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Abstract. Description logics are powerful knowledge representagimstems pro-
viding well-founded and computationally tractable cléisation reasoning. How-
ever recognition of individuals as belonging to a concegebleon some approx-
imate match to a prototypical descriptor has been a reguapplication issue
as description logics support only strict subsumption oramy. Expression of
concepts as a disjunction of each possible combinationfé€ignt prototypical
features has previously been infeasible due to computdtamst. Recent optimi-
sations have greatly improved disjunctive reasoning ircidgson logic systems
and this work explores whether these are sufficient to all@hieavy use of dis-
junction for approximate matching. The positive resultsaoted support further
exploration of the representation proposed within realiegfions.

1 Introduction

Description Logic systems are knowledge representatistesys based on First Order
Logic or a subset of FOL chosen specifically for computatisrasons. They have
a Tarski-style semantics and a syntax which is particulesyl suited to an object-
oriented approach to describing concepts (classes) andduodls. Key functional-
ity of DL systems is based on the notion of subsumption tgstvhich is used both
in building the class hierarchy and in recognising whichaapts individuals belong
to. This class of systems have been successfully used inge &frapplications (e.g.
[Bermanet al., 1994]). However a number of other applications have erpegd dif-
ficulty due to the fact that recognition of individuals asdyeding to a concept is done
on the basis of the individuals having all characteristiebrabd for that concept. There
is no notion in DLs of exceptions or of default or typical cheteristics:

We argue that in many applications what one wants is a nofiordividuals being
recognised as members of a concept, based on having a sufficimber of a cluster of

1Some work has been done on extending DLs to include defaultsg. (
[Baader and Hollunder, 1993,  Padgham and Nebel, 1993,  Batdghd Zhang, 1993])
but this is primarily directed towards default reasoniragher than the issue of using defaults
for recognition as is being explored here.



typical characteristics (plus possibly some necessamaclexistics), rather than simply
a fixed set of characteristics.

For example Coupey and Fouquere describe how for recogrfasitits in a telecom-
munications application it is absolutely necessary to He tabtake account of default
characteristics [Coupey and Fouquere, 1997]. Howeverttieyan approach of requir-
ing that individuals explicitly have an exception to a ddfaiharacteristic to allow
recognition. This can be awkward, and is not always evenilples®A medical diag-
nosis application [Padgham and Zhang, 1993] similarly s¢edise typical symptoms
to describe diseases, but does not want an individual pieggmmnot to be recognised
because it does not haaH typical symptoms.

In order to meet the needs of the many applications similiréee it is necessary to
be able to define a set of typical characteristics assocwgtadh concept. An individual
belonging to the concept is required to have some “criticassti of these character-
istics, andshould be recognised as belonging to the concept on this.bBise most
obvious way to achieve this within the semantics of first otdgic (and Description
Logics) is to define the concept as a disjunction of all the ioations of sufficiently
many typical characteristics.

In an example from [Padgham and Zhang, 1993], chronic pyglbritis is described
as having the characteristics urine.dysuria, urine.cdigue and urine.bacteria. Defin-
ing the concept on the basis of 75% of these characteristasdgive us:

CPN = (urine.dysuria Murine.casts N fatigue) U
(urine.casts N fatigue Murine.bacteria) L
(fatigue Murine.bacteria Murine.dysuria) U

(

urine.bacteria M (urine.dysuria Murine.casts)

Previously the intractability of the algorithms used foasening with disjunctions
has meant that heavy usage of disjunctions is not a viabieroppmputationally for
real application systems.

For example, Ris [Baader and Hollunder, 1991], one of the first DL systems that
included principled reasoning with disjunction at all, &its very poor performance
when reasoning with knowledge bases (KBs) containing Sagmit numbers of dis-
junctive concepts.

Optimizations of KRis that allowed it to obtain similar performance characterist
to CLASSIC [Baadeet al,, 1992] (the most efficient of the set of tested DL systems
[Heinsohnet al,, 1992]), did not address optimisations for disjunctive aapts (which
cannot be represented in CLASSIC).

The new algorithms and optimisation techniques recentrgld@ed allow the typi-
cal case reasoning performance of DL systems to be radiogisoved [Horrocks, 1998].
These optimisations are particularly effective with redp®e disjunctive reasoning.
However there has been no experimentation which pushethe bf these new algo-
rithms, or examines whether they are adequate for partiaplalication oriented needs
which require heavy use of disjunction.

