
Feasibility of Optimised Disjunctive Reasoning for
Approximate Matching

Ian Horrocks1, Lin Padgham2, and Laura Thomson2

1 Dept. of Computer Science
University of Manchester, UK
horrocks@cs.man.ac.uk
2 Dept. of Computer Science

Royal Melbourne Institute of Technology
Melbourne, VIC 3001, Australia

{linpa, laura}@cs.rmit.edu.au

Abstract. Description logics are powerful knowledge representationsystems pro-
viding well-founded and computationally tractable classification reasoning. How-
ever recognition of individuals as belonging to a concept based on some approx-
imate match to a prototypical descriptor has been a recurring application issue
as description logics support only strict subsumption reasoning. Expression of
concepts as a disjunction of each possible combination of sufficient prototypical
features has previously been infeasible due to computational cost. Recent optimi-
sations have greatly improved disjunctive reasoning in description logic systems
and this work explores whether these are sufficient to allow the heavy use of dis-
junction for approximate matching. The positive results obtained support further
exploration of the representation proposed within real applications.

1 Introduction

Description Logic systems are knowledge representation systems based on First Order
Logic or a subset of FOL chosen specifically for computational reasons. They have
a Tarski-style semantics and a syntax which is particularlywell suited to an object-
oriented approach to describing concepts (classes) and individuals. Key functional-
ity of DL systems is based on the notion of subsumption testing which is used both
in building the class hierarchy and in recognising which concepts individuals belong
to. This class of systems have been successfully used in a range of applications (e.g.
[Bermanet al., 1994]). However a number of other applications have experienced dif-
ficulty due to the fact that recognition of individuals as belonging to a concept is done
on the basis of the individuals having all characteristics defined for that concept. There
is no notion in DLs of exceptions or of default or typical characteristics.1

We argue that in many applications what one wants is a notion of individuals being
recognised as members of a concept, based on having a sufficient number of a cluster of

1 Some work has been done on extending DLs to include defaults (e.g.
[Baader and Hollunder, 1993, Padgham and Nebel, 1993, Padgham and Zhang, 1993])
but this is primarily directed towards default reasoning, rather than the issue of using defaults
for recognition as is being explored here.



typical characteristics (plus possibly some necessary characteristics), rather than simply
a fixed set of characteristics.

For example Coupey and Fouquere describe how for recognising faults in a telecom-
munications application it is absolutely necessary to be able to take account of default
characteristics [Coupey and Fouquere, 1997]. However theytake an approach of requir-
ing that individuals explicitly have an exception to a default characteristic to allow
recognition. This can be awkward, and is not always even possible. A medical diag-
nosis application [Padgham and Zhang, 1993] similarly needs to use typical symptoms
to describe diseases, but does not want an individual presentation not to be recognised
because it does not haveall typical symptoms.

In order to meet the needs of the many applications similar tothese it is necessary to
be able to define a set of typical characteristics associatedwith a concept. An individual
belonging to the concept is required to have some “critical mass” of these character-
istics, andshould be recognised as belonging to the concept on this basis. The most
obvious way to achieve this within the semantics of first order logic (and Description
Logics) is to define the concept as a disjunction of all the combinations of sufficiently
many typical characteristics.

In an example from [Padgham and Zhang, 1993], chronic pyelonephritis is described
as having the characteristics urine.dysuria, urine.casts, fatigue and urine.bacteria. Defin-
ing the concept on the basis of 75% of these characteristics would give us:

CPN
.
=(urine.dysuria ⊓ urine.casts ⊓ fatigue) ⊔

(urine.casts ⊓ fatigue ⊓ urine.bacteria) ⊔
(fatigue ⊓ urine.bacteria ⊓ urine.dysuria) ⊔
(urine.bacteria ⊓ (urine.dysuria ⊓ urine.casts)

Previously the intractability of the algorithms used for reasoning with disjunctions
has meant that heavy usage of disjunctions is not a viable option computationally for
real application systems.

