
Practical Reasoning for Description Logics with Functional Restrictions, Inverse
and Transitive Roles, and Role Hierarchies�

Ian Horrocks
Department of Computer Science,

University of Manchester

Ulrike Sattler and Stephan Tobies
LuFG Theoretical Computer Science,

RWTH Aachen

Abstract

Description Logics (DLs) are a family of knowl-
edge representation formalisms mainly charac-
terised by constructors to build complex concepts
and roles from atomic ones. Expressive role con-
structors are important in many applications, but
can be computationally problematical. We present
an algorithm that decides satisfiability of the DLALC extended with transitive and inverse roles,
role hierarchies, and functional restrictions; early
experiments indicate that this algorithm is well-
suited for implementation. Additionally, we show
thatALC extended with just transitive and inverse
roles is still in PSPACE. Finally, we investigate the
limits of decidability for this family of DLs, show-
ing that relaxing the constraints placed on the kinds
of roles used in number restrictions leads to the un-
decidability of all inference problems.

1 Motivation
Description Logics (DLs) are a well-known family of knowl-
edge representation formalisms[Donini et al., 1996]. They
are based on the notion of concepts (unary predicates, classes)
and roles (binary relations), and are mainly characterised by
constructors that allow complex concepts and roles to be built
from atomic ones. Sound and complete algorithms for the in-
teresting inference problems such as subsumption and satisfi-
ability of concepts are known for a wide variety of DLs.

Transitive and inverse roles play an important rôle not only
in the adequate representation of complex, aggregated ob-
jects[Horrocks & Sattler, 1999], but also for reasoning with
conceptual data models[Calvaneseet al., 1994]. Moreover,
reasoning with respect to cyclic terminologies seems natu-
ral when using inverse roles, and is crucial with database
schemata.

The relevant inference problems for (extensions of) these
DLs are known to be decidable[De Giacomo & Lenzerini,
1996], and appropriate inference algorithms have been de-
scribed[De Giacomo & Massacci, 1998], but their high de-�This work was partially supported by EPSRC, Grant
GR/L54516, the Esprit Project 22469 – DWQ and by the DFG,
Project No. GR 1324/3–1

gree of non-determinism appears to prohibit their use in real-
istic applications. This is mainly due to the fact that these al-
gorithms can handle not just transitive roles but also the tran-
sitive closure of roles. It has been shown[Sattler, 1996] that
restricting the DL to transitive roles can lead to a lower com-
plexity, and that transitive roles, even when combined with
role hierarchies, allow for algorithms that behave quite well
in realistic applications[Horrocks, 1998]. However, it re-
mained to show that this is still true when inverse roles are
also present.

This paper extends our understanding of these issues in
several directions. Firstly, we present an algorithm that de-
cides satisfiability ofALC extended with transitive and in-
verse roles, role hierarchies, and functional restrictions. This
algorithm can also be used for checking satisfiability and sub-
sumption with respect to general concept inclusion axioms
(and thus cyclic terminologies) because these axioms can be
“internalised”. The absence of transitive closure leads to a
lower degree of non-determinism, and experiments indicate
that the algorithm is well-suited for implementation.

Secondly, we show thatALC extended with both transi-
tive and inverse roles is still in PSPACE. The algorithm used
to prove this rather surprising result introduces an enhanced
blocking technique that should also provide useful efficiency
gains in implementations of more expressive DLs.

Finally, we investigate the limits of decidability for this
family of DLs, showing that relaxing the constraints placed
on the kinds of roles used in number restrictions leads to the
undecidability of all inference problems.

2 Preliminaries
In this section, we present the syntax and semantics of the var-
ious DLs that are investigated in subsequent sections. This
includes the definition of inference problems (concept sub-
sumption and satisfiability, and both of these problems with
respect to terminologies) and how they are interrelated.

The logics we will discuss are all based on an extension of
the well known DLALC [Schmidt-Schauß & Smolka, 1991]
to include transitively closed primitive roles[Sattler, 1996];
we will call this logicS due to its relationship with the propo-
sition (multi) modal logicS4(m) [Schild, 1991].1 This basic1This logic has previously been calledALCR+ , but this becomes
too cumbersome when adding letters to represent additionalfeatures.



