
Answering Conjunctive Queries Over DL
Aboxes: a Preliminary Report

Ian Horrocks and Sergio Tessaris
Department of Computer Science

University of Manchester, UK
{horrocks|tessaris}@cs.man.ac.uk

1 Introduction

A serious shortcoming of many Description Logic based knowledge representation
systems is the inadequacy of their query languages. In this paper we present a novel
technique that can be used to provide an expressive query language for such systems.
A typical description logic (DL) knowledge base (KB) is madeup of two parts, a
terminological part (the Tbox) and an assertional part (theAbox), each part consisting
of a set of axioms. The Tbox asserts facts aboutconcepts(sets of objects) androles
(binary relations), usually in the form of inclusion axioms, while the Abox asserts
facts aboutindividuals(single objects), usually in the form of instantiation axioms.

Recent years have seen significant advances in the design of sound and complete
reasoning algorithms for DLs with both expressive logical languages and unrestricted
Tboxes, i.e., those allowing arbitrary concept inclusion axioms [1, 11, 7]. Moreover,
systems using highly optimised implementations of (some of) these algorithms have
also been developed, and have been show to work well in realistic applications [10,
16]. While most of these have been restricted to terminological reasoning (i.e., the
Abox is assumed to be empty), attention is now turning to the development of both
algorithms and (optimised) implementations that also support Abox reasoning [9, 20].

Although these systems provide sound and complete Abox reasoning for very
expressive logics, their utility is limited w.r.t. earlierDL systems by their very weak
Abox query languages. Typically, these only support instantiation (is an individuali
an instance of a conceptC), realisation (what are the most specific conceptsi is an
instance of) and retrieval (which individuals are instances ofC). This is in contrast to
a system such as Loom where a full first order query language isprovided, although
based on incomplete reasoning algorithms [15].

The reason for this weakness is that, in these expressive logics, all reasoning tasks
are reduced to that of determining KB satisfiability (consistency). In particular, in-
stantiation is reduced to KB (un)satisfiability by transforming the query into a negated



assertion; however, this technique cannot be used (directly) for queries involving roles
because these logics do not support role negation.

In this paper we present a technique for answering such queries using a more
sophisticated reduction to KB satisfiability. We then show how this technique can be
extended to determine if an arbitrary tuple of individuals (i.e., not just a singleton or
pair) satisfies a disjunction of conjunctions of concept androle membership assertions
that can contain both constants (i.e., individual names) and variables. This provides
a powerful query language, similar to the conjunctive queries typically supported by
relational databases,1 that allows complex Abox structures (e.g., cyclical structures)
to be retrieved by using variables to enforce co-reference.For example, the query

〈x, y〉 ← 〈z, Bill〉:Parent ∧ 〈z, x〉:Parent ∧ 〈z, y〉:Parent ∧ 〈x, y〉:Hates (1)

would retrieve all the pairs of hostile siblings inBill’s family.2

In this paper we focus on answering boolean queries, i.e., determining if a query
is true with respect to a KB. Retrieval can be easily (although inefficiently) turned
into a set of boolean queries for all candidate tuples. Note that in available systems,
the retrieval problem is similarly reduced to instantiation.3 It is important to stress the
fact that, given the expressivity of DLs, query answering cannot simply be reduced
to model checking as in the database framework. This is because KBs may contain
nondeterminism and/or incompleteness, making it infeasible to use an approach based
on minimal models. In fact, query answering in the DL settingrequires the same
reasoning machinery as logical derivation.

An important advantage with the technique presented here isthat it is quite generic,
and can be used with any DL providing general inclusion axioms where instantiation
can be reduced to KB satisfiability. It could therefore be used to significantly increase
the utility of Abox reasoning in a wide range of existing (andfuture) DL implemen-
tations.

2 Preliminaries

Although the query answering technique is quite general, itwill simplify the presen-
tation if we consider a concrete DL language. We will use the languageALC [19]
as it is widely known, is sufficiently expressive for our purposes (in particular, it is
closed under negation) and is a subset of the logics implemented in most “state of the
art” DL systems, i.e., those based on highly optimised tableaux algorithms [10, 16, 9].
ALC concepts are built using a set of concept names (NC) and role names (NR).