For example, KRIS [Baader and Hollunder, 1991], one of the first DL systems that
included principled reasoning with disjunction at all, exhibits very poor performance
when reasoning with knowledge bases (KBs) containing significant numbers of dis-
junctive concepts.

Optimizations of KRIS that allowed it to obtain similar performance characteristics
to CLASSIC [Baaderet al., 1992] (the most efficient of the set of tested DL systems
[Heinsohnet al., 1992]), did not address optimisations for disjunctive concepts (which
cannot be represented in CLASSIC).

The new algorithms and optimisation techniques recently developed allow the typi-
cal case reasoning performance of DL systems to be radicallyimproved [Horrocks, 1998].
These optimisations are particularly effective with respect to disjunctive reasoning.
However there has been no experimentation which pushes the limits of these new algo-
rithms, or examines whether they are adequate for particular application oriented needs
which require heavy use of disjunction.

The work presented in this paper explores whether these techniques are in fact suf-
ficiently powerful to support the routine use of disjunctiveconcepts to address the ap-
plication issue of approximate matching to a prototype for recognition of individuals.
Section 2 describes a representational model for defining concepts; section 3 describes



in some detail the problem with disjunctive reasoning and the optimisations used in the
FaCT system, which we hope will make the proposed representation viable. Section
4 describes the experiments done to investigate this viability and the results obtained.
The results appear promising and we are building a bibliographic database application
based on the techniques described, to further investigate the mechanisms within a gen-
uine application.

2 Representation of Concepts

Literature from cognitive psychology supports the idea that when people think in terms
of concepts, they actually think in terms of prototypical descriptions, rather than in
terms of strictly necessary characteristics [Rosch, 1975]. However using a prototypi-
cal description for a concept descriptor in description logic systems (or any other sys-
tem based on first order logic) will cause problems, as some sub-concepts as well as
individuals will not have all characteristics of the prototype. In terms of recognising
individuals, or automatically classifying sub-concepts,the prototypical description of
the concept is over-defined. On the other hand, use of only necessary characteristics
in defining a concept results in concepts being under-defined, with consequent lack of
discrimination.

Earlier work by Padgham and others [Padgham, 1992, Padgham and Zhang, 1993]
has explored describing concepts using two descriptors - acore descriptorfor defining
the strictly necessary characteristics and a default descriptor, (which we will call the
prototype descriptor) which is subsumed by the core and in addition defines the proto-
typical characteristics. However this mechanism does not explicitly offer any assistance
in recognising the specific concept an individual belongs toin cases where the core is
under-defined and the individual does not fit the full prototype descriptor.

We build on this work by also defining abasic descriptorwhich explicitly captures
the space of concept descriptions which are sufficiently close to the prototype descriptor
that individuals subsumed by the basic descriptor should berecognised as instances of
the concept.

The form of the basic descriptor is an “or” statement which defines any combination
of 70% of the “features”2 used in the prototype descriptor. The basic descriptor thus
subsumes the prototype descriptor and an individual shouldbe recognised as being an
instance of a concept X based on subsumption by the basic descriptor for X.

Once users or application developers have defined the core and prototype descrip-
tors the definition of basic descriptors can be automated. Itwould also be possible to
generate descriptors capturing varying levels of agreement with the prototype (e.g. 90%,
70%, 50%) in different structures, allowing applications to attempt instance inference,
or recognition of individuals at various levels of closeness to the prototype descriptor.

Further extensions where characteristics within a prototype can be grouped, requir-
ing some critical mass in each group, can also be envisaged. However all these refine-

2 Further investigation is needed regarding constraints that may need to be placed on the form
of prototype descriptors. However this is outside the scopeof the initial explorations presented
in this paper. The agreement level of 70% may also be subject to variation.



ments rely on the adequacy of the optimisations being explored to provide computa-
tional viability when relatively large ‘or’ clauses are routinely used.

