
A Conjunctive Query Language for Description Logic Aboxes

Ian Horrocks and Sergio Tessaris
Department of Computer Science

University of Manchester
Manchester, UK

{horrocks|tessaris}@cs.man.ac.uk

Abstract

A serious shortcoming of many Description Logic based
knowledge representation systems is the inadequacy of their
query languages. In this paper we present a novel technique
that can be used to provide an expressive query language for
such systems. One of the main advantages of this approach
is that, being based on a reduction to knowledge base satisfi-
ability, it can easily be adapted to most existing (and future)
Description Logic implementations. We believe that provid-
ing Description Logic systems with an expressive query lan-
guage for interrogating the knowledge base will significantly
increase their utility.

Introduction
A description logic (DL) knowledge base (KB) is made up
of two parts, a terminological part (the Tbox) and an asser-
tional part (the Abox), each part consisting of a set of ax-
ioms. The Tbox asserts facts aboutconcepts(sets of objects)
androles(binary relations), usually in the form of inclusion
axioms, while the Abox asserts facts aboutindividuals(sin-
gle objects), usually in the form of instantiation axioms. For
example, a Tbox might contain an axiom asserting thatMan
is subsumed byAnimal, while an Abox might contain ax-
ioms asserting thatJohn, Peter andBill are instances of the
conceptMan and that the pairs〈John,Peter〉 and〈Peter,Bill〉
are instances of the roleBrother.

Recent years have seen significant advances in the de-
sign of sound and complete reasoning algorithms for DLs
with both expressive logical languages and unrestricted
Tboxes, i.e., those allowing arbitrary concept inclusion ax-
ioms (Baader 1991; De Giacomo & Lenzerini 1995; Hor-
rocks & Sattler 1999; De Giacomo & Massacci 1998).
Moreover, systems using highly optimised implementations
of (some of) these algorithms have also been developed, and
have been show to work well in realistic applications (Hor-
rocks 1998; Patel-Schneider 1998). While most of these
have been restricted to terminological reasoning (i.e., the
Abox is assumed to be empty), attention is now turning to
the development of both algorithms and (optimised) imple-
mentations that also support Abox reasoning (Haarslev &
Möller 1999a; Tessaris & Gough 1998).

Copyright c© 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Although these systems provide sound and complete
Abox reasoning for very expressive logics, their utility is
limited w.r.t. earlier DL systems by their very weak Abox
query languages. Typically, these only support instantiation
(is an individuali an instance of a conceptC), realisation
(what are the most specific conceptsi is an instance of)
and retrieval (which individuals are instances ofC). This
is in contrast to a system such as Loom (MacGregor 1991),
where a full first order query language is provided, although
based on incomplete reasoning algorithms (MacGregor &
Brill 1992).

The reason for this weakness is that, in these expressive
logics, all reasoning tasks are reduced to that of determin-
ing KB satisfiability (consistency). For example, it can be
inferred thatJohn is an instance ofAnimal if and only if the
KB is not satisfiable when an axiom is added to the Abox as-
serting thatJohn is not an instance ofAnimal (i.e., thatJohn
is an instance of the negation ofAnimal). Realisation and
retrieval can, in turn, be achieved through repeated applica-
tion of instantiation tests. However, this technique cannot
be used (directly) to infer from the above axioms that the
pair 〈John,Bill〉 is an instance of the transitive roleBrother,
because these logics do not support role negation, i.e., it is
not possible to assert that〈John,Bill〉 is an instance of the
negation ofBrother.

In this paper we present a technique for answering such
queries using a more sophisticated reduction to KB satisfi-
ability. We then show how this technique can be extended
to determine if an arbitrary tuple of individuals (i.e., not just
a singleton or pair) satisfies a disjunction of conjunctions
of concept and role membership assertions that can contain
both constants (i.e., individual names) and variables. This
provides a powerful query language, similar to the conjunc-
tive queries typically supported by relational databases,1 that
allows complex Abox structures (e.g., cyclical structures) to
be retrieved by using variables to enforce co-reference. For
example, the query

〈x, y〉 ← 〈z,Bill〉:Parent ∧ 〈z, x〉:Parent ∧
〈z, y〉:Parent ∧ 〈x, y〉:Hates

would retrieve all the pairs of hostile siblings inBill’s fam-
1It is inspired by the use of Abox reasoning to decide conjunc-

tive query containment (Horrockset al. 1999a; Calvanese, De Gi-
acomo, & Lenzerini 1998).

ily.2

It is important to stress the fact that, given the expressivity
of DLs, query answering cannot simply be reduced to model
checking as in the database framework. This is because KBs
may contain nondeterminism and/or incompleteness, mak-
ing it infeasible to use an approach based on minimal mod-
els. In fact, query answering in the DL setting requires the
same reasoning machinery as logical derivation.

