
Generating Hard Modal Problems
for Modal Decision Procedures

Ian Horrocks Peter F. Patel-Schneider
Department of Computer Science Bell Labs Research

University of Manchester, UK Murray Hill, NJ, U.S.A.
horrocks@cs.man.ac.uk pfps@research.bell-labs.com

Abstract

Random generation of modal formulae is a viable method for generating prob-
lems for benchmarking modal decision procedures. However,previous work in
this area has used a flawed generator that has resulted in questionable results. Fix-
ing the generator changes the characteristics of the generated problems. The fixed
generator can be used to generate hard problems that have more interesting modal
properties than previous hard problem sets.

Optimised decision procedures for propositional modal logics have recently been
developed. These decision procedures are significantly faster than previous decision
procedures for modal logics, to the extent that some problems that were impossible
to solve using older decision procedures are trivial for thenewer decision procedures.
Further, due to the connection between propositional modallogics and description log-
ics, there is a natural use for these optimised decision procedures in description logic
classifiers.

Now that such modal decision procedures are available, it ispossible, and even
necessary, to determine their actual performance, both relative and absolute, on hard,
interesting modal problems. By hard problems, we mean problems that are hard, but
not impossible, for one or, preferably, more current decision procedures, not necessar-
ily problems that are theoretically hard. Several mechanisms have been proposed for
generating such hard modal problems. These mechanisms generally break down into
three groups: 1/ hand generation of classes of modal formulae, 2/ translation of actual
problems into modal formulae, and 3/ random generation of hard modal formulae.

The first group is best illustrated by the modal formulae usedin the Tableaux’98
comparison of modal decision procedures[Heuerding and Schwendimann, 1996; Bal-
siger and Heuerding, 1998]. For this comparison, 54 parameterised formulae genera-
tors were created. Each generator took a size parameter and output a formula whose
difficulty of proving (or equivalently determining the satisfiability of) was supposed to
increase exponentially with the size of the parameter.

The second group is illustrated by the translation of description logic knowledge
bases, such as the GALEN knowledge base[Rectoret al., 1994], or other knowledge
descriptions, such as entity-relationship diagrams[Calvaneseet al., 1998], into propo-
sitional modal logics. This mechanism was used in a comparison of description logic
systems at DL’98[Horrocks and Patel-Schneider, 1998a].

The third group is illustrated by the work of Giunchiglia andSebastiani[Giunchiglia
and Sebastiani, 1996a; 1996b] and Hustadt and Schmidt[Hustadt and Schmidt, 1997a;

1



1997b]. This work uses parameterised random generators to create collections of hard
(or at least large and non-trivial) modal formulae in the logicK(m).

Even considering the above efforts, there is a general lack of hard modal prob-
lems on which to test modal decision procedures. This is in contrast to the situation in
non-modal propositional modal logics. There, because of the continuing use of propo-
sitional reasoners to solve problems from chip layout, planning, et cetera, there is a
large collection of actual problems. These problems are hard (and/or large) enough
to stress even the decision procedures being currently developed. Also, there is gen-
eral agreement on a generator for hard random formulae[Selmanet al., 1996]. Hand
generation is not widely used, as it is too hard to generate interesting problems.

In modal logics there are very few real problems that can be used as sources of
hard modal problems. This is, in part, due to lack of optimised decision procedures
for modal logics—if there are no fast modal decision procedures, there is no incentive
to map problems into modal logics. This situation may changein the future as the
result of the availability of the current group of optimisedmodal decision procedures.
Further, random generation of hard modal formulae is much more difficult than ran-
dom generation of hard propositional formulae due to the larger number of parameters
needed to define their structure.

Hustadt and Schmidt’s experiments led them to conclude that, for a given size, the
hardest modal formulae have a very simple structure, with a modal depth of 1 and
propositional variables occurring only at depth 1. (A purely propositional formula is
said to have a depth of 0.) Even if their conclusions are valid, and we take issue with
them at least in part, it is not a good idea to test modal decision procedures only on
formulae that fall into this very restricted class. A modal decision procedure that is very
much faster than other modal decision procedures on this particular kind of formulae
may be very much slower than other modal decision procedureson other formulae.
Further, formulae of this form will not correspond to the sort of formulae involved
in real modal problems, so comparisons on them will be of little use in predicting
behaviour with real problems.