The work presented in this paper explores whether thesaitposs are in fact suf-
ficiently powerful to support the routine use of disjuncteancepts to address the ap-
plication issue of approximate matching to a prototype &émognition of individuals.
Section 2 describes a representational model for definingeqats; section 3 describes



in some detail the problem with disjunctive reasoning amdaptimisations used in the
FaCT system, which we hope will make the proposed reprets@mtéiable. Section
4 describes the experiments done to investigate this itiabihd the results obtained.
The results appear promising and we are building a bibliglgiadatabase application
based on the techniques described, to further investigatmechanisms within a gen-
uine application.

2 Representation of Concepts

Literature from cognitive psychology supports the idea thtaen people think in terms
of concepts, they actually think in terms of prototypicakdeptions, rather than in
terms of strictly necessary characteristics [Rosch, L9bBjvever using a prototypi-
cal description for a concept descriptor in descriptioridaystems (or any other sys-
tem based on first order logic) will cause problems, as sorheceucepts as well as
individuals will not have all characteristics of the prgtoé. In terms of recognising
individuals, or automatically classifying sub-concept® prototypical description of
the concept is over-defined. On the other hand, use of onlgssecy characteristics
in defining a concept results in concepts being under-defimitd consequent lack of
discrimination.

Earlier work by Padgham and others [Padgham, 1992, Padghdziteang, 1993]
has explored describing concepts using two descriptorredescriptorfor defining
the strictly necessary characteristics and a default gscr(which we will call the
prototype descriptgrwhich is subsumed by the core and in addition defines th@prot
typical characteristics. However this mechanism doesxtaitly offer any assistance
in recognising the specific concept an individual belongis tcases where the core is
under-defined and the individual does not fit the full propetylescriptor.

We build on this work by also defininglzasic descriptowhich explicitly captures
the space of concept descriptions which are sufficientlgecto the prototype descriptor
that individuals subsumed by the basic descriptor shoulebegnised as instances of
the concept.

The form of the basic descriptor is an “or” statement whicfirges any combination
of 70% of the “features” used in the prototype descriptor. The basic descriptor thus
subsumes the prototype descriptor and an individual sheeileecognised as being an
instance of a concept X based on subsumption by the basidmptesdor X.

Once users or application developers have defined the cdrpratotype descrip-
tors the definition of basic descriptors can be automatedoltld also be possible to
generate descriptors capturing varying levels of agreémigmthe prototype (e.g. 90%,
70%, 50%) in different structures, allowing applicationsttempt instance inference,
or recognition of individuals at various levels of closen@sthe prototype descriptor.

Further extensions where characteristics within a prggtan be grouped, requir-
ing some critical mass in each group, can also be envisagedev¢r all these refine-

2 Further investigation is needed regarding constraintsrttay need to be placed on the form
of prototype descriptors. However this is outside the sadjplee initial explorations presented
in this paper. The agreement level of 70% may also be sulgjeetrtation.



ments rely on the adequacy of the optimisations being egglto provide computa-
tional viability when relatively large ‘or’ clauses are tmely used.

3 Subsumption Involving Digunction

Description Logic systems provide a range of automatedreag services, in particu-
lar inferring subsumption and instantiation (instancerefationships. Subsumption is
the class/super-class relationship between conceptk imktantiation is the relation-
ship between individuals and those concepts of which theyirestances. The use of
subsumption inference to build a concept hierarchy (daotider) is known aslassi-
ficationand the use of instantiation inference to determine thesetasach individual
belongs to is known agcognition

A standard Tarski style model theoretic semantics is useéadtéopret descriptions
and to justify inferences. The meaning of concepts and ielggen by an interpretation
7 which is a pair(AZ, -7), whereAZ is the domain (a set) and is an interpretation
function. The interpretation function maps each concegt smbset ofA?, each role
to subset ofA? x AZ, and each individual to a unique elementtf. More complex
descriptions can be built up by combining descriptionsgisimariety of operators, with
the semantics of the resulting description being derivenhfits components.

A conceptC' is subsumed by (is more specific than) a condeftvritten C' C D)
if it can be inferred thatC? C D? for all possible interpretationg. The result of
classification procedures based on the subsumption neletitypically cached in the
form of a directed acyclic graph called the concept hienamttaxonomy.

An individual z is an instance of a conce@t (writtenx € C) if it can be inferred
thatz? € C7Z for all possible interpretation®. In many cases, instantiation reason-
ing, (or recognition), can be reduced to subsumption raagarsing either precomple-
tion [Hollunder, 1994] or encoding [De Giacomo and Lenziefif96] techniques; for
this reason most recent studies have concentrated on spbisaomeasoning. We fol-
low this tradition and explore the tractability of recogait by obtaining experimental
results for appropriate subsumption tests.

