
DLP and FaCT

Peter F. Patel-Schneider1 and Ian Horrocks2

1 Bell Labs Research, Murray Hill, NJ, U.S.A.
pfps@research.bell-labs.com

2 University of Manchester, Manchester, UK
horrocks@cs.man.ac.uk

DLP [Patel-Schneider(1998)] and FaCT [Horrocks(1998)] are two recent de-
scription logic systems that contain sound and complete reasoners for expressive
description logics. Due to the equivalences between expressive description logics
and propositional modal logics, both DLP and FaCT can be used as satisfiability
checkers for propositional modal logics.

FaCT is a full-featured system that contains a highly-optimized satisfiability
checker for a superset of K4(m). FaCT has an interface to allow the direct
satisfiability checking of propositional modal formulae. FaCT is available from
http://www.cs.man.ac.uk/~horrocks.

DLP is an experimental system, designed to investigate various optimiza-
tion techniques for description logic systems, including many of the optimiza-
tions pioneered in FaCT. DLP is available from http://www.bell-labs.com/user
/pfps/dlp. DLP contains a highly-optimized satisfiability checker for a super-
set of Propositional Dynamic Logic (PDL), and includes a simple interface
for the direct checking of the satisfiability of formulae in PDL. Both DLP
and FaCT have performed very well on several comparisons of modal provers
[Horrocks and Patel-Schneider(1998a),Horrocks and Patel-Schneider(1998b)].

The remainder of this submission will concentrate on DLP, as it is somewhat
faster than FaCT. Significant differences from FaCT will be noted.

Architecture and Algorithm

At the heart of the DLP system is its highly-optimized tableaux satisfiability
engine. DLP first performs a lexical normalization phase, which uniquely stores
sub-formulae; eliminates repeated conjuncts and disjuncts; replaces local tautolo-
gies and contradictions with true and false, respectively; and performs several
other normalization steps. It then attempts to construct a model of the normal-
ized formulae; if it can construct the model then the formulae is satisfiable, if
not, the formula is unsatisfiable.

DLP deals with non-determinism in the model construction algorithm by
performing a semantic branching search, as in the Davis-Putnam-Logemann-
Loveland procedure (DPLL), instead of the syntactic branching search used by
most earlier tableaux based implementations [Giunchiglia and Sebastiani(1996)].
DLP deterministically expands disjunctions that present only one expansion
possibility and detects a clash when a disjunction has no expansion possibilities.

DLP performs a form of dependency directed backtracking called backjump-
ing, backtracking to the most-recent choice point that participates in a clash



instead of to the most-recent choice point. To support backjumping, DLP keeps
associated with each formula the set of choice points that gave rise to that for-
mula.

DLP (but not FaCT, which has a different caching mechanism) caches the
satisfiability status of all modal nodes that it encounters, and uses this status
when a node with the same formula is seen again. DLP uses a combination of
heuristics to determine the next disjunct on which to branch: it tries to maximize
backjumping by first selecting disjunctions that do not depend on recent choice
points, and it tries to maximize deterministic expansion by using the MOMS
heuristic [Freeman(1996)] to select a disjunct from amongst these disjunctions.
DLP defers modal processing until all propositional processing is complete at a
node, again using a backjumping maximization heuristic to determine the order
in which modal successors are explored.

To handle transitive modalities, and modality constructs in PDL, DLP
checks for loops in the model it is constructing. If a loop is detected, it must
be classified as either as a loop that leads to satisfiability or a loop that is
unsatisfiable. This loop checking allows DLP to handle the S4 problem classes.

Implementation

DLP is implemented in Standard ML of New Jersey, and uses many of the
features of the standard libraries of this language. DLP is a mostly-functional
program in that the core of the engine has no side-effects. In fact, the only side
effects in the satisfiability engine involve the unique storage of sub-formulae and
node caching. (FaCT has a more traditional implementation in LISP.)

The unique storage of sub-formula and node caching are handled in DLP by
a formula cache. When a formula is encountered, it is looked up in the cache.
If the formula is in the cache, it is reused; if not, a new formula is created and
added to the cache. Each formula has a satisfiability status; when a new node is
created, the formulae for the node are conjoined and this formula is looked up in
the formula cache; when a node’s status is determined, the satisfiability status
of its formula is updated.