DL is then extended in a variety of ways—see Figure 1 for an
overview.

Definition 1 Let NC be a set ofconcept namesandR a set
of role nameswith transitive role namesR+ � R. The set ofSI-rolesisR[fR� j R 2 Rg. The set ofSI-conceptsis the
smallest set such that every concept name is a concept, and,
if C andD are concepts andR is anSI-role, then(C uD),(C tD), (:C), (8R:C), and(9R:C) are also concepts.SHI is obtained fromSI by allowing, additionally, for a
set of role inclusion axioms of the formR v S, whereR andS are two (possibly inverse) roles.SHIN is obtained fromSHI by allowing, additionally,
for number restrictions, i.e., for concepts of the form6nR
and6nR, whereR is a simplerole andn 2 IN. A role is
calledsimpleiff it is neither transitive nor has transitive sub-
roles. SHIF is the restriction ofSHIN , where instead of
arbitrary number restrictions, onlyfunctional restrictionsof
the form61R and their negation>2R may occur.

An interpretationI = (�I ; �I) consists of a set�I , called
thedomainof I, and a function�I which maps every concept
to a subset of�I and every role to a subset of�I � �I
such that, for all conceptsC,D, rolesR, S, and non-negative
integersn, the properties in Figure 1 are satisfied.

A conceptC is calledsatisfiableiff there is some interpre-
tationI such thatCI 6= ;. Such an interpretation is called
a model ofC. A conceptD subsumesa conceptC (writtenC v D) iff CI � DI holds for each interpretationI. For an
interpretationI, an individualx 2 �I is called aninstance
of a conceptC iff x 2 CI .

All DLs considered here are closed under negation, hence
subsumption and (un)satisfiability can be reduced to each
other: C v D iff C u :D is unsatisfiable, andC is unsat-
isfiable iffC v A u :A for some concept nameA.

In order to make the following considerations easier, we
introduce the following expressions:

1. To avoid considering roles such asR��, we define a
function Inv on roles such thatInv(R) = R� if R is a role
name, andInv(R) = S if R = S�.

2. Obviously, a roleR is transitive iff Inv(R) is transitive.
We therefore define a functionTrans which returnstrue iffR is a transitive role. More precisely,Trans(R) = true iffR 2 R+ or Inv(R) 2 R+.

3. For a set of role inclusion axiomsR, R+ := (R [fInv(R) v Inv(S) j R v S 2 Rg; v* ) is called arole
hierarchy, where v* is the transitive-reflexive closure ofv
overR+.

In [Baader, 1990; Schild, 1991; Baaderet al., 1993],
the internalisationof terminological axioms is introduced, a
technique that reduces reasoning with respect to a (possibly
cyclic) terminologyto satisfiability of concepts. In[Horrocks,
1998], we saw how role hierarchies can be used for this re-
duction. In the presence of inverse roles, this reduction must
be slightly modified.

Definition 2 A terminologyT is a finite set of general con-
cept inclusion axioms,T = fC1 v D1; : : : ; Cn v Dng,

Construct NameSyntax Semantics
atomic concept A AI � �I
atomic role R RI � �I ��I
transitive role R 2 R+ RI = (RI)+
conjunction C uD CI \DI
disjunction C tD CI [DI S
negation :C �I n CI
exists re- 9R:C fx j 9y:hx; yi 2 RI
striction andy 2 CIg
value re- 8R:C fx j 8y:hx; yi 2 RI
striction impliesy 2 CIg
role hierarchy R v S RI � SI H
inverse role R� fhx; yi j hy; xi 2 RIg I
number
restrictions

>nR6nR fx j ]fy:hx; yi 2 RIg > ngfx j ]fy:hx; yi 2 RIg 6 ng N
Figure 1: Syntax and semantics of theSI family of DLs

whereCi; Di are arbitrarySHIF-concepts. An interpreta-
tion I is said to be amodelof T iff CIi � DIi holds for allCi v Di 2 T . C is satisfiablewith respect toT iff there is
a modelI of T with CI 6= ;. Finally,D subsumesC with
respect toT iff for each modelI of T we haveCI � DI .