What is needed is a good, systematic mechanism to generate hard problems with
real, varying modal content. Again, we mean problems that are hard for current modal
decision procedures. This mechanism should have parameters to control the amount,
form, and depth of modal content. It should also reliably generate problems of a given
hardness, with few or no trivial problems. Such a mechanism could be used to compare
the current optimised modal decision procedures.

To this end, we analyse the generators designed by Giunchiglia and Sebastiani and
Hustadt and Schmidt, and show how problems with these generators led to a serious
underestimation of the impact of modal depth on the hardnessof the problems gener-
ated. We propose a modification of these generators that produces much harder modal
problems, and use the modified generator to compare various decision procedures and
optimisations. Finally, we analyze the results of this testing.

Note that creating a good mechanism for generating hard random problems is inde-
pendent of whether is it a good idea to use random problems at all. We are of the firm
belief that random problems, at least random problems that are not related to actual
problems, are not the best way to test decision procedures. However, in the absence
of actual problems for testing modal decision procedures, we are reduced to using ran-
dom problems. Perhaps the performance of the new decision procedures on random
problems will encourage the use of the new decision procedures on actual problems,
which can then be used as benchmarks for the decision procedures or as models for the
generation of such benchmarks.

2



Techniques for Building Modal Decision Procedures

Building a decision procedure for a simple modal logic is notmuch more difficult than
building a decision procedure for propositional logic. It suffices to take any tableau
expansion methodology for the modal logic and directly implement that methodology,
using a simple search to deal with the inherent nondeterminism. Of course, the result-
ing system will be completely unusable, as it will reflect allthe inefficiencies of tableau
expansion.

There are several ways of producing faster modal decision procedures. One method
is to treat a modal proof as a collection of non-modal propositional proofs. This
method, as exemplified in the KSAT decision procedure[Giunchiglia and Sebastiani,
1996a; 1996b], treats the modal sub-formulae as proposition atoms and performs a sat-
isfiability check on the resulting formula. If any propositional model is found for this
formula, the true modal formulae are extracted from the model and for each modal
successor the process is repeated. If all the modal checks succeed, a complete modal
model has been found; if they fail, the decision procedure tries other propositional
models until all possibilities have been exhausted.

The advantage of this method is that it can use a state of the art optimised proposi-
tional decision procedure, gaining the speed advantages ofthat decision procedure.
Only minor changes are needed in the propositional decisionprocedure to support
modal reasoning. The disadvantage of this method is that thedifferent propositional
steps are only loosely connected to the modal steps, and information gained in the
modal steps may not be available to improve the overall performance of the decision
procedure, which is dominated by the propositional steps.

Another method for obtaining a fast modal decision procedure is to translate modal
formulae into first-order formulae, which are then checked using a first-order prover.
This approach is used in the TA system[Hustadt and Schmidt, 1997a; 1997b]. At first
glance this may seem to be a poor approach as first-order logicis undecidable. How-
ever, it is possible to translate modal formulae into a decidable fragment of first-order
logic (FOL), and when combined with a first-order prover thatis sound and complete
for the fragment in question this gives a sound and complete decision procedure for the
modal logic.

This method again has the advantage that it can use a state of the art first-order
prover, selecting one which is either naturally fast on the kinds of formulae produced
by the translation, or which can be tuned to be fast on these formulae. One disadvantage
of this mechanism is that it is hard to control first-order provers, so performance may
be poor on some formulae.

A third method for obtaining a fast modal decision procedureis to build an opti-
mised decision procedure from scratch, using whatever optimisations are effective for
modal logics. Two decision procedures built using this method are FaCT[Horrocks,
1998] and DLP[Patel-Schneider, 1998]. Both decision procedures were actually built
as description logic systems, but, because of the relationships between description log-
ics and modal logics, include a modal logic decision procedure.

The advantage of this third method is that the decision procedure can be optimised
for propositional modal logics, and does not depend on optimisations designed for
other logics. The disadvantage of this method is that the decision procedure has to be
built from scratch and thus does not automatically get the benefits of optimisation work
in propositional or first-order logics.