3 Subsumption Involving Disjunction

Description Logic systems provide a range of automated reasoning services, in particu-
lar inferring subsumption and instantiation (instance-of) relationships. Subsumption is
the class/super-class relationship between concepts, while instantiation is the relation-
ship between individuals and those concepts of which they are instances. The use of
subsumption inference to build a concept hierarchy (partial order) is known asclassi-
ficationand the use of instantiation inference to determine the classes each individual
belongs to is known asrecognition.

A standard Tarski style model theoretic semantics is used tointerpret descriptions
and to justify inferences. The meaning of concepts and rolesis given by an interpretation
I which is a pair(∆I , ·I), where∆I is the domain (a set) and·I is an interpretation
function. The interpretation function maps each concept toa subset of∆I , each role
to subset of∆I × ∆I , and each individual to a unique element of∆I . More complex
descriptions can be built up by combining descriptions using a variety of operators, with
the semantics of the resulting description being derived from its components.

A conceptC is subsumed by (is more specific than) a conceptD (written C ⊑ D)
if it can be inferred thatCI ⊆ DI for all possible interpretationsI. The result of
classification procedures based on the subsumption relation is typically cached in the
form of a directed acyclic graph called the concept hierarchy or taxonomy.

An individualx is an instance of a conceptC (written x ∈ C) if it can be inferred
that xI ∈ CI for all possible interpretationsI. In many cases, instantiation reason-
ing, (or recognition), can be reduced to subsumption reasoning using either precomple-
tion [Hollunder, 1994] or encoding [De Giacomo and Lenzerini, 1996] techniques; for
this reason most recent studies have concentrated on subsumption reasoning. We fol-
low this tradition and explore the tractability of recognition by obtaining experimental
results for appropriate subsumption tests.

Most modern DL systems3 perform subsumption reasoning by transforming the
subsumption problem into an equivalent satisfiability problem: C ⊑ D if and only
if the concept description(C ⊓ ¬D) is not satisfiable. The satisfiability problem can
then be solved using a provably sound and complete algorithmbased on the tableaux
calculus [Smullyan, 1968]. This approach was first described for theALC DL and its
practical application was demonstrated by the KRIS system.

The FaCT system uses an optimised implementation of a tableaux algorithm to
perform subsumption reasoning. Like other tableaux algorithms it either proves the sat-
isfiability of a conceptC by constructing an example interpretation in whichCI has
at least one member, or proves its unsatisfiability by demonstrating that all attempts to
construct an example must lead to a contradiction. WhenC contains disjunction, trying
to construct an example interpretation is non-deterministic. Earlier DLs dealt with this
non-determinism by naively performing an exhaustive depthfirst search, and it is this

3 At least those which provide sound and complete reasoning.



which leads to the poor performance of the KRIS system with highly disjunctive con-
cepts. Although it still performs an exhaustive search, theFaCT system includes a range
of optimisations which can dramatically reduce the size of the search space—these in-
clude the normalisation and encoding of concept descriptions, an improved search al-
gorithm, the use of heuristics to guide the search, dependency directed backtracking,
and the caching and re-use of partial results.

3.1 Example

A simple example illustrates the vital importance of optimisation techniques with the
kinds of basic concept descriptors that will be generated using the representation dis-
cussed in section 2.

We will take a simple prototypical concept description consisting of only four “fea-
tures”∃f1.C1 ⊓ ∃f2.C2 ⊓ ∃f3.C3 ⊓ ∃f4.C4, where each of theCi is a conjunction of
three primitives such asPi1 ⊓ Pi2 ⊓ Pi3, and generate a basic descriptorCv that will
subsume any conjunction containing at least two of the∃fi.Ci terms:

Cv

.
= (∃f1.C1 ⊓ ∃f2.C2) ⊔ (∃f1.C1 ⊓ ∃f3.C3) ⊔

(∃f1.C1 ⊓ ∃f4.C4) ⊔ (∃f2.C2 ⊓ ∃f3.C3) ⊔
(∃f2.C2 ⊓ ∃f4.C4) ⊔ (∃f3.C3 ⊓ ∃f4.C4)