The following lemma shows how general concept inclu-
sion axioms can beinternalisedusing a “universal” roleU ,
a transitive super-role of all roles occurring inT and their
respective inverses.

Lemma 3 Let T be terminology andC;D be SHIF-
concepts and letCT := uCivDi2T :Ci tDi:
LetU be a transitive role withR v U , Inv(R) v U for each
roleR that occurs inT ; C, orD.

ThenC is satisfiable with respect toT iff CuCT u8U:CT
is satisfiable.D subsumesC with respect toT iff C u :D uCT u 8U:CT is unsatisfiable.

The proof of Lemma 3 is similar to the ones that can be
found in [Schild, 1991; Baader, 1990]. Most importantly, it
must be shown that, (a) if aSHIF -conceptC is satisfiable
with respect to a terminologyT , thenC; T have aconnected
model, and (b) ify is reachable fromx via a role path (pos-
sibly involving inverse roles), thenhx; yi 2 UI . These are
easy consequences of the semantics and the definition ofU .

Theorem 4 Satisfiability and subsumption ofSHIF-
concepts (resp.SHI-concepts) with respect to terminologies
are polynomially reducible to (un)satisfiability ofSHIF-
concepts (resp.SHI-concepts).

3 Reasoning forSI Logics
In this section, we present two tableaux algorithms: the first
decides satisfiability ofSHIF-concepts, and can be used



for all SHIF reasoning problems (see Theorem 4); the sec-
ond decides satisfiability (and hence subsumption) ofSI-
concepts in PSPACE. In this paper we only sketch most of
the proofs. For details on theSHIF -algorithm, please re-
fer to [Horrocks & Sattler, 1999], for details on theSI- andSIN -algorithm, please refer to[Horrockset al., 1998].

Please note thatSHIF no longer has the finite model
property: for example the following concept, whereR is a
transitive super-role ofF , is satisfiable, but each of its mod-
els has an infinite domain.:C u 9F�:C u61F u 8R�:(9F�:(C u61F ))

The correctness of the algorithms can be proved by show-
ing that they create atableaufor a concept iff it is satisfi-
able. For ease of construction, we assume all concepts to be
in negation normal form(NNF), that is, negation occurs only
in front of concept names. AnySHIF -concept can easily be
transformed to an equivalent one in NNF by pushing nega-
tions inwards[Hollunderet al., 1990].

Definition 5 Let D be aSHIF -concept in NNF,RD the
set of roles occurring inD together with their inverses, andsub(D) the subconcepts ofD. ThenT = (S;L;E) is a tab-
leauforD iff S is a set of individuals,L : S! 2sub(D) maps
each individual to a set of concepts,E : RD ! 2S�S maps
each role to a set of pairs of individuals, and there is some
individual s 2 S such thatD 2 L(s). Furthermore, for alls; t 2 S, C;E 2 sub(D), andR;S 2 RD, it holds that:

1. if C 2 L(s), then:C =2 L(s),
2. if C u E 2 L(s), thenC 2 L(s) andE 2 L(s),
3. if C t E 2 L(s), thenC 2 L(s) orE 2 L(s),
4. if 8R:C 2 L(s) andhs; ti 2 E(R), thenC 2 L(t),
5. if 9R:C 2 L(s), then there is somet 2 S such thaths; ti 2 E(R) andC 2 L(t),
6. if 8S:C 2 L(s) andhs; ti 2 E(R) for someR v* S withTrans(R), then8R:C 2 L(t),
7. hs; ti 2 E(R) iff ht; si 2 E(Inv(R)).
8. if hx; yi 2 E(R) andR v* S, thenhx; yi 2 E(S),
9. if 61R 2 L(s), then]ft j hs; t0i 2 E(R)g � 1,

10. if>2R 2 L(s), then]ft j hs; t0i 2 E(R)g � 2,

Tableaux forSI-concepts are defined analogously and
must satisfy Properties 1-7, where, due to the absence of a
role hierarchy,v* is the identity.

Due to the close relationship between models and tableaux,
the following lemma can be easily proved by induction on
the structure of concepts. As a consequence, an algorithm
that constructs (if possible) a tableau for an input concept is a
decision procedure for satisfiability of concepts.

