horrocks et al., 1998], it does not include any spe-
cial optimisations to deal with inverse roles (or take ad-
vantage of their absence), and some optimisations that
would require modification in the presence of inverse
roles are instead simply disabled. As a result, the perfor-
mance of iFaCT is significantly worse than that of FaCT
w.r.t. FaCT KBs (those not containing inverse roles).

Availability

FaCT and iFaCT are available (under the
GNU general public license) via the WWW at
http://www.cs.man.ac.uk/ horrocks.

Future Plans

Work is underway to add a (highly opti-
mised) ABox reasoner to the FaCT sys-
tem [Tessaris and Gough, to appear], and to provide a
CORBA based client-server interface. Apart from this,
further development of FaCT and iFaCT is not planned.
Instead, a cooperative effort is underway to develop a
new system that will support core reasoners for a range
of expressive DLs. Amongst these will certainly be
SHIQ, a DL that augments SHIF with a qualifying
number restrictions [Hollunder and Baader, 1991]. This
logic will allow the complete encoding (via DLR) of
and reasoning with database schemata (in particular,
extended entity relationship models).

References

[Baader and Hollunder, 1991] F. Baader and B. Hollun-
der. Kris: Knowledge representation and inference
system. SIGART Bulletin, 2(3):8–14, 1991.

[Calvanese et al., 1998a] D. Calvanese, G. De Giacomo,
M. Lenzerini, D. Nardi, and R. Rosati. Source inte-
gration in data warehousing. In Proc. of DEXA-98,
pages 192–197, 1998.



[Calvanese et al., 1998b] D. Calvanese, G. De Giacomo,
and R. Rosati. A note on encoding inverse roles and
functional restrictions in ALC knowledge bases. In
Proc. of DL-98, pages 69–71, 1998.

[Haarslev et al., 1998] V. Haarslev, R. Möller, and A.-Y.
Turhan. Implementing an ALCRP(D) abox reasoner
– progress report. In Proc. of DL-98, pages 82–86,
1998.

[Hollunder and Baader, 1991] B. Hollunder and
F. Baader. Qualifying number restrictions in
concept languages. In Proc. of KR’91, pages 335–346,
1991.

[Horrocks and Sattler, to appear] I. Horrocks and
U. Sattler. A description logic with transitive and
inverse roles and role hierarchies. Journal of Logic

and Computation, to appear.

[Horrocks et al., 1998] I. Horrocks, U. Sattler, and
S. Tobies. A PSpace-algorithm for deciding ALCIR+ -
satisfiability. Technical Report 98-08, LuFg Theoreti-
cal Computer Science, RWTH Aachen, 1998.

[Horrocks, 1998] I. Horrocks. Using an expressive de-
scription logic: FaCT or fiction? In Proc. of KR’98,
pages 636–647, 1998.

[Patel-Schneider, 1998] P. F. Patel-Schneider. DLP sys-
tem description. In Proc. of DL-98, pages 87–89, 1998.

[Sattler, 1996] U. Sattler. A concept language extended
with different kinds of transitive roles. In 20. Deutsche

Jahrestagung für Künstliche Intelligenz, number 1137
in LNAI, pages 333–345, 1996.

[Schild, 1991] K. Schild. A correspondence theory for
terminological logics: Preliminary report. In Proc. of

IJCAI-91, pages 466–471, 1991.

[Tessaris and Gough, to appear] S. Tessaris and
G. Gough. Abox reasoning with transitive roles
and axioms. In Proc. of DL’99, to appear.