If A ∈ NC is a concept name,R ∈ NR is a role name, andC1, C2 are concepts then

1It is inspired by the use of Abox reasoning to decide conjunctive query containment [12, 5].
2Note that a sound and complete KB satisfiability algorithm will guarantee sound and complete

query answers.
3Apart from not very expressive DL languages (see for example[17]).



the expressionsA,⊤,⊥,¬A | C1 ⊓ C2, C1 ⊔ C2, ∀R.C, ∃R.C are concept as well.
The meaning of concepts is given by a Tarski style model theoretic semantics using
interpretations. An interpretationI is a pair(∆I , ·I), where∆I is the domain and·I

an interpretation function. The function·I maps each concept name inNC to a subset
of ∆I and each role name inNR to a binary relation over∆I (a subset of∆I ×∆I)
such that the following equations are satisfied:

⊤I = ∆I (C1 ⊓ C2)
I = CI

1 ∩ CI
2

⊥I = ∅ (C1 ⊔ C2)
I = CI

1 ∪ CI
2

(¬A)I = ∆I \ AI

(∀R.C)I =
{

i ∈ ∆I | ∀j. (i, j) ∈ RI ⇒ j ∈ CI

}

(∃R.C)I =
{

i ∈ ∆I | ∃j. (i, j) ∈ RI ∧ j ∈ CI

}

2.1 DL knowledge bases

A DL knowledge base is a pairΣ = 〈T ,A〉, whereT is called theTboxandA is
called theAbox.

The Tbox, or terminology, is a set of assertions about concepts of the formC⊑D,
whereC andD are concepts.4 An interpretationI satisfiesC ⊑ D (written I |=
C ⊑ D) iff CI ⊆ DI and it satisfies a TboxT (written I |= T ) if it satisfies every
assertion inT .

The Abox, or assertional part, is a set of assertions about a set of individuals
namesNI. These assertions are of the forma:C and〈a, b〉:R, wherea, b are names in
NI, C is a concept andR is a role. The semantics of the Abox is given by extending
the interpretation function·I to map each individual name inNI to a single element of
∆I . An interpretationI satisfiesa:C iff aI ∈ CI, it satisfies〈a, b〉:R iff (aI , bI) ∈ RI

and it satisfies an AboxA (writtenI |= A) if it satisfies every assertion inA.
An interpretation satisfies a knowledge baseΣ = 〈T ,A〉 (written I |= Σ) if it

satisfies bothT andA; a knowledge base is said to be satisfiable iff there exists at
least one non-empty interpretation satisfying it. Using the definition of satisfiability,
an assertionX is said to be alogical consequenceof a KB Σ (writtenΣ |= X) iff X

is satisfied by every interpretation that satisfiesΣ.
The semantics of DL Aboxes often includes a so calledunique name assumption:

an assumption that the interpretation function maps different individual names to dif-
ferent elements of the domain (i.e.,aI 6= bI for all a, b ∈ NI such thata 6= b). Our
approach does not rely on such an assumption, and can be applied to DLs both with
and without the unique name assumption.

4C
.
= D is sometimes used as an abbreviation for the pair of assertionsC ⊑D andD ⊑ C.



2.2 Queries

In this paper we will focus on conjunctive queries, but the extension to disjunctions
of conjunctive queries is relatively straightforward [13]. A key feature of conjunctive
queries is that they may contain variables, and we will assume the existence of a set
of variablesV that is disjoint from the set of individual names, i.e.,V ∩ NI = ∅. We
distinguishbooleanconjunctive queries of the formq1 ∧ . . . ∧ qn, whereq1, . . . , qn

are query terms. Each query termqi is of the formx:C or 〈x, y〉:R, whereC is a
concept,R is a role andx, y are either individual names or variables. Given a KB
Σ, an interpretationI of Σ satisfies a queryQ iff the interpretation function can be
extended to the variables inQ in such a way thatI satisfies every term inQ. A query
Q is truew.r.t.Σ (writtenΣ |= Q) iff every interpretation that satisfiesΣ also satisfies
Q. For example, the query

〈Bill, y〉:Parent ∧ 〈y, z〉:Parent ∧ z:Male (2)

is true w.r.t. a KBΣ iff it can be inferred fromΣ thatBill has a grandson. Note that
query truth value and the idea of logical consequence are strictly related. In fact, a
boolean query is true w.r.t. a KB iff it is logical consequence of the KB.

In the following, we will only consider how to answer booleanqueries. Retrieving
sets of tuples can be achieved by repeated application of boolean queries with differ-
ent tuples of individual names substituted for variables. For example, the answer to
the retrieval query〈x, y, z〉 ← Q w.r.t. a KB Σ is the set of tuples〈a, b, c〉, where
a, b, c are individual names occurring inΣ, such thatΣ |= Q′ for the boolean query
Q′ obtained by substitutinga, b, c for x, y, z in Q. Of course the naive evaluation of
such a retrieval could be prohibitively expensive, but would clearly be amenable to
optimisation. For example, let us consider the query (1). Inmany DLs the expres-
sivity of the Abox for roles is very limited: inALC , for example, a KB implies a
query term like〈z, Bill〉:Parent, where the second argument is an individual name,
only if there is an explicit assertion of this form in the Abox. Therefore we may use
role assertions in the Abox to reduce the number of candidates among the individual
names.