Lemma 6 A SHIF -concept (resp.SI-concept)D is satis-
fiable iff D has a tableau.

3.1 Reasoning inSHIF
In the following, we give an algorithm that, given aSHIF-
conceptD, decides the existence of a tableaux forD.

Definition 7 A completion treefor a SHIF -conceptD is
a tree where each nodex of the tree is labelled with a setL(x) � sub(D) and each edgehx; yi is labelled with a setL(hx; yi) of (possibly inverse) roles occurring insub(D).

Given a completion tree, a nodey is called anR-successor
of a nodex iff y is a successor ofx andS 2 L(hx; yi) for
someS with S v* R. A nodey is called anR-neighbourof x
iff y is anR-successor ofx, or if x is anInv(R)-successor ofy. Predecessors and ancestors are defined as usual.

A node isblockediff it is directly or indirectly blocked. A
nodex is directly blockediff none of its ancestors are blocked,
and it has ancestorsx0, y andy0 such that

1. x is a successor ofx0 andy is a successor ofy0 and
2. L(x) = L(y) andL(x0) = L(y0) and
3. L(hx0; xi) = L(hy0; yi).

In this case we will say thaty blocksx.
A nodey is indirectly blockediff one of its ancestors is

blocked, or—in order to avoid wasted expansion after an ap-
plication of the6-rule—it is a successor of a nodex andL(hx; yi) = ;.

For a nodex,L(x) is said to contain aclashiff fA;:Ag �L(x) orf>2R;61Sg � L(x) for rolesR v* S. A completion
tree is calledclash-freeiff none of its nodes contains a clash;
it is calledcompleteiff none of the expansion rules in Figure 2
is applicable.

For aSHIF -conceptD, the algorithm starts with a com-
pletion tree consisting of a single nodex with L(x) = fDg.
It applies the expansion rules, stopping when a clash occurs,
and answers “D is satisfiable” iff the completion rules can be
applied in such a way that they yield a complete and clash-
free completion tree.

The soundness and completeness of the tableaux algorithm
is an immediate consequence of Lemmas 6 and 8.

Lemma 8 LetD be anSHIF -concept.

1. The tableaux algorithm terminates when started withD.

2. If the expansion rules can be applied toD such that they
yield a complete and clash-free completion tree, thenD
has a tableau.

3. If D has a tableau, then the expansion rules can be ap-
plied toD such that they yield a complete and clash-free
completion tree.

Before we sketch the ideas of the proof, we will discuss
the different expansion rules and their correspondence to the
language constructors.

Theu-, t-, 9- and8-rules are the standardALC tableaux
rules[Schmidt-Schauß & Smolka, 1991]. The8+-rule is used
to handle transitive roles, where thev* -clause deals with the
role hierarchy. See[Horrocks & Sattler, 1999] for details.

The functional restriction rules merit closer consideration.
In order to guarantee the satisfaction of a>2R-constraint, the>-rule creates two successors and uses a fresh atomic conceptA to prohibit identification of these successors by the6-rule.
If a nodex has two or moreR-neighbours and contains a
functional restriction61R, then the6-rule merges two of the



u-rule: if 1. C1 u C2 2 L(x), x is not indirectly blocked, and
2. fC1; C2g 6� L(x)

then L(x) �! L(x) [ fC1; C2gt-rule: if 1. C1 t C2 2 L(x), x is not indirectly blocked, and
2. fC1; C2g \ L(x) = ;

then, for someC 2 fC1; C2g, L(x) �! L(x) [ fCg9-rule: if 1. 9S:C 2 L(x), x is not blocked, and
2. x has noS-neighboury with C 2 L(y)

then create a new nodey withL(hx; yi) = fSg andL(y) = fCg8-rule: if 1. 8S:C 2 L(x), x is not indirectly blocked, and
2. there is anS-neighboury of x with C =2 L(y)

then L(y) �! L(y) [ fCg80+-rule: if 1. 8S:C 2 L(x), x is not indirectly blocked,
2. there is someR with Trans(R) andR v* S, and
3. x has anR-neighboury with 8R:C =2 L(y)