Special Features

Full PDL loop checking can be replaced in DLP by a simpler (and much less
costly) loop checking mechanism for transitive modalities. An optimization that
is valid for transitive modalities but not for transitive closure can also be en-
abled. These changes turn DLP into a satisfiability checker for a multi-modal
logic where some or all of the modalities may be transitive. The standard em-
bedding can also be used to allow DLP to reason with reflexive modalities. DLP
is therefore able to handle many modal logics, including K(m), KT(m), K4(m),
and S4(m). DLP was recently extended to allow global axioms.

DLP has many options, including options to turn off all the above non-
heuristic optimizations and options to vary the heuristic optimizations. The
version of DLP used in the tests employs the simpler transitive modality loop



Problem Num Sat Time Outs Time (sat)

p-bound-cnf-K3-C8-V4-D2 16 16 0 0.016 0.003
p-bound-cnf-K3-C16-V4-D2 16 16 0 0.032 0.006
p-bound-cnf-K3-C32-V4-D2 16 16 0 0.064 0.014

p-bound-modK-K3-C8-V4-D2 16 16 0 0.050 0.007
p-bound-modK-K3-C16-V4-D2 16 16 0 0.096 0.013
p-bound-modK-K3-C32-V4-D2 16 16 0 0.190 0.027

p-bound-modS4-K3-C8-V4-D2 16 8 7 57.349 57.116
p-bound-modS4-K3-C16-V4-D2 16 1 15 93.910 93.861
p-bound-modS4-K3-C32-V4-D2 16 0 16 100.000 100.000

p-unbound-qbf-cnf-K4-C8-V2-D3 16 15 0 0.162 0.094
p-unbound-qbf-cnf-K4-C16-V2-D3 16 3 0 0.183 0.094
p-unbound-qbf-cnf-K4-C32-V2-D3 16 0 0 0.229 0.093

p-unbound-qbf-modK-K4-C8-V2-D3 16 0 0 0.232 0.053
p-unbound-qbf-modK-K4-C16-V2-D3 16 0 0 0.319 0.058
p-unbound-qbf-modK-K4-C32-V2-D3 16 0 0 0.478 0.064

p-unbound-qbf-modS4-K4-C8-V2-D3 16 0 0 2.496 0.018
p-unbound-qbf-modS4-K4-C16-V2-D3 16 0 0 3.659 0.026
p-unbound-qbf-modS4-K4-C32-V2-D3 16 0 0 6.463 0.049

persat-cnf-K4-C8-V4-D2 16 16 0 0.016 0.009
persat-cnf-K4-C16-V4-D2 16 16 0 0.038 0.025
persat-cnf-K4-C32-V4-D2 16 16 0 0.207 0.185

persat-modK-K4-C8-V4-D2 16 11 5 56.245 56.234
persat-modK-K4-C16-V4-D2 16 1 15 93.769 93.766
persat-modK-K4-C32-V4-D2 16 3 9 74.895 74.869

persat-modS4-K4-C8-V4-D2 16 7 0 10.833 10.666
persat-modS4-K4-C16-V4-D2 16 4 0 7.039 6.714
persat-modS4-K4-C32-V4-D2 16 2 0 3.041 2.395

Table 1. Reference Problems Results

checking, has all optimizations enabled, and uses the backjumping maximization
and MOMS heuristics as described above.

DLP is also a complete description logic system. It has an interface that can
be used to define a collection of concepts and roles. DLP automatically computes
the subsumption hierarchy of these concepts and provides facilities for querying
this hierarchy.

Performance Analysis

DLP was only tested on the problems that used logics K(m) and S4(m), possibly
including global axioms. Testing was done on a machine with roughly the power
of a Sparc Ultra 1. A time limit of 100 seconds was imposed for each problem
instance. A special parser was written for DLP to input the problems. (Due to
the fact that the problems were not in a format that FaCT could easily handle,
FaCT was not run on the problems.)