An important advantage with the technique presented here
is that it is quite generic, and can be used with any DL where
instantiation can be reduced to KB satisfiability. It could
therefore be used to significantly increase the utility of Abox
reasoning in a wide range of existing (and future) DL imple-
mentations.

Preliminaries
Although the query answering technique is quite general, it
will simplify the presentation if we consider a concrete DL
language. We will use the languageALC (Schmidt-Schauß
& Smolka 1991) as it is widely known, is sufficiently expres-
sive for our purposes (in particular, it is closed under nega-
tion) and is a subset of the logics implemented in most “state
of the art” DL systems, i.e., those based on highly optimised
tableaux algorithms (Horrocks 1998; Patel-Schneider 1998;
Haarslev & M̈oller 1999b).

In the following sections we will introduce and provide
formal definitions for theALC logic, DL knowledge bases,
our query language and the various reasoning tasks with re-
spect to knowledge bases and queries.

Description LogicALC
ALC concepts are built using a set of concept names (NC)
and role names (NR). Valid concepts are defined by the fol-
lowing syntax:

C : : = A | > | ⊥ | ¬A | C1 u C2 | C1 t C2 |
∀R.C | ∃R.C

whereA ∈ NC is a concept name andR ∈ NR is a role
name. The meaning of concepts is given by a Tarski style
model theoretic semantics usinginterpretations. An inter-
pretationI is a pair(∆I , ·I), where∆I is the domain and
·I an interpretation function. The function·I maps each
concept name inNC to a subset of∆I and each role name
in NR to a binary relation over∆I (a subset of∆I × ∆I)
such that the following equations are satisfied:

>I = ∆I

⊥I = ∅
(¬A)I = ∆I \AI

(C1 u C2)I = CI1 ∩ CI2

(C1 t C2)I = CI1 ∪ CI2

(∀R.C)I =
{
i ∈ ∆I | ∀j. (i, j) ∈ RI ⇒ j ∈ CI

}
(∃R.C)I =

{
i ∈ ∆I | ∃j. (i, j) ∈ RI ∧ j ∈ CI

}
2Note that a sound and complete KB satisfiability algorithm

will guarantee sound and complete query answers.

DL knowledge bases
A DL knowledge base is a pairΣ = 〈T ,A〉, whereT is
called theTboxandA is called theAbox.

The Tbox, or terminology, is a set of assertions about con-
cepts of the formC vD, whereC andD are concepts.3 An
interpretationI satisfiesC v D (written I |= C v D) iff
CI ⊆ DI and it satisfies a TboxT (written I |= T) if it
satisfies every assertion inT .

The Abox, or assertional part, is a set of assertions about
individuals of the forma:C and 〈a, b〉:R, wherea, b are
names inNI, C is a concept andR is a role. The semantics
of the Abox is given by extending the interpretation function
·I to map each individual name inNI to a single element of
∆I . An interpretationI satisfiesa:C iff aI ∈ CI , it sat-
isfies〈a, b〉:R iff (aI , bI) ∈ RI and it satisfies an AboxA
(writtenI |= A) if it satisfies every assertion inA.

An interpretation satisfies a knowledge baseΣ = 〈T ,A〉
(written I |= Σ) if it satisfies bothT andA; a knowledge
base is said to be satisfiable iff there exists at least one non-
empty interpretation satisfying it. Using the definition of
satisfiability, an assertionX is said to be alogical conse-
quenceof a KB Σ (written Σ |= X) iff X is satisfied by
every interpretation that satisfiesΣ.

The semantics of DL Aboxes often includes a so called
unique name assumption: an assumption that the interpre-
tation function maps different individual names to different
elements of the domain (i.e.,aI 6= bI for all a, b ∈ NI such
thata 6= b). Our approach does not rely on such an assump-
tion, and can be applied to DLs both with and without the
unique name assumption.