then L(y) �! L(y) [ f8R:Cg>-rule: if 1. (> 2 R) 2 L(x), x is not blocked, and
2. there is noR-neighboury of x with A 2 L(y)

then create two new nodesy1, y2 withL(hx; y1i) = L(hx; y2i) = fRg,L(y1) = fAg andL(y2) = f:Ag6-rule: if 1. (6 1 R) 2 L(x), x is not indirectly blocked,
2. x has twoR-neighboursy andz

s.t.y is not an ancestor ofz,
then 1.L(z) �! L(z) [ L(y) and

2. if z is an ancestor ofy
thenL(hz; xi) �! L(hz; xi) [ Inv(L(hx; yi))
elseL(hx; zi) �! L(hx; zi) [ L(hx; yi)

3.L(hx; yi) �! ;
Figure 2: The complete tableaux expansion rules forSHIF
neighboursand the edges connecting them withx. Labelling
edges with sets of roles allows a single node to be both anR andS-successor ofx even ifR andS are not comparable
by v* . Finally, contradicting functional restrictions are taken
care of by the definition of a clash.

We now sketch the main ideas behind the proof of
Lemma 8:

1. Termination: Let m = jsub(D)j andn = jRDj. Ter-
mination is a consequence of the following properties of the
expansion rules:

(a) The expansion rules never remove nodes from the tree
or concepts from node labels. Edge labels can only be
changed by the6-rule which either expands them or sets
them to;; in the latter case the node below the;-labelled
edge is blocked. (b) Successors are only generated for con-
cepts of the form9R:C and>2R. For a nodex, each of
these concepts triggers the generation of at most two succes-
sors. If for one of these successorsy the6-rule subsequently
causesL(hx; yi) to be changed to;, thenx will have someR-neighbourz with L(z) � L(y). This, together with the
definition of a clash, implies that the concept that led to the
generation ofy will not trigger another rule application. Ob-
viously, the out-degree of the tree is bounded by2m. (c)
Nodes are labelled with non-empty subsets ofsub(D) and
edges with subsets ofRD, so there are at most22mn different
possible labellings for a pair of nodes and an edge. Therefore,
on a path of length at least22mn there must be 2 nodesx; y

such thatx is directly blocked byy. Since a path on which
nodes are blocked cannot become longer, paths are of length
at most22mn.

2. Soundness:A complete and clash-free treeT for D in-
duces the existence of a tableauxT = (S;L;E) for D as fol-
lows. Individuals inS correspond topathsinT from the root
node to some node that is not blocked. Instead of going to a
directly blocked node, these paths jump back to the blocking
node, which yields paths of arbitrary length. Thus, if block-
ing occurs, this construction yields an infinite tableau. This
rather complicated tableau construction is necessary due to
the presence of functional restrictions; its validity is ensured
by the blocking condition, which considers both the blocked
node and its predecessor.

3. Completeness:A tableauT = (S;L;E) for D can be
used to “steer” the application of the non-deterministict- and6-rules in a way that yields a complete and clash-free tree.

The following theorem is an immediate consequence of
Lemma 8, Lemma 6, and Lemma 3.

Theorem 9 The tableaux algorithm is a decision procedure
for the satisfiability and subsumption ofSHIF -concepts
with respect to terminologies.

3.2 A PSPACE-algorithm for SI
To obtain a PSPACE-algorithm forSI, theSHIF algorithm
is modified as follows: (a) AsSI does not allow for func-
tional restrictions, the>- and the6-rule can be omitted;
blocking no longer involves two pairs of nodes with identical
labels but only two nodes with “similar” labels. (b) Due to
the absence of role hierarchies, edge labels can be restricted
to roles (instead of sets of roles). (c) To obtain a PSPACE
algorithm, we employ a refined blocking strategy which ne-
cessitates a second labelB for each node. In the following,
we will describe and motivate this blocking technique; de-
tailed proofs as well as a similar result forSIN can be found
in [Horrockset al., 1998].