V D C/V

2 3 4 5 6 7 8 16 32 64

4 1 0.012 0.014 0.019 0.022 0.026 0.030 0.036 0.087 0.123 0.236
8 1 0.020 0.031 0.039 0.056 0.065 0.078 0.090 0.947 *29.581 0.739

16 1 0.047 0.075 0.105 0.142 0.180 0.214 0.264 0.992 *87.599 * 3.711
4 2 0.016 0.023 0.031 0.040 0.046 0.055 0.064 0.136 0.359 *7.701
8 2 0.034 0.049 0.067 0.084 0.106 0.129 0.154 0.402 1.235 2.269

16 2 0.016 0.023 0.031 0.040 0.046 0.055 0.064 0.136 0.359 *7.701

Table 2. Generated Problems Results—bound-cnf-K3 (average time)

There are two times reported for each problem class in Table 1. The first times
are for an entire run, including inputing the file and normalizing the resulting
formula. The second times are for just the satisfiability checker itself.

Many of the reference problems were easy for DLP. The problems that were
hard for DLP were the bound-modS4 problems and the persat-modK-K4 prob-
lems. They were much harder than the other problems. For the S4 problems this
is probably because DLP uses an equality test to cut off modal loops. A subset
test would probably be more effective We do not know why DLP is slow on the
persat-modK-K4 problems.

DLP was run on some larger bound-cnf-K3 problems. The results are shown
in Table 2. Times marked with a ‘*’ indicate that some problem instances in the
particular test exceeded the time bound.

DLP has also been run on a number of other test suites. It did very well on
the Tableaux’98 test suite. It also performs well on random formulae generated
by other generators. A plot of its performance on random bound-cnf-K3 formulae
with a modal depth of 2 and and 9 variables is given Figure 1. The plot shows
the 50th, 60th, 70th, 80th, 90th, and 100th percentiles of run time in seconds
for various values of C/V (the ratio of clauses to variables). These results are
competitive with the fastest propositional modal provers.

Future Work

We are in the process of designing and implementing a successor to DLP. This
successor will have a different algorithmic base, and incorporate a newer back-
tracking optimization called dynamic backtracking [Ginsberg(1993)]. This will
allow the optimized handling of nominals, or description logic individuals.

References

[Freeman(1996)] J. W. Freeman. Hard random 3-SAT problems and the Davis-Putnam
procedure. Artificial Intelligence, 81:183–198, 1996.



50
60

70
80

90
100

Percentile

20 40 60 80 100 120 140

C/V

0.1

1

10

100

1000

Time (s)

Fig. 1. Percentile times for formulae with 9–1350 clauses (C) and 9 variables (V)

[Ginsberg(1993)] M. L. Ginsberg. Dynamic backtracking. Journal of Artificial Intel-
ligence Research, 1:25–46, 1993.

[Giunchiglia and Sebastiani(1996)] F. Giunchiglia and R. Sebastiani. Building decision
procedures for modal logics from propositional decision procedures—the case study
of modal K. In M. McRobbie and J. Slaney, editors, Proceedings of the Thirteenth
International Conference on Automated Deduction (CADE-13), number 1104 in
Lecture Notes in Artificial Intelligence, pages 583–597. Springer-Verlag, 1996.

[Horrocks(1998)] I. Horrocks. Using an expressive description logic: FaCT or fiction?
In A. G. Cohn, L. Schubert, and S. C. Shapiro, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Sixth International Conference
(KR’98), pages 636–647. Morgan Kaufmann Publishers, San Francisco, CA, 1998.

[Horrocks and Patel-Schneider(1998a)] I. Horrocks and P. F. Patel-Schneider. FaCT
and DLP. In H. de Swart, editor, Automated Reasoning with Analytic Tableaux and
Related Methods: International Conference Tableaux’98, number 1397 in Lecture
Notes in Artificial Intelligence, pages 27–30. Springer-Verlag, 1998a.

[Horrocks and Patel-Schneider(1998b)] I. Horrocks and P. F. Patel-Schneider. Opti-
mising propositional modal satisfiability for description logic subsumption. In In-
ternational Conference AISC’98, Lecture Notes in Artificial Intelligence. Springer-
Verlag, 1998b.

[Patel-Schneider(1998)] Peter F. Patel-Schneider. DLP system description. In E. Fran-
coni, G. De Giacomo, R. M. MacGregor, W. Nutt, C. A. Welty, and F. Sebas-
tiani, editors, Collected Papers from the International Description Logics Workshop
(DL’98), pages 87–89, 1998.