However an optimised modal decision procedure is built, itscore is still a search en-

3



gine that explores the space of potential proofs, or refutations, or models for a formula.
Although there are techniques that can be used to avoid search, such as normalising the
input formula to detect local inconsistencies and tautologies, the search engine’s per-
formance is vital to the overall performance of the decisionprocedure. Further, there
are a number of differing approaches that result in performance variations on different
types of formulae.

On Being a Good Adversary

The biggest problem in generating problem sets for modal decision procedures is to
strike the right balance. If a problem set is too easy, it willnot show off sophisticated
optimisations that have a high overhead, as even less-optimised decision procedures
will complete the problems quickly. If a problem set is too hard, the decision proce-
dures will not terminate within the time limit set for the test, and their effectiveness
cannot be determined. If a problem set spans only a small partof the problem space,
then it may concentrate on or miss areas where a decision procedure is relatively fast
or slow. Ideally, then, a problem set should have some easy sections and some hard
ones, and should contain a large variety of problems.

It is possible that a large formula can have subformulae thatare tautologous or
contradictory. Even if these subformulae do not make the entire formula tautologous
or contradictory, the presence of these subformulae may mean that the formula is not
an effective test.

In the propositional case, generating formulae with the appropriate characteristics
is now relatively easy. The input form can be restricted to conjunctive normal form
with 3 literals per clause (3CNF), as it is generally agreed that this restriction does not
make the problem any simpler[Selmanet al., 1996]. Each clause can be generated
by randomly selecting acombinationof three propositional atoms and negating each
of them with probability one-half. There is a general agreement that the hardness of a
problem set in this form is determined by the number of propositional atoms and the
number of clauses. In particular, to get a mix of interestingproblems—some satisfi-
able, some unsatisfiable, some relatively easy, some relatively hard—it suffices to fix
the number of propositional atoms and vary the number of clauses. With relatively
few clauses almost all problems are satisfiable and easy; with relatively many clauses
almost all problems are unsatisfiable and easy; with a critical number of clauses, about
4.2 times as many as the number of propositional variables, about half the problems
are satisfiable and many of them are hard. Many experiments using this generation
mechanism have been performed on various propositional satisfiability (SAT) decision
procedures[Freeman, 1996; Selmanet al., 1996].

All well-designed SAT algorithms have been shown to exhibita form of this easy-
hard-easy behavior: for a given number of propositional variables, problems with a
number of clauses that makes them either under-constrained(�50% satisfiable) or
over-constrained (�50% satisfiable) are generally much easier to solve than critically
constrained problems. This phenomenon has also been observed in a range of other
NP-complete problems[Hogget al., 1996]. Moreover, for sufficiently large numbers of
propositional variables, the transition from under- to over-constrained becomes rapid,
forming a phase transition.

In the modal case, there are many more difficulties. First, even for formulae in
a (generalised) 3CNF form, there are additional variationsin the structure requiring
parametric control: the “atoms” in clauses can be propositional literals or modal for-

4



mulae, and if modal they contain a sub formula the structure of which can itself be
varied. Second, it is not well understood how these additional parameters interact with
the propositional parameters to determine the hardness of problems, and there is as
yet no general agreement as to whether a phase transition canbe observed in PSPACE-
complete modal problems. Given our limited understanding of these issues, generators
of modal problems must be carefully designed and rigorouslytested.

Previous Problem-Generation Techniques

In order to test their KSAT decision procedure, Giunchiglia and Sebastiani developed
a random generator for modal formulae that generalised the 3CNF model described in
Section [Giunchiglia and Sebastiani, 1996a; 1996b]. The generator produces conjunc-
tive formulae of the form(D1 ^ : : : ^DL) where eachDi is aK-disjunctive formula
of the form(C1 _ : : : _ CK). Each disjunctCj can be either a literal (a propositional
variable or its negation) or a (possibly negated) modal atom. Modal atoms are of the
form�iD wherei is one of the modalities andD is anotherK-disjunctive formula.