Please note that using naively using a cut rule does
not yield a PSpace algorithm: A cut rule similar to the
one presented in[De Giacomo & Massacci, 1998] (non-
deterministically) guesses which constraints will be propa-
gated “up” the completion tree by universal restrictions on
inverted roles. ForSI this technique may lead to paths of
polynomial length due to equality blocking. A way to avoid
these long paths would be to stop the investigation of a path at
some polynomial bound. However, to prove the correctness
of this approach, it would be necessary to establish a “short-
path-model” property similar to Lemma 12. Furthermore, we
believe that our algorithm is better suited for an implementa-
tion since it makes less use of don' t-know non-determinism.

Definition 10 A completion treefor a SI conceptD is a
tree where each nodex of the tree is labelled with two setsB(x) � L(x) � sub(D) and each edgehx; yi is labelled
with a (possibly inverse) roleL(hx; yi) occurring insub(D).R-neighbours, -successors, and -predecessors are defined
as in Definition 7. Due to the absence of role hierarchies,v*
is the identity onR.



u-rule: if 1.C1 u C2 2 L(x) and
2. fC1; C2g 6� L(x)

thenL(x) �! L(x) [ fC1; C2gt-rule: if 1.C1 t C2 2 L(x) and
2. fC1; C2g \ L(x) = ;

thenL(x) �! L(x) [ fCg for someC 2 fC1; C2g8-rule: if 1. 8S:C 2 L(x) and
2. there is anS-successory of x with C =2 B(y)

thenL(y) �! L(y) [ fCg andB(y) �! B(y) [ fCg or
2' . there is anS-predecessory of x with C =2 L(y)

thenL(y) �! L(y) [ fCg.8+-rule: if 1. 8S:C 2 L(x) andTrans(S) and
2. there is anS-succ.y of x with 8S:C =2 B(y)

thenL(y) �! L(y) [ f8S:Cg andB(y) �! B(y) [ f8S:Cg or
2' . there is anS-predec.y of x with 8S:C =2 L(y)

thenL(y) �! L(y) [ f8S:Cg.9-rule: if 1. 9S:C 2 L(x), x is not blocked and no other rule
is applicable to any of its ancestors, and

2. x has noS-neighboury with C 2 L(y)
then create a new nodey withL(hx; yi) = S andL(y) = B(y) = fCg

Figure 3: Tableaux expansion rules forSI
A nodex is blockediff for an ancestory, y is blocked orB(x) � L(y) and L(x)= Inv(S) = L(y)= Inv(S);

where x0 is the predecessor ofx, L(hx0; xi) = S, andL(x)= Inv(S) = f8 Inv(S):C 2 L(x)g.
For a nodex,L(x) is said to contain aclashiff fA;:Ag �L(x). A completion tree to which none of the expansion rules

given in Figure 3 is applicable is calledcomplete.
For anSI-conceptD, the algorithm starts with a comple-

tion tree consisting of a single nodex with B(x) = L(x) =fDg. It applies the expansion rules in Figure 3, stopping
when a clash occurs, and answers “D is satisfiable” iff the
completion rules can be applied in such a way that they yield
a complete and clash-free completion tree.

As for SHIF , correctness of the algorithm is proved by
first showing that aSI-concept is satisfiable iff it has a tab-
leau, and next proving theSI-analogue of Lemma 8.

Theorem 11 The tableaux algorithm is a decision procedure
for satisfiability and subsumption ofSI-concepts.

Since blocking plays a major role both in the proof of The-
orem 11 and in the following complexity considerations, we
will discuss it here in more detail. Blocking is necessary to
guarantee the termination of the algorithm. For DLs such asALC, termination is mainly due to the fact that the expansion
rules can only add new concepts that are strictly smaller than
the concept that triggered their application.

ForS this is no longer true: the8+-rule can introduce new
concepts that are the same size as the triggering concept. To
ensure termination, nodes labelled with a subset of the label
of an ancestor areblocked. Since rules can be applied “top-
down” (successors are only generated if no other rules are
applicable, and the labels of inner leaves are never touched

again) and subset-blocking is sufficient, it is possible to give
a polynomial bound on the length of paths.

ForSI , dynamic blocking was introduced in[Horrocks &
Sattler, 1999]. Here blocks must be established on the basis
of label equalitysince value restrictions can now constrain
successors as well as predecessors. Unfortunately, this may
lead to completion trees with exponentially long paths be-
cause there are exponentially many possibilities to label sets
on such a path. Due to the non-deterministict-rule, these
exponentially many sets may actually occur.