Queries
In this paper we will focus on conjunctive queries: the ex-
tension to disjunctions of conjunctive queries can easily be
accomplished using a technique sketched later on. In our
framework, a key feature of queries is that they may con-
tain variables, and we will assume the existence of a set of
variablesV that is disjoint from the set of individual names,
i.e., V ∩ NI = ∅. A booleanconjunctive queryQ is of the
form q1 ∧ . . . ∧ qn, whereq1, . . . , qn are query terms. Each
query termqi is of the formx:C or 〈x, y〉:R, whereC is a
concept,R is a role andx, y are either individual names or
variables. Given a KBΣ, an interpretationI of Σ satisfies
a queryQ iff the interpretation function can be extended to
the variables inQ in such a way thatI satisfies every term
in Q. A queryQ is true w.r.t. Σ (written Σ |= Q) iff every
interpretation that satisfiesΣ also satisfiesQ. For example,
the query

〈Bill, y〉:Parent ∧ 〈y, z〉:Parent ∧ z:Male (1)

is true w.r.t. a KBΣ iff it can be inferred fromΣ that Bill
has a grandson. Note that query truth value and the idea of
logical consequence are strictly related. In fact, a boolean
query is true w.r.t. a KB iff it is logical consequence of the
KB.

3C
.
= D is sometimes used as an abbreviation for the pair of

assertionsC vD andD v C.

In the following, we will only consider how to answer
boolean queries. Retrieving sets of tuples can be achieved by
repeated application of boolean queries with different tuples
of individual names substituted for variables. For example,
the answer to the retrieval query〈x, y, z〉 ← Q w.r.t. a KB
Σ is the set of tuples〈a, b, c〉, wherea, b, c are individual
names occurring inΣ, such thatΣ |= Q′ for the boolean
queryQ′ obtained by substitutinga, b, c for x, y, z inQ. The
naive evaluation of such a retrieval could be prohibitively
expensive, but would clearly be amenable to optimisation.

We will show how to answer boolean queries in two steps.
Firstly, we will consider conjunctions of terms containing
only individual names appearing in the KB; secondly, we
will show how this basic technique can be extended to deal
with variables.

Queries with multiple terms
In this section we will consider queries expressed as
a conjunction of concept and role terms built using
only names appearing in the KB, e.g.,Tom:Student or
〈Tom,CS710〉:Enrolled.

As we have already seen, logical consequence can eas-
ily be reduced to a KB satisfiability problem if the query
contains only a single concept term (this is the standard in-
stantiation problem). For example,

〈{Studentv Person} , {Tom:Student}〉 |= Tom:Person

iff the KB

〈{Studentv Person} , {Tom:Student, Tom:¬Person}〉
is not satisfiable. This can be generalised to queries contain-
ing conjunctions of concept terms simply by transforming
the query test into a set of (un)satisfiability problems: a con-
junctiona1:C1 ∧ . . . ∧ an:Cn is a logical consequence of a
KB iff eachai:Ci is a logical consequence of the KB.

However, this simple approach cannot be used in our case
since a query may also contain role terms. Instead, we will
show how simple transformations can be used to convert ev-
ery role term into a concept term. We call this procedure
rolling up a query.

The rationale behind rolling up can easily be understood
by imagining the availability of the DLone-of operator,
which allows the construction of a concept containing only a
single named individual (Schaerf 1994). The standard nota-
tion for such a concept is{a}, wherea is an individual name,
and the semantics is given by the equation{a}I =

{
aI
}

.
For example, the expression{Bill} represents a concept con-
taining only the individualBill (i.e.,{Bill}I =

{
BillI

}
).

Using the one-of operator, the role term
〈John,Bill〉:Brother can be transformed in the equiva-
lent concept termJohn:(∃Brother.{Bill}). Furthermore,
other concept terms asserting additional facts about the indi-
vidual being rolled up (Bill in this case) can be absorbed into
the rolled up concept term. For example, the conjunction

〈John,Sally〉:Parent ∧ Sally:Female ∧ Sally:PhD

can be transformed into

John:∃Parent.({Sally} u Female u PhD).