Generation is controlled by six parameters:N , the number of different primitive
concepts (propositional variables);M , the number of different modalities;K, the size
of theK-disjunctive formulae;D, the maximum modal depth;P , the probability of
a disjunct being a literal rather than a modal atom (except atdepthD); andL, the
number ofK-disjunctive formulae in the top-level conjunction. IfP is 1, the formulae
generated are purely propositional and, it was claimed by Giunchiglia and Sebastiani,
are of the standard SAT testing form[Giunchiglia and Sebastiani, 1996b].

The experiments devised by Giunchiglia and Sebastiani weredesigned to test the
performance ofK(m) decision procedures, and to discover if a phase transition could
be observed. Three sets of experiments were performed by varying one of the param-
etersN , M andD while keeping the others fixed. The values of the fixed parameters
were chosen so that varyingL to give valuesL=N in the range 1–40 produced prob-
lems ranging from�100% satisfiable to�0% satisfiable. In all the experiments,K
was fixed at 3 andP was fixed at 0.5.

We will mostly concern ourselves with the set of experimentsin which the modal
depth was varied, the values chosen beingD = 2, 3, 4 and 5, withN fixed at 3 andM
at 1; we will refer to these four parameter settings asPS4, PS3, PS2andPS1respec-
tively, following Hustadt and Schmidt. The problems generated were much harder (for
the KSAT decision procedure) if the value ofN (the number of propositional variables)
was increased, but became only slightly harder with increasing modal depth.

Hustadt and Schmidt[Hustadt and Schmidt, 1997a; 1997b] subsequently pointed
out that the formulae produced by Giunchiglia and Sebastiani’s generator contained
many tautological and contradictory clauses which considerably reduced the effective
size of the formulae and often rendered larger formulae trivially unsatisfiable. This
exaggerated the benefits of the KSAT decision procedure as it performed particularly
well with these kinds of formula. They also noted that with the other parameters fixed,
increasing the modal depth greatly increased the size of theformulae generated. As it
had already been shown that increasing the modal depth had little effect on the hard-
ness of problems, they concluded that for a given size of formula increasing the modal
depth actually made problems easier, and that the value ofN (the number of proposi-
tional variables) was by far the most important factor in determining the hardness of
the generated formulae. Having modified the generator so that far fewer tautological
and contradictory clauses were produced (making for generally much harder problems)

5



0.01

0.1

1

10

100

1000

0 10 20 30 40 50 60 70 80

w
or

st
 c

as
e 

C
P

U
 ti

m
e 

(s
)

L/N

TA
KSAT
FaCT
DLP

0.01

0.1

1

10

100

1000

0 10 20 30 40 50 60 70 80

m
ed

ia
n 

C
P

U
 ti

m
e 

(s
)

L/N

TA
KSAT
FaCT
DLP

Figure 1: Worst-case and median CPU times forPS1

they went on to perform new experiments, their conclusion about the effect of increas-
ing modal depth leading them to fix the value of this parameterat 1 in all cases.

Hustadt and Schmidt also improved the analysis of the experimental results by
considering not just median times but a range of percentile times, theN th percentile
being the time sufficient to solveN% of the problems in the test set. We will mostly
restrict our attention here to median (50th percentile) andworst-case (100th percentile)
times. Worst-case times can be important in realistic applications if, for example, a
real-time response is required or if they are so large that they dominate the average
solution time.

Closer consideration reveals that the apparent reduction in the difficulty of prob-
lems with increasing modal depth is an artifact of the Giunchiglia and Sebastiani gen-
erator, and in particular its production of tautological propositional clauses such as(P _ :P _ : : :) that can be simplified to> (True). When this occurs inside a modal
atom�i> it can again be simplified to>, and there is then a probability (usually fixed
at 0.5) that the modal atom will be negated to give? (False). If all the disjuncts in aK-

6



disjunctive formula are?, then the formula can be simplified to?, and if this occurs in
one of theK-disjunctive formulae in the top level conjunction, then the whole formula
can be simplified to? without invoking the modal decision procedure. Increasingthe
modal depth increases the probability that such trivially unsatisfiable formulae will be
generated.