This non-determinism is not problematical forS because
disjunctions need not be completely decomposed to yield a
subset-blocking situation. For an optimalSI algorithm, the
additional labelB was introduced to enable a sort of subset-
blocking which is independent of thet-non-determinism.
Intuitively, B(x) is the restriction ofL(x) to those non-
decomposed concepts thatx must satisfy, whereasL(x) con-
tains boolean decompositions of these concepts as well as
those that are imposed by value restrictions in descendants.
If x is blocked byy, then all concepts inB(x) are eventually
decomposed inL(y) (if no clash occurs). However, in order
to substitutex by y, x's constraints on predecessors must be
at least as strong asy's; this is taken care of by the second
blocking condition.

Let us consider a pathx1; : : : ; xn where all edges are
labelledR with Trans(R), the only kind of paths along
which the length of the longest concept in the labels
might not decrease. If no rules can be applied, we haveL(xi+1)= Inv(R) � L(xi)= Inv(R) andB(xi) � B(xi+1) [fCig (where9R:Ci triggered the generation ofxi+1). This
limits the number of labels and guarantees blocking after a
polynomial number of steps.

Lemma 12 The paths of a completion tree for a conceptD
have a length of at mostm4 wherem = jsub(D)j.

Finally, a slight modification of the expansion rules given
in Figure 3 yields a PSPACE algorithm. This modification
is necessary because the original algorithm must keep the
whole completion tree in its memory—which needs expo-
nential space even though the length of its paths is polyno-
mially bounded. The original algorithm may not forget about
branches because restrictions which are pushedupwardsin
the tree might make it necessary to revisit paths which have
been considered before. We solve this problem as follows:

Whenever the8- or the8+-rule is applied to a nodex and
its predecessory (Case 2' of these rules), we delete all suc-
cessors ofy from the completion tree. While this makes
it necessary to restart the generation of successors fory, it
makes it possible to implement the algorithm in a depth-first
manner which facilitates the re-use of space.

This modification does not affect the proof of soundness
and completeness for the algorithm, but of course we have
to re-prove termination[Horrockset al., 1998] as it formerly
relied on the fact that we never removed any nodes from the
completion tree. Summing up we get:

Theorem 13 The modified algorithm is a PSPACE decision
procedure for satisfiability and subsumption ofSI-concepts.



4 The Undecidability of Unrestricted SHIN
We are currently working on an algorithm forSHIN based
on theSHIF-algorithm already presented. Like earlier DLs
that combine a hierarchy of (transitive and non-transitive)
roles with some form of number restrictions[Horrocks &
Sattler, 1999; Horrockset al., 1998], SHIN will only allow
simple roles in restrictions. The justification for this limita-
tion has been partly on the grounds of a doubtful semantics
(of functional roles) and partly to simplify decision proce-
dures. In this section we will show that, at least with respect
to SHIN , allowing arbitrary roles inSHIN number re-
strictions leads to undecidability. For convenience, we will
refer toSHIN with arbitrary roles in number restrictions asSHIN+.

The undecidability proof uses a reduction of the domino
problem [Berger, 1966] adapted from[Baader & Sattler,
1996]. This problem asks if, for a set of domino types, there
exists atiling of anIN2 grid such that each point of the grid is
covered with one of the domino types, and adjacent dominoes
are “compatible” with respect to some predefined criteria.

Definition 14 A domino systemD = (D;H; V ) consists of
a non-empty set of domino typesD = fD1; : : : ; Dng, and of
sets of horizontally and vertically matching pairsH � D �D andV � D � D. The problem is to determine if, for a
givenD, there exists atiling of anIN� IN grid such that each
point of the grid is covered with a domino type inD and all
horizontally and vertically adjacent pairs of domino types are
in H andV respectively, i.e., a mappingt : IN � IN ! D
such that for allm;n 2 IN, ht(m;n); t(m + 1; n)i 2 H andht(m;n); t(m;n+ 1)i 2 V .

This problem can be reduced to the satisfiability ofSHIN+-concepts, and the undecidability of the domino
problem implies undecidability of satisfiability ofSHIN+-
concepts.