Most modern DL systenisperform subsumption reasoning by transforming the
subsumption problem into an equivalent satisfiability pealn C T D if and only
if the concept descriptiofC M —D) is not satisfiable. The satisfiability problem can
then be solved using a provably sound and complete algofithgad on the tableaux
calculus [Smullyan, 1968]. This approach was first desdriloe the ALC DL and its
practical application was demonstrated by the &system.

The FaCT system uses an optimised implementation of a tablelgorithm to
perform subsumption reasoning. Like other tableaux atlyors it either proves the sat-
isfiability of a concepC' by constructing an example interpretation in which has
at least one member, or proves its unsatisfiability by detnatisg that all attempts to
construct an example must lead to a contradiction. WHeontains disjunction, trying
to construct an example interpretation is hon-determmiBiarlier DLs dealt with this
non-determinism by naively performing an exhaustive ddipsh search, and it is this

3 At least those which provide sound and complete reasoning.



which leads to the poor performance of thelk system with highly disjunctive con-
cepts. Although it still performs an exhaustive searchRRET system includes a range
of optimisations which can dramatically reduce the sizéhefgearch space—these in-
clude the normalisation and encoding of concept descriptian improved search al-
gorithm, the use of heuristics to guide the search, depayddinected backtracking,
and the caching and re-use of partial results.

3.1 Example

A simple example illustrates the vital importance of opsation techniques with the
kinds of basic concept descriptors that will be generatéuguhe representation dis-
cussed in section 2.

We will take a simple prototypical concept description dstisg of only four “fea-
tures”3f;.Cy M 3fy.Co MAf3.C3 1 3f4.Cy, where each of thé'; is a conjunction of
three primitives such aB;; M P;; M P;3, and generate a basic descripfgr that will
subsume any conjunction containing at least two of3ieC; terms:

C, = (HflCl I EfQCQ) L (HflCl I 3f303) L
(Efl.Cl I 3f4C4) L (EfQCQ I 3f303) L
(3f2.C5 M 3£2.C4) U (35.C5 1 3£2.C4)

When classifying a conce? = 3f,.C,M3f>.Co, it will be necessary to determine
if C,, subsume®. As described above, this will be transformed into a sabdfta test:
C, subsumed iff D M —C, is not satisfiable. As a result of its being negated,dhe
part of this description becomes a conjunction of disjusctiauses:

df1.C1 N EfQCQ) M

Vf1.-Ch |_|Vf2.ﬁ02) M (Vfl.ﬁCl (] Vf3.ﬁC3) M
Vf1.-C1 |_|Vf4.—|C4) M (Vfg.—!CQ (] Vfg.ﬁCg) [l
W f.nCy U fa.nCa) M (¥ f5.Cly LIV f4.+Cl)

~ S S

To test the satisfiability of this concept, a naive tablegwathm would try to build
an example interpretation by proceeding roughly as follows

1. Initialise the interpretation to contain a single indivalz, which satisfies the con-
cept. Expand all of the conjunctions, making it explicittthg satisfies each of
3f1.Cq, ..., (Vf3.ﬁ03 [ Vf4.ﬁC4).

2. Search for a consistent expansion of the disjunctive eptsc Expand each unex-
panded disjunction by selecting one of the disjuncts, racking and trying the
other disjunct if that fails (leads to a contradiction). Badly, Vf;.—C; would be
chosen from the first disjunctio¥ f>.—~C> from the fourth disjunction (disjunctions
2 and 3 are satisfied by the first choice), affg.~Cs from the last disjunctiod.

3. Expand thedf;.C; terms one at a time. Fatf,.C4, this means creating a new
individual z; satisfying the concegf; and related ta:y by the rolef;. Due to the

4 Completing all propositional reasoning before expanditi®yC' terms minimises space re-
quirements [Hollunder and Nutt, 1990].



V f1.—C; chosen from the first disjunctiom; must also satisfy-C;. This seems to
be an obvious contradiction, but &5 is actually the conjunctio#®;; M Pyo M Pi3,
and —C1 is the disjunction—P;; Ul =P LI =P;3, discovering the contradiction
in 21 will mean expanding the conjunction and then searching e¢heg in the
disjunction to discover that each choice leads to a corttiadi with one of the
expanded conjuncts.