Repeating the original experiments using the Hustadt and Schmidt generator gives
much different results for larger values ofD. Using the original generator, the median
solution time even for the hardest problems generated by thePS1settings never ex-
ceeded 10s of CPU time for either KSAT or TA; with the modified generator, median
solution times for both systems often exceeded the 1,000s maximum allowed in the ex-
periment. Figure 1 shows the median and worst-case solutiontimes for both systems,
as well as those for FaCT and DLP, using the modified generator.

The large oscillations in the median solution times using KSAT with L=N in the
range 45–51 reflect the fact that this is the region where the probability of problems
being satisfiable is approximately 0.5, and like FaCT and DLP, KSAT can solve most
unsatisfiable problems in this test relatively easily. TA isalso able to solve some of the
unsatisfiable problems in this region, although not as many as the other systems, but it
was not possible to complete the experiment with TA as it doesnot deal reliably with
the larger problems in the test.

Unsatisfiable formulae here are still mostly relatively easy for all the systems be-
cause they are unsatisfiable considering only their non-modal portion. As all the de-
cision procedures are biased towards looking first at the non-modal information, they
can quickly dispose of such formulae. Hustadt and Schmidt have called these formulae
trivially unsatisfiable.

Examining more closely the results for DLP, the fastest decision procedure tested,
shows that the median solution time for problems in the�50% satisfiable region (L=N
in the range 40–50) increases from�0.05s forPS4to�0.25s forPS1: Figure 2 shows
the probability of generating satisfiable formulae and DLP’s median satisfiability times
for all four tests. The median size (measured syntactically) of PS1formulae is approx-
imately eight times that ofPS4formulae.

In recent work, Giunchigliaet al [Giunchigliaet al., 1998] have further improved
the generator, but their testing concentrated solely on formulae withD = 1 andP = 0.

A Modified Problem-Generation Technique

The formulae produced by Hustadt and Schmidt’s generator are generally harder, and
clearly demonstrate performance differences between the various systems, but they are
still far from ideal for testing modal decision procedures:The formulae are very similar
to each other, and this can exaggerate the importance of a particular reasoning or opti-
misation technique. There are still relatively few hard problems produced, particularly
unsatisfiable ones. For a given value ofL, the probability of generating unsatisfiable
formulae decreases for larger modal depths, and achieving abalance between satisfi-
able and unsatisfiable tests requires very large formulae tobe generated. As modal
depth increases, the increase in hardness does not match theincrease in formula size.

To overcome some of these problems, we have further modified the generator in
order to produce much less uniform formulae. Such formulae have the benefit of be-
ing generally much harder (for a given formula size), and of being much more likely
to be unsatisfiable. Our generator has additional parametersKmin andDmin that re-
spectively define the minimum size of disjunctive expressions and the minimum modal

7



0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

pr
ob

ab
ili

ty
 o

f s
at

is
fia

bi
lit

y

L/N

PS1
PS2
PS3
PS4

0.01

0.1

1

0 10 20 30 40 50 60 70 80

m
ed

ia
n 

C
P

U
 ti

m
e 

(s
)

L/N

PS1
PS2
PS3
PS4

Figure 2: Median CPU times for DLP withPS1-4

depth. The values occurring within a formula are then variedat random between the
specified maxima and minima.

With the parameters set atN = 6, M = 1, P = 0:5, Kmin = 1, Kmax = 4,Dmin = 1 andDmax = 6, varyingL=N in the range 1–40 produces a suitable range
of hard problems; we will refer to these parameter settings asPSa. Figure 3 shows the
median and worst-case solution times forPSausing all four decision procedures.

The formulae produced by our generator become unsatisfiablefor much lower val-
ues ofL=N and smaller formula size. ForPSa, problems in the�50% satisfiable region
are generated with values ofL=N in the range 10–11. These are only one fifth the size
of 50% satisfiablePS1formulae, and of similar difficulty (for DLP). Our generatoralso
produces some hard unsatisfiable problems, although still in relatively small numbers,
as well as some very hard satisfiable problems in the region where most formulae are
trivially unsatisfiable (L=N in the range 30-40).