When classifying a conceptD
.
= ∃f1.C1⊓∃f2.C2, it will be necessary to determine

if Cv subsumesD. As described above, this will be transformed into a satisfiability test:
Cv subsumesD iff D ⊓ ¬Cv is not satisfiable. As a result of its being negated, theCv

part of this description becomes a conjunction of disjunctive clauses:

(∃f1.C1 ⊓ ∃f2.C2) ⊓
(∀f1.¬C1 ⊔ ∀f2.¬C2) ⊓ (∀f1.¬C1 ⊔ ∀f3.¬C3) ⊓
(∀f1.¬C1 ⊔ ∀f4.¬C4) ⊓ (∀f2.¬C2 ⊔ ∀f3.¬C3) ⊓
(∀f2.¬C2 ⊔ ∀f4.¬C4) ⊓ (∀f3.¬C3 ⊔ ∀f4.¬C4)

To test the satisfiability of this concept, a naive tableau algorithm would try to build
an example interpretation by proceeding roughly as follows:

1. Initialise the interpretation to contain a single individualx0 which satisfies the con-
cept. Expand all of the conjunctions, making it explicit that x0 satisfies each of
∃f1.C1, . . . , (∀f3.¬C3 ⊔ ∀f4.¬C4).

2. Search for a consistent expansion of the disjunctive concepts. Expand each unex-
panded disjunction by selecting one of the disjuncts, backtracking and trying the
other disjunct if that fails (leads to a contradiction). Typically, ∀f1.¬C1 would be
chosen from the first disjunction,∀f2.¬C2 from the fourth disjunction (disjunctions
2 and 3 are satisfied by the first choice), and∀f3.¬C3 from the last disjunction.4

3. Expand the∃fi.Ci terms one at a time. For∃f1.C1, this means creating a new
individualx1 satisfying the conceptC1 and related tox0 by the rolef1. Due to the

4 Completing all propositional reasoning before expanding∃R.C terms minimises space re-
quirements [Hollunder and Nutt, 1990].



∀f1.¬C1 chosen from the first disjunction,x1 must also satisfy¬C1. This seems to
be an obvious contradiction, but asC1 is actually the conjunctionP11 ⊓P12 ⊓P13,
and¬C1 is the disjunction¬P11 ⊔ ¬P12 ⊔ ¬P13, discovering the contradiction
in x1 will mean expanding the conjunction and then searching the terms in the
disjunction to discover that each choice leads to a contradiction with one of the
expanded conjuncts.

4. Having discovered this contradiction, the algorithm will backtrack and continue
searching different expansions of the conjunctions whichx0 must satisfy until it
discovers that all possibilities lead to contradictions. It is then possible to conclude
thatD ⊓ ¬Cv is not satisfiable, and thatCv thus subsumesD.

There are several obvious inefficiencies in this procedure,and some not so obvious.
In the first place, there is the problem of the late discovery of “obvious” contradic-
tions, for example when a complete (non-deterministic) expansion ofC1 and¬C1 is
performed in order to discover the contradiction inx1. This is a consequence of the
fact that most tableaux algorithms assume the input conceptto be fully unfolded(all
defined concepts are substituted with their definitions), and in negation normal form
(NNF), with negations applying only to primitive concepts [Hollunder and Nutt, 1990].
ArbitraryALC concepts can be converted to NNF by internalising negationsusing De-
Morgan’s laws and the identities¬∃R.C = ∀R.¬C and¬∀R.C = ∃R.¬C.

The KRIS system useslazy unfoldingto deal with the problem of late discovery,
only unfolding and converting to NNF as required by the progress of the algorithm.
Thus if C1 were a named concept (introduced by a concept definition statement of the
form C1

.
= P11 ⊓ P12 ⊓ P13), then its unfolding would be postponed and the con-

tradiction betweenC1 and¬C1 immediately discovered. FaCT takes this idea to its
logical conclusion by giving unique system generated namesto all compound concepts.
Moreover, the input is lexically analysed to ensure that thesame name is given to lexi-
cally equivalent concepts. This means that the concepts∃f1.C1 and∀f1.¬C1 would be
namedA and¬A respectively (for some system generated nameA), and a contradiction
would be detected without the need to createx1.