The absorption transformation is not strictly necessary for
queries without variables, but it serves to reduce the number
of satisfiability tests needed to answer the query (by reduc-
ing the number of conjuncts), and it will be required with
queries containing variables. By applying rolling up to each
role term, an arbitrary query can be reduced to an equiva-
lent one which contains only concept terms, and which can
be answered using a set of satisfiability tests as described
above.

However, the logic we are using does not include the
one-of operator, nor is it provided by any state of the art
DL system (in fact the decidability of expressive DLs in-
cluding this operator is still an open problem). Fortunately,
we do not need the full expressivity ofone-of , and in our
case it can be “simulated”. The technique used is to substi-
tute each occurrence ofone-of with a new concept name
not appearing in the knowledge base. These new concept
names must be different for each individual in the query,
and are called therepresentativeconcepts of the individuals
(writtenPa, wherea is the individual name). In addition, as-
sertions which ensure that each individual is an instance of
its representative concept must be added to the knowledge
base (e.g.,Bill:PBill).

In general, a representative concept cannot be used in
place ofone-of because it can have instances other than
the individual which it represents (i.e.,Pa

I ⊇
{
aI
}

). How-
ever, representative concepts can be used instead ofone-of
in our reduced setting, as shown by the following theorem:

Theorem 1 Let Σ = 〈T ,A〉 be a DL knowledge base,a, b
two individual names inA, R a role andC1, . . . , Cn con-
cepts. Given a new concept namePb not appearing inΣ:

〈T ,A〉 |= 〈a, b〉:R ∧ b:C1 ∧ . . . ∧ b:Cn
if and only if

〈T ,A ∪ {b:Pb}〉 |= a:∃R.(Pb u C1 u . . . u Cn).

Due to space considerations, we will not reproduce here a
formal proof of this theorem, or of any of the other transfor-
mations used in this paper: full details can be found in (Hor-
rockset al. 1999a).

Queries with variables
In this section we show how variables can be introduced in
this framework by using a more complex rolling up pro-
cedure in order to obtain a similar reduction to the KB
(un)satisfiability problem.

Variables can be used exactly as individual names, but
their meaning is as “place-holders” for unknown elements
of the domain. Because variables may be interpreted as any
element of the domain, they cannot simply be considered
as individual names to which the unique name assumption
does not apply; nor can they be treated as referring only to
named individuals, giving the possibility of nondeterminis-
tically substituting them with names in the KB. In fact the
query (1) is true w.r.t. both the KBs

〈∅,
{
〈Bill,Mary〉:Parent, 〈Mary, Tom〉:Parent,
Tom:Male

}
〉

and
〈∅, {Bill:∃Parent.(∃Parent.Male)}〉,

but for the first KB the variables can be substituted by the
individual namesMary andTom, while in the second case
the variables may need to be interpreted as elements of the
domain that are not the interpretations of any named indi-
viduals.

Answering queries containing variables involves a more
sophisticated rolling up technique. For example, let us
consider the last two terms of query (1),〈y, z〉:Parent and
z:Male. If z were an individual name, the term could be
rolled up asy:∃Parent.(Pz uMale), but this is not an equiv-
alent query whenz is a variable name becausez can be
interpreted as any element of the domain, not just an ele-
ment ofPz

I . However, since in this casez is no longer
referred to in any other place in the query, there is no other
constraint on how an interpretation can be extended w.r.t.z,
so the concept> (whose interpretation is always the whole
domain) can be used instead ofPz. The resulting concept
term is y:∃Parent.(> uMale), which can be simplified to
y:∃Parent.Male. The same procedure can now be applied
to y, thereby reducing query (1) to the single concept term
Bill:∃Parent.(∃Parent.Male).

In order to show how this procedure can be more gener-
ally applied, it will be useful to consider the directed graph
induced by the query, i.e., a graph in which there is a node
x for each individual or variablex in the query, and an edge
R from nodex to nodey for each role term〈x, y〉:R in the
query. It is easy to see that the rolling up procedure can
be used to eliminate variables from any tree-shaped part of
a query by starting at the leaves and working back towards
the root (this is similar to the notion of descriptive support
described in (Rousset 1999)). The ordering is important in
order to maintain the connection between the rolled up term
and the rest of the query. For example, rolling up query (1)
in the reverse order would lead to the non-equivalent query

Bill:∃Parent.> ∧ y:∃Parent.> ∧ z:Male.