4. Having discovered this contradiction, the algorithmlWwicktrack and continue
searching different expansions of the conjunctions whighmust satisfy until it
discovers that all possibilities lead to contradictionss then possible to conclude
thatD M —C, is not satisfiable, and that, thus subsumeb.

There are several obvious inefficiencies in this procedaurd,some not so obvious.
In the first place, there is the problem of the late discovdryobvious” contradic-
tions, for example when a complete (non-deterministiclaggion ofC; and—C; is
performed in order to discover the contradictionzin This is a consequence of the
fact that most tableaux algorithms assume the input cortoelpe fully unfolded(all
defined concepts are substituted with their definitions)l, iamegation normal form
(NNF), with negations applying only to primitive conceptiollunder and Nutt, 1990].
Arbitrary ALC concepts can be converted to NNF by internalising negatisimgy De-
Morgan’s laws and the identitiesdR.C = VR.-C and—VR.C = 3R.-C.

The KRrIs system usetazy unfoldingto deal with the problem of late discovery,
only unfolding and converting to NNF as required by the pesgrof the algorithm.
Thus if C; were a named concept (introduced by a concept definitioarstit of the
form C; = Py 1 Pis M Py3), then its unfolding would be postponed and the con-
tradiction betweerC; and —~C; immediately discovered. FaCT takes this idea to its
logical conclusion by giving unique system generated namal compound concepts.
Moreover, the input is lexically analysed to ensure thatsémae name is given to lexi-
cally equivalent concepts. This means that the concgéfits’; andv f,.—~C4 would be
namedA4 and—A respectively (for some system generated naty)@nd a contradiction
would be detected without the need to create

Another problem with the naive search is that the same expacan be explored
more than once. For example, after some backtracking thaitdg will determine
that choosingy f>.—Cs from the fourth disjunction always leads to a contradictonl
will try the second choicey f3.—~C5. Expanding the fifth disjunction will then lead to
V f2.—C5 being chosen, an identical solution to the first one. FaCTdavthis prob-
lem by using asemantic branchingearch technique adapted from the Davis-Putnam-
Logemann-Loveland procedure (DPL) commonly use to solepgsitional satisfia-
bility (SAT) problems [Daviset al,, 1962, Giunchiglia and Sebastiani, 1996]. Semantic
branching works by selecting a concépsuch that”' is an element of an unexpanded
disjunction and—=C' is not already in the solution, and searching the two posslal
pansions obtained by adding eith@ror —-C'. Wasted search is avoided because the
two branches of the search tree are strictly disjoint. Famngxe, when the choice of
Vf1.-C1, Vfo.mCy andV f3.—~C5 leads to a contradiction, subsequent backtracking will
cause the choice off;.—C5 to be changed teV f,.—C>, so the first solution can never
be repeated.



Finally, after the discovery of the contradiction:in, the naive search continues
with chronologicalbacktracking in spite of the fact that the contradiction wasased
byV f1.—C4, the first choice made. FaCT deals with this problem by usaxkjumping
a form of dependency directed backtracking adapted froratcaint satisfiability prob-
lem solving [Baker, 1995]. Each concept is labelled with patelency set indicating
the branching choices on which it depends, and when a cadtiadis discovered the
algorithm can jump back over intervening choice points withexploring alternative
choices.

4 Empirical Investigations

An empirical evaluation was performed in order to determimeviability of using a
real knowledge base developed using the representatiard®irdescribed in section 2.
This evaluation used synthetically generated data in dodevaluate the performance
of FaCT and to determine if the optimisation techniquesidlesd in Section 3.1 would
be sufficiently powerful to permit empirically tractableas®oning with respect to the
kinds of subsumption problem that would be encounteredidsts were also run using
KRIsin order to identify levels which have previously causedytems, and as a way
of identifying cases where FaCT may involve extra cost.

The testing used a variation of a random concept generagichmique first de-
scribed by [Giunchiglia and Sebastiani, 1996] and subsstjuefined by [Hustadt and Schmidt, 1997].
The generated concepts are of the fatfa.Cy 1 ... M 3f,.Cy, where eacly; is an at-
tribute (single valued role) and ea€h is a conjunction of. primitive concepts chosen
from N possibilities.