Another problem with the naive search is that the same expansion can be explored
more than once. For example, after some backtracking the algorithm will determine
that choosing∀f2.¬C2 from the fourth disjunction always leads to a contradictionand
will try the second choice,∀f3.¬C3. Expanding the fifth disjunction will then lead to
∀f2.¬C2 being chosen, an identical solution to the first one. FaCT avoids this prob-
lem by using asemantic branchingsearch technique adapted from the Davis-Putnam-
Logemann-Loveland procedure (DPL) commonly use to solve propositional satisfia-
bility (SAT) problems [Daviset al., 1962, Giunchiglia and Sebastiani, 1996]. Semantic
branching works by selecting a conceptC such thatC is an element of an unexpanded
disjunction and¬C is not already in the solution, and searching the two possible ex-
pansions obtained by adding eitherC or ¬C. Wasted search is avoided because the
two branches of the search tree are strictly disjoint. For example, when the choice of
∀f1.¬C1, ∀f2.¬C2 and∀f3.¬C3 leads to a contradiction, subsequent backtracking will
cause the choice of∀f2.¬C2 to be changed to¬∀f2.¬C2, so the first solution can never
be repeated.



Finally, after the discovery of the contradiction inx1, the naive search continues
with chronologicalbacktracking in spite of the fact that the contradiction wascaused
by∀f1.¬C1, the first choice made. FaCT deals with this problem by usingbackjumping,
a form of dependency directed backtracking adapted from constraint satisfiability prob-
lem solving [Baker, 1995]. Each concept is labelled with a dependency set indicating
the branching choices on which it depends, and when a contradiction is discovered the
algorithm can jump back over intervening choice points without exploring alternative
choices.

4 Empirical Investigations

An empirical evaluation was performed in order to determinethe viability of using a
real knowledge base developed using the representational model described in section 2.
This evaluation used synthetically generated data in orderto evaluate the performance
of FaCT and to determine if the optimisation techniques described in Section 3.1 would
be sufficiently powerful to permit empirically tractable reasoning with respect to the
kinds of subsumption problem that would be encountered. Thetests were also run using
KRIS in order to identify levels which have previously caused problems, and as a way
of identifying cases where FaCT may involve extra cost.

The testing used a variation of a random concept generation technique first de-
scribed by [Giunchiglia and Sebastiani, 1996] and subsequently refined by [Hustadt and Schmidt, 1997].
The generated concepts are of the form∃f1.C1 ⊓ . . . ⊓ ∃fℓ.Cℓ, where eachfi is an at-
tribute (single valued role) and eachCi is a conjunction ofn primitive concepts chosen
from N possibilities.

For a given conceptC and an approximation valueV in the range 0–100, a concept
Cv is formed, as in Section 3.1, consisting of a disjunction of all possible conjunctions
containingV % of the∃fi.Ci terms inC.5 To represent the (hardest) kind of subsump-
tion test that would be involved in the recognition process,a second conceptCr is
formed fromC by changing elements of theCi from each∃fi.Ci term so thatCr is
subsumed byCv with a probabilityP , and the time taken to test ifCv does in fact sub-
sumeCr is measured. Varyingℓ (the number of “features”) andV gives disjunctions of
varying size, and varyingP allows performance to be measured for tests ranging from
“obvious” subsumption to “obvious” non-subsumption.

Initial explorations indicate that for a variety of applications the number of default
features is likely to be in the range of 10–15, while the percentage match required is
likely to be about 70%. Tests were performed for the 9 sets of values given in Table 1,
with n = 4 andN = 6 in all cases. For each test,P was varied from 0–1 in steps of 0.05,
with 10 randomly generated subsumption problems being solved at each data point,
giving a total of 210 subsumption problems in each test. All the tests were performed
on 300MHz Pentium machines, with Allegro CL 5.0 running under Linux, and in order
to keep the CPU time required within reasonable limits a maximum of 1,000s was
allowed for each problem.