However, this simple procedure cannot be applied to parts
of the query that contain cycles, or where more than one
edge enters a node corresponding to a variable (i.e., with
terms like 〈x, z〉:R ∧ 〈y, z〉:S). Let us consider the case
where a variable is involved in a cycle, e.g., the simple query

〈x, y〉:Path ∧ 〈y, z〉:Path ∧ 〈z, x〉:Path (2)

which tests the KB for the presence of a loop involving the
rolePath. Rolling up one of the terms does not help, because
the resulting query

〈x, y〉:Path ∧ 〈y, z〉:Path ∧ z:∃Path.Px

still contains another reference to the variablex, and replac-
ingPx with>would result in a non-equivalent query that no
longer contained a cycle. Moreover, it is obvious that there
is no way to roll up the query in order to obtain a single
occurrence of any of the three variables.

This problem can be solved by exploiting the tree model
property of the logic.4 Given this property, we know that

4This is a property of most DLs, and of all those implemented
in state of the art systems.

Tbox assertions alone cannot constrain all models to be
cyclical (if there is a model, then there is a tree model),
so any cycle that might satisfy a cyclical query must be ex-
plicitly asserted in the Abox. Moreover, given the restricted
expressivity of role assertions (i.e., that they apply only to
atomic role names), cycles enforced in every interpretation
must be composed only of elements interpreting individual
names occurring in the Abox. Therefore, before applying
the rolling up procedure, a variable occurring in a cycle can
be nondeterministically substituted with an individual name
occurring in the Abox.

For example, if in the query (2) the variablex is substi-
tuted by the individual namea, then it can be transformed
into the query

〈a, y〉:Path ∧ 〈y, z〉:Path ∧ z:(∃Path.Pa),

which no longer contains a cycle composed only of vari-
ables. Consequently, it can be rolled up into the single con-
cept term

a:∃Path.(∃Path.(∃Path.Pa))

where the conceptPa is used to close the cycle. A similar
argument can be used w.r.t. variables appearing as the sec-
ond argument of more than one role term, e.g., the variable
z in the query〈x, z〉:R ∧ 〈y, z〉:S. Such variables can also
be dealt with by nondeterministically substituting them with
individual names occurring in the Abox.

In order to deal with variables, one final problem remains
to be overcome. We have seen how role terms containing
variables can be rolled up into concept terms, but these may
still be of the formx:C, wherex is a variable. For exam-
ple, the query〈x, y〉:Parent, wherex and y are variables,
can only be reduced to the single termx:∃Parent.>. We
cannot simply treatx as an individual and use the standard
instantiation technique to reduce the query to KB satisfia-
bility, becausex can be interpreted as any element in the
domain: in this case we need to verify that the interpretation
of the concept∃Parent.> is nonempty in every interpreta-
tion that satisfies the KB. However, it is easy to see that the
interpretation of a conceptC is nonempty in every interpre-
tation that satisfies the KB〈T ,A〉 iff 〈T ∪ {> v ¬C} ,A〉
is not satisfiable.5

We are now in a position to present a procedure for an-
swering an arbitrary boolean conjunctive query. The first
step is to eliminate role terms from the query using the
rolling up procedure, with the directed graph induced by the
query being used to select an appropriate order in which to
apply single rolling up steps. This is done by repeatedly ap-
plying one of the following steps until all role terms have
been eliminated:

1. If the graph contains a leaf nodey (i.e., a node with one in-
coming edge〈x, y〉 and no outgoing edges), then the role
term〈x, y〉:R is rolled up, and the edge〈x, y〉 is removed
from the graph.

5Some earlier DL systems cannot reason with Tbox axioms of
this kind (Baader & Hollunder 1991; Bresciani, Franconi, & Tes-
saris 1995), and this might restrict the kinds of query that could be
answered.

2. Otherwise, if the graph contains a confluent nodey (i.e.,
one with multiple incoming edges), then all role terms
〈x, y〉:R are rolled up, and all edges〈x, y〉 are removed
from the graph (ify is a variable, then it is first re-
placed with an individual name chosen nondeterministi-
cally from the KB).

3. Finally, if the graph contains edges but no leaf nodes and
no confluent nodes, then it must contain a cycle. In this
case a nodey in a cycle is chosen (preferably an individual
as this reduces nondeterminism) and rolled up as in case
2 above.