For a given conceptf’ and an approximation valué in the range 0-100, a concept
C, is formed, as in Section 3.1, consisting of a disjunctionligpassible conjunctions
containingl’ % of the3f,.C; terms inC.5 To represent the (hardest) kind of subsump-
tion test that would be involved in the recognition processecond concept’. is
formed fromC' by changing elements of thg; from each3f;.C; term so thatC,. is
subsumed by, with a probabilityP, and the time taken to testdf, does in fact sub-
sumeC,. is measured. Varying(the number of “features”) and gives disjunctions of
varying size, and varying’ allows performance to be measured for tests ranging from
“obvious” subsumption to “obvious” non-subsumption.

Initial explorations indicate that for a variety of appliicas the number of default
features is likely to be in the range of 10-15, while the petage match required is
likely to be about 70%. Tests were performed for the 9 setahfes given in Table 1,
withn = 4andN = 6in all cases. For each te$t,was varied from 0—1 in steps of 0.05,
with 10 randomly generated subsumption problems beingesoat each data point,
giving a total of 210 subsumption problems in each test. idl tests were performed
on 300MHz Pentium machines, with Allegro CL 5.0 running unidaux, and in order
to keep the CPU time required within reasonable limits a maxn of 1,000s was
allowed for each problem.

Tests T1-T3 proved relatively easy for both FaCT arrid( with both systems
able to solve any of the problems in less than 0.1s of CPU fithis.is not particularly

5 The number of terms is rounded down to the nearest integer.



TestTLT2T3T4T5T6T7T8T

4 5 5 5101010151515
V(%)[90 70 50 90 70 50 90 70 50
Table 1. Parametric values for tests

surprising as, even for Tg;, will be a disjunction of only 10 conjuncts, each of which
is of size 2. Tests T4 and T7 also proved relatively easy, hath systems able to solve
any problem in less than 0.3s of CPU time. This is again dubecsmall size of the
disjunctions, resulting in this case from the 90% approxiomavalue.

For tests T5 and T6 the difference between FaCT ardgsbecame more evident.
For T5, FaCT is able to solve90% of problems in less than 0.3s, while for T6 this
increases to 0.4s. With &, the time taken to solve a problem critically depends on
whetherC, subsume&’,. (i.e., C,. M —=C, is unsatisfiable) or not. For TS5 most non-
subsuming (satisfiable) problems are solved in less thawhéreas subsuming prob-
lems take more than 3.5s, while for T6 these values are Odi@Esrespectively. Kis's
faster time for non-subsuming problems is due to the fad¢t thanost cases, a solution
can quickly be found regardless of the search strategy; Fa@The other hand, still
has the overhead of its more sophisticated search teclmiqud in particular of the
lexical analysis and naming of sub-concepts.

For tests T8 and T9, Kis's difficulty with subsuming problems becomes critical
and it proved unable to solve any such problem within theQs@d CPU time allowed.
FaCT remained consistent with respect to both subsuminghanesubsuming prob-
lems, solving>90% of problems in less than 9s for T8 and less than 28s for T8, w
FaCT’s worst time in all tests being 31s. Figure 1 shows thé percentile (median)
and 90th percentifetimes for T9 with KRis and FaCT plotted against the probability
of generating subsuming concepts. Note that where the QR& i shown as 1,000s
no solution was found, and the time which would be requireatder to find a solution
could bex>1,000s.

KRIS's poor performance is easily explained by the fact that 8y d, will be a
disjunction of 3,003 conjuncts, each of which is of size 1hanNC,, is negated in the
subsumption test this becomes a conjunction of disjuncisiwiising a naive strategy,
leads to a search df0o3°%3 possible expansions (although or#l}® of these can be
unique); for T9C, will be a disjunction of 6,435 conjuncts, each of which isiaks7.

5 Discussion and conclusions

Clearly the results using FaCT on the larger disjuncts @tst&€8 and T9) are encourag-
ing compared to RIS, indicating that frequent use of optimised disjunctivesmang
is potentially viable. To ascertain whether the very sigaifit gains are sufficient to
justify the proposed representation in real applicatisnsye further questions should
be considered: At what rate do individuals need to be caitegd? Will one instance

% The 90th percentile is the maximum time taken to solve althethardest 10% of problems.
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Fig. 1. Percentile times for T9 with Kis and FaCT

inference, or recognition process, lead to further inganterences? How many sub-
sumption tests are needed for an instance recognition? Hely is it that the more
difficult subsumption tests will occur?