8



0.01

0.1

1

10

100

1000

0 5 10 15 20 25 30

w
or

st
 c

as
e 

C
P

U
 ti

m
e 

(s
)

L/N

TA
KSAT
FaCT
DLP

0.01

0.1

1

10

100

1000

0 5 10 15 20 25 30

m
ed

ia
n 

C
P

U
 ti

m
e 

(s
)

L/N

TA
KSAT
FaCT
DLP

Figure 3: Worst-case and median CPU times forPSa

DLP tests

The differences in performance between the various systemsis even more pronounced
for PSathan was the case forPS1. KSAT in particular performs very badly, especially
for satisfiable formulae: for values ofL=N greater than 4 it was unable to solve any
of the satisfiable problems within the 1,000s time limit. Theperformance of the FaCT
system is interesting in that it shows some evidence of a easy-hard-easy pattern: median
solution times reach their maximum in the�50% satisfiable region (L=N in the range
10–15) and subsequently diminish. Overall, DLP is the best performing system: its
median solution time never exceeds 0.5s and it is able to solve all the problems within
the 1,000s time limit.

In order to determine how the superior performance of DLP wasrelated to its var-
ious optimisations,1 thePSatest was repeated a number of times for configurations of

1For full details on these optimisations see[Horrocks and Patel-Schneider, 1998b].

9



0.01

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

90
%

 C
P

U
 ti

m
e 

(s
)

L/N

no backjumping
no caching

no semantic branching
no normalisation
no simplification

normal

0.01

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n 

C
P

U
 ti

m
e 

(s
)

L/N

no backjumping
no caching

no semantic branching
no normalisation
no simplification

normal

Figure 4: 90% and median CPU times forPSawith DLP

DLP in which one of the optimisations was disabled. Figure 4 shows the median and
90% solution times for DLP with each of its backjumping, result caching, semantic
branching search, input formula normalisation and local simplification optimisations
disabled.

From this is is clear the the backjumping optimisation is themain reason for DLP’s
performance advantage over KSAT and TA. This optimisation uses a form of depen-
dency directed backtracking to avoid wasted search when contradictions result from
early branching choices. In DLP, this optimisation is effective even when a contra-
diction derives from multiple modal nodes. Without backjumping, DLP performs very
badly asL=N increases, although performance may recover somewhat for higher val-
ues ofL=N ; testing had to be abandoned in this area.

Semantic branching is the next-most-important optimisation, particularly for the
harder problems. Caching also provides some benefit, although much less. Normali-
sation of the input formulae also provides some benefit, showing that there still remain
some local tautologies or contradictions in the input.

10



There is some evidence of a easy-hard-easy pattern, most noticeable in the harder
problems, although this is very slight unless the better-performing optimisations are
turned off. Partly masking this easy-hard-easy pattern is the increasing time taken just
to input the larger formulae.

Discussion

How the parameters controlling the generation of random modal formulae affect the
difficulty of determining their satisfiability is as yet incompletely understood. It is
therefore essential that generators for such random formulae be carefully designed and
rigorously tested. Failing to do so can easily lead to results that reflect the characteris-
tics of the generator, and their interaction with differentpoof techniques, rather than the
characteristics of the underlying problem and of the the modal decision procedure(s)
being tested.

Our results show that, contrary to earlier suggestions, increasing modal depth can
produce much harder problems, particularly if the structure of the formulae generated is
less uniform. They also demonstrate the importance of a spread of hard satisfiable and
unsatisfiable problems as the performance of some systems may be far from uniform
with respect to different problem types. It was also shown that DLP’s dependency
directed backtracking optimisation was the most importantfactor contributing to its
superior performance. There was no conclusive evidence as to whether or not a phase
shift can be observed for this type of problem: there was somepositive indication of
hard-easy-hard behaviour with both FaCT and DLP but not enough to be called a phase
shift.

Another observation from the tests is that a small number of very hard “outlier”
problems were generated. It is important that these problems are not masked by the
analysis technique, for example by considering only mediansolution times, as the time
taken to solve such problems could be critical to the utilityof a decision procedure in
realistic applications.

Although our generator is a considerable improvement, we are not completely
satisfied with its performance. In particular, it still generates too few hard unsatisfi-
able problems and can still produce trivially unsatisfiableformulae. Moreover, it only
generatesK(m) formulae, while current decision procedures are already able to deal
with much more expressive logics including features such astransitive modalities and
graded modalities.