We will show how to answer boolean queries in two steps. Firstly, we will con-
sider conjunctions of terms containing only individual names appearing in the KB;
secondly, we will show how this basic technique can be extended to deal with vari-
ables.

3 Queries with multiple terms

In this section we will consider queries expressed as a conjunction of concept and
role terms built using only names appearing in the KB (i.e. without variables).

As we have already seen, logical consequence can easily be reduced to a KB
satisfiability problem if the query contains only a single concept term (this is the



standard instantiation problem). For example,Tom:Person is a logical consequence
of the KB 〈{Student⊑ Person} , {Tom:Student}〉 iff the KB

〈{Student⊑ Person} , {Tom:Student, Tom:¬Person}〉

is not satisfiable. This can be generalised to queries containing conjunctions of con-
cept terms simply by transforming the query test into a set of(un)satisfiability prob-
lems: a conjunctiona1:C1 ∧ . . . ∧ an:Cn is a logical consequence of a KB iff each
ai:Ci is a logical consequence of the KB.

However, this simple approach cannot be used in our case since a query may also
contain role terms. Instead, we will show how simple transformations can be used to
convert every role term into a concept term. We call this procedurerolling up a query.

The rationale behind rolling up can easily be understood by imagining the avail-
ability of the DLone-of operator, which allows the construction of a concept con-
taining only a single named individual [18]. The standard notation for such a concept
is {a}, wherea is an individual name, and the semantics is given by the equation
{a}I =

{

aI

}

. For example, the expression{Bill} represents a concept containing

only the individualBill (i.e.,{Bill}I =
{

BillI
}

).
Using theone-of operator, the role term〈John, Bill〉:Brother can be transformed

in the equivalent concept termJohn:(∃Brother.{Bill}). Furthermore, other concept
terms asserting additional facts about the individual being rolled up (Bill in this case)
can be absorbed into the rolled up concept term. For example,the conjunction

〈John, Sally〉:Parent ∧ Sally:Female ∧ Sally:PhD

can be transformed intoJohn:∃Parent.({Sally} ⊓ Female ⊓ PhD). The absorption trans-
formation is not strictly necessary for queries without variables, but it serves to reduce
the number of satisfiability tests needed to answer the query(by reducing the number
of conjuncts), and it will be required with queries containing variables. By apply-
ing rolling up to each role term, an arbitrary query can be reduced to an equivalent
one which contains only concept terms, and which can be answered using a set of
satisfiability tests as described above.

However, the logic we are using does not include theone-of operator, nor is it
provided by any state of the art DL system (in fact the decidability of expressive DLs
including this operator is still an open problem). Fortunately, we do not need the full
expressivity ofone-of, and in our case it can be “simulated”. The technique used is
to substitute each occurrence ofone-of with a new concept name not appearing in
the knowledge base. These new concept names must be different for each individual
in the query, and are called therepresentativeconcepts of the individuals (written
Pa, wherea is the individual name). In addition, assertions which ensure that each
individual is an instance of its representative concept must be added to the knowledge
base (e.g.,Bill:PBill). In general, a representative concept cannot be used in place of
one-of because it can have instances other than the individual which it represents



(i.e., Pa
I ⊇

{

aI

}

). However, representative concepts can be used instead ofone-

of in our reduced setting. In particular, the conjunction〈a, b〉:R ∧ b:C is a logical
consequence of a given knowledge base if and only ifa:∃R.(Pb ⊓ C) is a logical
consequence of the very same knowledge base augmented by theassertionb:Pb.

Due to space considerations, we will not reproduce here a formal proof of this
theorem, or of any of the other transformations used in this paper: full details can be
found in [12].

4 Queries with variables

In this section we show how variables can be introduced in this framework by using
a more complex rolling up procedure in order to obtain a similar reduction to the
KB (un)satisfiability problem. Variables can be used exactly as individual names, but
their meaning is as “place-holders” for unknown elements ofthe domain. Because
variables may be interpreted as any element of the domain, they cannot simply be
considered as individual names to which the unique name assumption does not apply;
nor can they be treated as referring only to named individuals, giving the possibility
of nondeterministically substituting them with names in the KB. In fact the query (2)
is true w.r.t. both the KBs

〈∅,











〈Bill, Mary〉:Parent,
〈Mary, Tom〉:Parent,
Tom:Male











〉 and 〈∅, {Bill:∃Parent.(∃Parent.Male)}〉,

but for the first KB the variables can be substituted by the individual namesMary and
Tom, while in the second case the variables may need to be interpreted as elements of
the domain that are not the interpretations of any named individuals.