An additional question also has to do with space compleXtg naive representa-
tion of the conceptual representation described resuktgponential increase in space
requirements. However we would expect to adapt existingriecies which only re-
quire keeping part of the concept hierarchy in memory, arekfand concepts to their
full representation only at run-time. The exponential gpecrease will not result in
exponential time increase using the described optimisstidue to the fact that most of
the increase is in equivalent concepts which are pruned.away

The rate at which instance inference needs to be done camidely depending on
the application. In a real-time telecommunications faidigdostic system, individual
descriptors needing to be classified as normal, or as a plarticategory of fault, may
arrive at several per second. On the other hand a suppoensyst medical diagno-
sis, being used by an individual doctor, could reasonahbbeeka descriptor of patient
symptoms every 10 minutes. The rate for a bibliographic arer KB, responding to
user queries probably lies somewhere between these twoeXgerimental response
times we have established are clearly adequate for someapmhs, but possibly in-
adequate for others.

Applications with highly interrelated individuals can witsin significant propaga-
tion when a single individual is modified. Consequently oeeognition process can
trigger several other such processes. Some applicatiank &s a bibliographic data-
base or a travel information database) rely on a large setddfiduals many of which
may be interrelated. However, other applications (sucthasrtedical diagnostic sup-

" Although if inadequate response times occur relativelyeiiiently it may be possible to
achieve usability by supplementing the optimisation tégies with special purpose heuris-
tics.



port described in [Padgham and Zhang, 1993], where indal&are descriptions of a
set of patient symptoms) mostly deal with individuals whidve no effect on other
individuals and thus can only result in the subsumptionstestcessary for a single
recognition problem.

The number of subsumption tests required for a particulairce recognition task
depends on both the number of concepts and the form of tharbigr. Assuming that
the hierarchy is close in form to a tree, and that individiygdécally belong to only one
sub-class at each level (at least until the bottom levels@hterarchy are reached), then
the number of subsumption tests needed at each level wiljbal ¢o the fan-out of the
hierarchy at that level. Consequently, the total numbemubsamption tests required
will be roughly the average fan-out multiplied by the deptthe tree. Moreover, FaCT
uses a caching optimisation to facilitate the quick discpwéd non-subsumption, and
this will typically work for all but one test at each level [Hocks, 1997]. This effec-
tively reduces the number of “full” subsumption tests to lpea to the depth of the
tree.

The form of the hierarchy generated using the representdéecribed in Section 2,
with 3 descriptors per concept, obviously increases thelrauraf nodes in the hierar-
chy by a factor of 3. It is also possible that the form of therdmiehy differs from
concept hierarchies with which we are familiar, due to theotes nuances ofl is-a B
which become available. For example in Figure 2 the hiesaoshthe left represents
the case wherels are typicallyBs, whereas the hierarchy on the right represents the
case whereds are always$3s. Further work is needed to determine the form of appli-
cation taxonomies using this representation, but it iskehyfi that the number of hard
subsumption tests required per recognition task will cleagignificantly: only the ba-
sic descriptors are highly disjunctive, and the cachingnoipaition should still allow
“full” tests to be avoided in most cases. It is also likelytthather optimisations can
be developed, based on the particular representationsenesang.

Ac Bc Bc
Ab Bb /Bb
Ap Bp Ac Bp
Ac = core descriptor for A Ab
Ab = basic descriptor for A \
Ap = prototype descriptor for A Ap
= subsumption

Fig. 2. Two nuances ofi is-a B with 3 descriptors



The experimental subsumption problems generated werbedately designed to
be difficult, and it is unclear how often such problems woutdemcountered in a KB
using the representation proposed (it is likely they woddrmre common than is usual
for difficult subsumption problems in KBs not routinely ugithis representation). The
best case would be that such difficult subsumption tests dvbal encountered only
very occasionally, and never more than one per individuadgaition process. Given
that ontologies tend to be much broader than they are degipatly with a depth in
the range of 7 to 14, this would give (for the T9 situation) sp@nse time which occa-
sionally peaked at around 30s; the worst case would be tHaétill subsumptions for
a given individual were difficult, giving a response time ahihutes for a typical hier-
archy of depth 14. This may still be acceptable for an apfitioassuch as that described
in [Padgham and Zhang, 1993] where the system is being usediagnostic support
tool for medicine.

To sum up, even making very pessimistic assumptions leadptedicted worst-
case response time of 7 minutes per recognition processiditiearly within the range
of useful response times for some applications. As a re§tliese explorations we are
convinced that the recent optimisations make routine ditjue reasoning feasible and
thus justify using a representational approached basedspumdtion. We are in the
process of building a bibliographic KB application to fuettexplore the representation
of concepts as described and the associated computatiomearges.
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