Ensuring that a given point satisfies the compatibility con-
ditions is simple for most logics (using value restrictions and
boolean connectives), and applying such conditions through-
out the grid is also simple in a logic such asSHIN+ which
can deal with arbitrary axioms. The crucial difficulty is repre-
senting theIN�IN grid using “horizontal” and “vertical” rolesX andY , and in particular forcing the coincidence ofX � Y
andY �X successors. This can be accomplished inSHIN+
using an alternating pattern of two horizontal rolesX1 andX2, and two vertical rolesY1 andY2, with disjoint primitive
conceptsA, B, C, andD being used to identify points in the
grid with different combinations of successors. The coinci-
dence ofX � Y andY �X successors can then be enforced
using number restrictions on transitive super-roles of each of
the four possible combinations ofX andY roles. A visual-
isation of the resulting grid and a suitable role hierarchy is
shown in Figure 4, whereS�ij are transitive roles.

The alternation ofX andY roles in the grid means that one
of the transitive super-rolesSij connects each point(x; y) to
the points(x + 1; y), (x; y + 1) and(x + 1; y + 1), and to
no other points. A number restriction of the form63Sij can
thus be used to enforce the necessary coincidence ofX � Y

X1S�11 S�21 S�12 S�22X2 Y1 Y2X1A Y1 Y1 X1AX2BX1 X1X2Y1 X1A Y1 Y1 X1AX2BY2 Y2 Y2C D CY1
Figure 4: Visualisation of the grid and role hierarchy.

andY �X successors. A complete specification of the grid is
given by the following axioms:A v :B u :C u :D u 9X1:B u 9Y1:C u63S11,B v :A u :C u :D u 9X2:A u 9Y1:D u63S21,C v :A u :B u :D u 9X1:D u 9Y2:A u63S12,D v :A u :B u :C u 9X2:C u 9Y2:B u63S22.
It only remains to add axioms which encode the local

compatibility conditions (as described in[Baader & Sattler,
1996]) and to assert thatA is subsumed by the disjunction
of all domino types. The conceptA is now satisfiable w.r.t.
the various axioms (which can be internalised as described in
Lemma 3) iff there is a compatible tiling of the grid.

5 Discussion
A new DL system is being implemented based on theSHIN
algorithm we are currently developing from theSHIF-
algorithm described in Section 3.1. Pending the completion
of this project, the existing FaCT system[Horrocks, 1998]
has been modified to deal with inverse roles using theSHIF
blocking strategy, we will refer to the modified FaCT system
as I-FaCT.

I-FaCT has been used to conduct some initial experi-
ments with a terminology representing (fragments of) data-
base schemata and inter schema assertions from a data ware-
housing application[Calvaneseet al., 1998a] (a slightly sim-
plified version of the proposed encoding was used to gen-
erateSHIF terminologies). I-FaCT is able to classify this
terminology, which contains 19 concepts and 42 axioms, in
less than 0.1s of (266MHz Pentium) CPU time. In contrast,
eliminating inverse roles using an embedding technique[Cal-
vaneseet al., 1998b] gives an equisatisfiable FaCT terminol-
ogy with an additional 84 axioms, but one which FaCT is
unable to classify in 12 hours of CPU time.

An extension of the embedding technique can be used
to eliminate number restrictions[De Giacomo & Lenzerini,
1995], but requires a target logic which supports the transitive
closureof roles, i.e.,converse-PDL. The even larger number
of axioms which this embedding would introduce makes it
unlikely that tractable reasoning could be performed on the
resulting terminology. Moreover, we are not aware of any al-
gorithm forconverse-PDL which does not employ a so-called
cut rule [De Giacomo & Massacci, 1998], the application of
which introduces considerable additional non-determinism.
It seems inevitable that this would lead to a further degra-
dation in empirical tractability.



In order to fully capture the above mentioned encoding of
database schemata, it would be necessary not only to extend
our results toSHIN but to SHIQ by addingqualifying
number restrictions[Hollunder & Baader, 1991]. The exten-
sion of theSHIF algorithm, and tests of its behaviour in
applications, will also be part of future work.
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