Tests T1–T3 proved relatively easy for both FaCT and KRIS, with both systems
able to solve any of the problems in less than 0.1s of CPU time.This is not particularly

5 The number of terms is rounded down to the nearest integer.



Test T1 T2 T3 T4 T5 T6 T7 T8 T9
ℓ 5 5 5 10 10 10 15 15 15

V (%) 90 70 50 90 70 50 90 70 50
Table 1. Parametric values for tests

surprising as, even for T3,Cv will be a disjunction of only 10 conjuncts, each of which
is of size 2. Tests T4 and T7 also proved relatively easy, withboth systems able to solve
any problem in less than 0.3s of CPU time. This is again due to the small size of the
disjunctions, resulting in this case from the 90% approximation value.

For tests T5 and T6 the difference between FaCT and KRIS became more evident.
For T5, FaCT is able to solve>90% of problems in less than 0.3s, while for T6 this
increases to 0.4s. With KRIS, the time taken to solve a problem critically depends on
whetherCv subsumesCr (i.e., Cr ⊓ ¬Cv is unsatisfiable) or not. For T5 most non-
subsuming (satisfiable) problems are solved in less than 0.1s whereas subsuming prob-
lems take more than 3.5s, while for T6 these values are 0.1s and 21s respectively. KRIS’s
faster time for non-subsuming problems is due to the fact that, in most cases, a solution
can quickly be found regardless of the search strategy; FaCT, on the other hand, still
has the overhead of its more sophisticated search techniques, and in particular of the
lexical analysis and naming of sub-concepts.

For tests T8 and T9, KRIS’s difficulty with subsuming problems becomes critical
and it proved unable to solve any such problem within the 1,000s of CPU time allowed.
FaCT remained consistent with respect to both subsuming andnon-subsuming prob-
lems, solving>90% of problems in less than 9s for T8 and less than 28s for T9, with
FaCT’s worst time in all tests being 31s. Figure 1 shows the 50th percentile (median)
and 90th percentile6 times for T9 with KRIS and FaCT plotted against the probability
of generating subsuming concepts. Note that where the CPU time is shown as 1,000s
no solution was found, and the time which would be required inorder to find a solution
could be≫1,000s.

KRIS’s poor performance is easily explained by the fact that for T8, Cv will be a
disjunction of 3,003 conjuncts, each of which is of size 10. WhenCv is negated in the
subsumption test this becomes a conjunction of disjuncts which, using a naive strategy,
leads to a search of103003 possible expansions (although only210 of these can be
unique); for T9Cv will be a disjunction of 6,435 conjuncts, each of which is of size 7.

5 Discussion and conclusions

Clearly the results using FaCT on the larger disjuncts (in tests T8 and T9) are encourag-
ing compared to KRIS, indicating that frequent use of optimised disjunctive reasoning
is potentially viable. To ascertain whether the very significant gains are sufficient to
justify the proposed representation in real applications,some further questions should
be considered: At what rate do individuals need to be categorised? Will one instance

6 The 90th percentile is the maximum time taken to solve all butthe hardest 10% of problems.
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Fig. 1. Percentile times for T9 with KRIS and FaCT

inference, or recognition process, lead to further instance inferences? How many sub-
sumption tests are needed for an instance recognition? How likely is it that the more
difficult subsumption tests will occur?

An additional question also has to do with space complexity.The naive representa-
tion of the conceptual representation described results inexponential increase in space
requirements. However we would expect to adapt existing techniques which only re-
quire keeping part of the concept hierarchy in memory, and toexpand concepts to their
full representation only at run-time. The exponential space increase will not result in
exponential time increase using the described optimisations, due to the fact that most of
the increase is in equivalent concepts which are pruned away.