The query now contains only concept terms, and evaluates
to true iff every term evaluates to true (for some nondeter-
ministic replacement of variables with individual names).

Extensions
For the sake of simplicity, we have so far only considered
conjunctive queries overALC KBs. However, the technique
is general enough to be used with other DL languages, and
it can be extended to deal with a disjunction of conjunctive
queries.

DL expressivity
The technique described can be used with a wide range of
DL languages. For example, qualified number restrictions,
transitive roles and a role hierarchy (Horrocks, Sattler, & To-
bies 1999b) could be added to the language without chang-
ing the rolling up procedure. Moreover, the efficiency of
the rolling up procedure can actually be improved if the lan-
guage is extended to include inverse roles, i.e., roles of the
form R−1, where(i, j) ∈ (R−1)I iff (j, i) ∈ RI (Hor-
rocks & Sattler 1999). With inverse roles the rolling up
procedure can be simplified because the orientation of the
edges in the graph induced by the query is no longer rel-
evant. For example, the term〈John,Bill〉:Brother can be
rolled up in either direction to giveJohn:(∃Brother.PBill) or
Bill:(∃Brother−1.PJohn). Since the query graph is no longer
directed, every connected subgraph without cycles can be
treated as a tree and, moreover, each connected component
of the graph can be collapsed into a single concept term.

Disjunctive queries
As we have already mentioned, it is possible to extend the
basic framework to deal with disjunctions of boolean con-
junctive queries, i.e., queries of the formQ1 ∨ . . . ∨ Qn,
where eachQi is a boolean conjunctive query. We will make
the assumption that no variable ever occurs in more than one
conjunctive query (i.e., the sets of variables occurring in the
conjunctive queries are pairwise disjoint).

Even with this simplification, verifying the truth value of
a query cannot be achieved by verifying each conjunctive
query separately and returning true iff any one of the con-
junctive queries evaluates to true. This is because of the po-
tential disjunctive information present in the KB. For exam-
ple, consider the KB〈∅, {Bill:(PhD tMsC)}〉, and the dis-
junctive query

Bill:PhD ∨ Bill:MsC.

It is easy to see that the query should evaluate to true, but that
none of the disjuncts is a logical consequence of the KB. In
fact, in order to correctly evaluate the query it is necessary to
consider both the terms together, and to test the satisfiability
of the KB

〈∅, {Bill:(PhD tMsC),Bill:¬PhD,Bill:¬MsC}〉.

Clearly, this KB is unsatisfiable, giving the correct answer.
A similar situation could arise w.r.t. variables, e.g., with the
queryx:PhD ∨ y:MsC. In this case the problem must be
reduced to testing the satisfiability of the KB

〈{> v ¬PhD,>v ¬MsC} , {Bill:(PhD tMsC)}〉.

Again, this KB is clearly unsatisfiable.
The examples given above suggest how the evaluation of

disjunctive queries should be performed. The procedure can
be summarised in the following three steps.6 Firstly, each
disjunct is transformed into a conjunction of concept terms
as per the standard rolling up procedure. Secondly, the dis-
junction of these conjunctive terms is converted into its con-
junctive normal form, the result being a conjunction of dis-
junctions of concept terms:

(q1,1 ∨ . . . ∨ q1,n) ∧ . . . ∧ (qk,1 ∨ . . . ∨ qk,n).

Finally, each of the disjunctions of concept termsqi,1∨ . . .∨
qi,n is separately verified by adding its negation to the KB
and testing the unsatisfiability of the result. The procedure
returns true (i.e., the original disjunctive query evaluates to
true) iff the KB is unsatisfiable in every case.

Discussion
In this paper we have presented a general technique for pro-
viding an expressive query language for a DL based knowl-
edge representation system. Our work is motivated by the
fact that many DL systems (including state of the art sys-
tems) provide no proper query language, and are only able
to perform simple instantiation and retrieval reasoning tasks.

The only other comparable proposals in the literature
are in the direction of integrating a DL system with Dat-
alog (Levy & Rousset 1996a; Doniniet al. 1998; Cal-
vanese, De Giacomo, & Lenzerini 1999). Using Datalog
as a query language can provide the ability to formulate re-
cursive queries (Cadoli, Palopoli, & Lenzerini 1997), but on
the other hand, the combination with expressive DLs soon
leads to undecidability (Levy & Rousset 1996b). In addi-
tion, a special algorithm (dependent on the DL language)
must be implemented in order to reason with the resulting
hybrid language.