Future work will therefore include further improvements tothe generator in order
to reduce the likelihood of trivially unsatisfiable formulae, extending the technique to
generate formulae for more expressive logics, and more extensive testing and evalua-
tion.

References
[Balsiger and Heuerding, 1998] P. Balsiger and A. Heuerding. Comparison of theorem provers

for modal logics — introduction and summary. InAutomated Reasoning with Analytic Tab-
leaux and Related Methods: Int. Conf. Tableaux’98, number 1397 in LNAI, pages 25–26.
Springer-Verlag, 1998.

[Calvaneseet al., 1998] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati.
Source integration in data warehousing. InProc. of the 9th Int. Workshop on Database and
Expert Systems Applications (DEXA-98), pages 192–197, 1998.

11



[Freeman, 1996] J. W. Freeman. Hard random 3-SAT problems and the Davis-Putnam proce-
dure.Artificial Intelligence, 81:183–198, 1996.

[Giunchiglia and Sebastiani, 1996a] F. Giunchiglia and R. Sebastiani. Building decision proce-
dures for modal logics from propositional decision procedures—the case study of modal K.
In Proc. of the 13th Conf. on Automated Deduction (CADE-96), pages 583–597, 1996.

[Giunchiglia and Sebastiani, 1996b] F. Giunchiglia and R. Sebastiani. A SAT-based decision
procedure forALC. In Proc. of the 5th Int. Conf. on the Principles of Knowledge Represen-
tation and Reasoning (KR-96), pages 304–314, 1996.

[Giunchigliaet al., 1998] E. Giunchiglia, F. Giunchiglia, R. Sebastiani, and A. Tacchella. More
evaluation of decision procedures for modal logics. InProc. of the 6th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR-98), pages 626–635, 1998.

[Heuerding and Schwendimann, 1996] A. Heuerding and S. Schwendimann. A benchmark
method for the propositional modal logics K, KT, and S4. Technical report IAM-96-015,
University of Bern, Switzerland, 1996.

[Hogget al., 1996] T. Hogg, B. A. Huberman, and C. P. Williams. Phase transitions and the
search problem.Artificial Intelligence, 81:1–15, 1996. Editorial.

[Horrocks and Patel-Schneider, 1998a] I. Horrocks and P. F. Patel-Schneider. DL systems com-
parison. InCollected Papers from the Int. Description Logics Workshop(DL’98), pages 55–
57, 1998.

[Horrocks and Patel-Schneider, 1998b] I. Horrocks and P. F. Patel-Schneider. Optimising
propositional modal satisfiability for description logic subsumption. InArtificial Intelligence
and Symbolic Computation: Int. Conf. AISC’98, number 1476 in LNAI, pages 234–246.
Springer-Verlag, 1998.

[Horrocks, 1998] I. Horrocks. Using an expressive description logic: FaCT orfiction? InProc.
of the 6th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR-98),
pages 636–647, 1998.

[Hustadt and Schmidt, 1997a] U. Hustadt and R. A. Schmidt. On evaluating decision proce-
dures for modal logic. Technical Report MPI-I-97-2-003, Max-Planck-Institut Für Informatik,
1997.

[Hustadt and Schmidt, 1997b] U. Hustadt and R. A. Schmidt. On evaluating decision proce-
dures for modal logic. InProc. of the 15th Int. Joint Conf. on Artificial Intelligence(IJCAI-
97), volume 1, pages 202–207, 1997.

[Patel-Schneider, 1998] P. F. Patel-Schneider. DLP system description. InCollected Papers
from the Int. Description Logics Workshop (DL’98), pages 87–89, 1998.

[Rectoret al., 1994] A. L. Rector, A. Gangemi, E. Galeazzi, A. J. Glowinski, and A Rossi-Mori.
The GALEN core model schemata for anatomy: towards a re-useable application-independent
model of medical concepts. InProc. of Medical Informatics in Europe, pages 229–233, 1994.

[Selmanet al., 1996] B. Selman, D. G. Mitchell, and H. J. Levesque. Generating hard satisfia-
bility problems.Artificial Intelligence, 81:17–29, 1996.

12