The rate at which instance inference needs to be done can varywidely depending on
the application. In a real-time telecommunications fault diagnostic system, individual
descriptors needing to be classified as normal, or as a particular category of fault, may
arrive at several per second. On the other hand a support system for medical diagno-
sis, being used by an individual doctor, could reasonably expect a descriptor of patient
symptoms every 10 minutes. The rate for a bibliographic or travel KB, responding to
user queries probably lies somewhere between these two. Theexperimental response
times we have established are clearly adequate for some applications, but possibly in-
adequate for others.7

Applications with highly interrelated individuals can result in significant propaga-
tion when a single individual is modified. Consequently one recognition process can
trigger several other such processes. Some applications (such as a bibliographic data-
base or a travel information database) rely on a large set of individuals many of which
may be interrelated. However, other applications (such as the medical diagnostic sup-

7 Although if inadequate response times occur relatively infrequently it may be possible to
achieve usability by supplementing the optimisation techniques with special purpose heuris-
tics.



port described in [Padgham and Zhang, 1993], where individuals are descriptions of a
set of patient symptoms) mostly deal with individuals whichhave no effect on other
individuals and thus can only result in the subsumption tests necessary for a single
recognition problem.

The number of subsumption tests required for a particular instance recognition task
depends on both the number of concepts and the form of the hierarchy. Assuming that
the hierarchy is close in form to a tree, and that individualstypically belong to only one
sub-class at each level (at least until the bottom levels of the hierarchy are reached), then
the number of subsumption tests needed at each level will be equal to the fan-out of the
hierarchy at that level. Consequently, the total number of subsumption tests required
will be roughly the average fan-out multiplied by the depth of the tree. Moreover, FaCT
uses a caching optimisation to facilitate the quick discovery of non-subsumption, and
this will typically work for all but one test at each level [Horrocks, 1997]. This effec-
tively reduces the number of “full” subsumption tests to be equal to the depth of the
tree.

The form of the hierarchy generated using the representation described in Section 2,
with 3 descriptors per concept, obviously increases the number of nodes in the hierar-
chy by a factor of 3. It is also possible that the form of the hierarchy differs from
concept hierarchies with which we are familiar, due to the various nuances ofA is-aB

which become available. For example in Figure 2 the hierarchy on the left represents
the case whereAs are typicallyBs, whereas the hierarchy on the right represents the
case whereAs are alwaysBs. Further work is needed to determine the form of appli-
cation taxonomies using this representation, but it is unlikely that the number of hard
subsumption tests required per recognition task will change significantly: only the ba-
sic descriptors are highly disjunctive, and the caching optimisation should still allow
“full” tests to be avoided in most cases. It is also likely that further optimisations can
be developed, based on the particular representations we are using.

Ac   Bc

  Ab   Bb

     Ap   Bp

Bc

Ac   Bp

   Bb

  Ab

    Ap

Ac = core descriptor for A
Ab = basic descriptor for A
Ap = prototype descriptor for A
      = subsumption

Fig. 2. Two nuances ofA is-aB with 3 descriptors



The experimental subsumption problems generated were deliberately designed to
be difficult, and it is unclear how often such problems would be encountered in a KB
using the representation proposed (it is likely they would be more common than is usual
for difficult subsumption problems in KBs not routinely using this representation). The
best case would be that such difficult subsumption tests would be encountered only
very occasionally, and never more than one per individual recognition process. Given
that ontologies tend to be much broader than they are deep, typically with a depth in
the range of 7 to 14, this would give (for the T9 situation) a response time which occa-
sionally peaked at around 30s; the worst case would be that all “full” subsumptions for
a given individual were difficult, giving a response time of 7minutes for a typical hier-
archy of depth 14. This may still be acceptable for an application such as that described
in [Padgham and Zhang, 1993] where the system is being used asa diagnostic support
tool for medicine.

To sum up, even making very pessimistic assumptions leads toa predicted worst-
case response time of 7 minutes per recognition process. This is clearly within the range
of useful response times for some applications. As a result of these explorations we are
convinced that the recent optimisations make routine disjunctive reasoning feasible and
thus justify using a representational approached based on disjunction. We are in the
process of building a bibliographic KB application to further explore the representation
of concepts as described and the associated computational properties.
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