Our approach sacrifices some expressivity in the query
language, but it works with very expressive DL languages
and it can easily be adapted for use with any existing (or
future) DL system equipped with the KB satisfiability rea-
soning service.

Our plans for future work include an implementation of
the technique on top of the FaCT system (Horrocks 1998),

6Full details can be found in (Horrockset al. 1999a).

which has recently been extended to include Abox reason-
ing (Tessaris & Gough 1998), as well as the analysis of suit-
able optimisations for reducing the nondeterminism due to
variable substitution, both in the rolling up and the retrieval
procedures.

References
Baader, F., and Hollunder, B. 1991. KRIS: Knowledge rep-
resentation and inference system.SIGART Bulletin2(3):8–
14.

Baader, F. 1991. Augmenting concept languages by tran-
sitive closure of roles: An alternative to terminological cy-
cles. InProc. of IJCAI-91.

Bresciani, P.; Franconi, E.; and Tessaris, S. 1995. Imple-
menting and testing expressive description logics: a pre-
liminary report. InProc. of of KRUSE’95, 28–39.

Cadoli, M.; Palopoli, L.; and Lenzerini, M. 1997. Data-
log and description logics: Expressive power. InProc. of
DBPL-97.

Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 1998.
On the decidability of query containment under constraints.
In Proc. of PODS-98, 149–158.

Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 1999.
Answering queries using views in description logics. In
Proc. of DL’99, 9–13.

De Giacomo, G., and Lenzerini, M. 1995. What’s in an
aggregate: Foundations for description logics with tuples
and sets. InProc. of IJCAI-95.

De Giacomo, G., and Massacci, F. 1998. Combining de-
duction and model checking into tableaux and algorithms
for converse-pdl.Information and Computation. To appear.

Donini, F. M.; Lenzerini, M.; Nardi, D.; and Schaerf, A.
1998. Al-log: Integrating datalog and description logics.
Journal of Intelligent Information Systems10(3):227–252.

Haarslev, V., and M̈oller, R. 1999a. An empirical evalu-
ation of optimization strategies for abox reasoning in ex-
pressive description logics. InProc. of DL’99, 115–119.

Haarslev, V., and M̈oller, R. 1999b. RACE system descrip-
tion. In Proc. of DL’99, 130–132.

Horrocks, I., and Sattler, U. 1999. A description logic with
transitive and inverse roles and role hierarchies.Journal of
Logic and Computation9(3):385–410.

Horrocks, I.; Sattler, U.; Tessaris, S.; and Tobies, S. 1999a.
Query containment using a DLR ABox. LTCS-Report 99-
15, LuFG Theoretical Computer Science, RWTH Aachen,
Germany.

Horrocks, I.; Sattler, U.; and Tobies, S. 1999b. Practi-
cal reasoning for expressive description logics. InProc. of
LPAR’99, 161–180. Springer-Verlag.

Horrocks, I. 1998. Using an expressive description logic:
FaCT or fiction? InProc. of KR’98, 636–647.

Levy, A. Y., and Rousset, M.-C. 1996a. Carin: A rep-
resentation language combining horn rules and description
logics. InProc. of ECAI-96.

Levy, A. Y., and Rousset, M.-C. 1996b. The limits on
combining recursive horn rules and description logics. In
Proc. of AAAI-96.
MacGregor, R. M., and Brill, D. 1992. Recognition al-
gorithms for the LOOM classifier. InProc. of AAAI-92,
774–779. AAAI Press.
MacGregor, R. M. 1991. Inside the LOOM description
classifier.SIGART Bulletin2(3):88–92.
Patel-Schneider, P. F. 1998. DLP system description. In
Proc. of DL’98, 87–89.
Rousset, M.-C. 1999. Backward reasoning in aboxes for
query answering. InProc. of DL’99, 18–22.
Schaerf, A. 1994. Reasoning with individuals in concept
languages.Data and Knowledge Engineering13(2):141–
176.
Schmidt-Schauß, M., and Smolka, G. 1991. Attributive
concept descriptions with complements.Artificial Intelli-
gence48:1–26.
Tessaris, S., and Gough, G. 1998. Abox reasoning with
transitive roles and axioms. InProc. of DL’99.