Answering queries containing variables involves a more sophisticated rolling up
technique. For example, let us consider the terms〈y, z〉:Parent andz:Male of query (2).
If z were an individual name, then the terms could be rolled up asy:∃Parent.(Pz ⊓Male),
but this is not an equivalent query whenz is a variable name becausez can be inter-
preted as any element of the domain, not just an element ofPz

I . However, since in
this casez is no longer referred to in any other place in the query, thereis no other
constraint on how an interpretation can be extended w.r.t.z, so the concept⊤ (whose
interpretation is always the whole domain) can be used instead ofPz. The resulting
concept term isy:∃Parent.(⊤ ⊓Male), which can be simplified toy:∃Parent.Male.
The same procedure can now be applied toy, thereby reducing query (2) to the single
concept termBill:∃Parent.(∃Parent.Male).

In order to show how this procedure can be more generally applied, it will be
useful to consider the directed graph induced by the query, i.e., a graph in which there
is a nodex for each individual or variablex in the query, and an edgeR from nodex
to nodey for each role term〈x, y〉:R in the query. It is easy to see that the rolling up



procedure can be used to eliminate variables from any tree-shaped part of a query by
starting at the leaves and working back towards the root (this is similar to the notion
of descriptive support described in [17]). The fact that rolling up should start from
leaves is essential for correctness: for example, rolling up query (2) in the reverse
order would lead to the non-equivalentBill:∃Parent.⊤ ∧ y:∃Parent.⊤ ∧ z:Male.

However, this simple procedure cannot be applied to parts ofthe query that con-
tain cycles, or where more than one edge enters a node corresponding to a variable
(i.e., with terms like〈x, z〉:R ∧ 〈y, z〉:S).

Let us consider the case where a variable is involved in a cycle, e.g., the simple
query

〈x, y〉:Path ∧ 〈y, z〉:Path ∧ 〈z, x〉:Path (3)

which tests the KB for the presence of a loop involving the role Path. Rolling up one
of the terms does not help, because the resulting query

〈x, y〉:Path ∧ 〈y, z〉:Path ∧ z:∃Path.Px

still contains another reference to the variablex, and replacingPx with⊤would result
in a non-equivalent query that no longer contained a cycle. Moreover, it is obvious
that there is no way to roll up the query in order to obtain a single occurrence of any
of the three variables.

This problem can be solved by exploiting the tree model property of the logic.
Given this property, we know that Tbox assertions alone cannot constrain all models
to be cyclical (if there is a model, then there is a tree model), so any cycle that might
satisfy a cyclical query must be explicitly asserted in the Abox. Moreover, given
the restricted expressivity of role assertions (i.e., thatthey apply only to atomic role
names), cycles enforced in every interpretation must be composed only of elements
interpreting individual names occurring in the Abox. Therefore, before applying the
rolling up procedure, a variable occurring in a cycle can be nondeterministically sub-
stituted with an individual name occurring in the Abox.

The intuition behind this property can be understood by considering that, given an
arbitrary interpretation satisfying the cycle only with elements not corresponding to
individual names, a new interpretation can be build where the cycle is split by dupli-
cating one or more of the involved elements. This new interpretation can be defined in
such a way that it still satisfies the KB, but no longer contains the required cycle. This
duplication can be performed only if the elements are not “fixed” individual names
and assertions in the Abox. A similar argument can be used w.r.t. variables appearing
as the second argument of more than one role term, e.g., the variablez in the query
〈x, z〉:R ∧ 〈y, z〉:S. Such variables can also be dealt with by nondeterministically
substituting them with individual names occurring in the Abox.

We have seen how role terms containing variables can be rolled up into concept
terms, but these may still be of the formx:C, wherex is a variable. For example, the
query〈x, y〉:Parent, wherex andy are variables, can only be reduced to the single



termx:∃Parent.⊤. In this case we need to verify that the interpretation of theconcept
∃Parent.⊤ is nonempty in every interpretation that satisfies the KB. Ingeneral, the
interpretation of a conceptC is nonempty in every interpretation that satisfies the KB
〈T ,A〉 iff 〈T ∪ {⊤ ⊑ ¬C} ,A〉 is not satisfiable.5

Summarising, the procedure for answering an arbitrary boolean conjunctive query
is divided into two phases. Firstly, the role terms are eliminated by repeatedly apply-
ing the following rules: (i) if the graph induced by the querycontains a leaf nodey,
then the role term〈x, y〉:R is rolled up, and the edge〈x, y〉 is removed from the graph;
(ii) otherwise, if the graph contains a nodey with multiple incoming edges, then all
role terms〈x, y〉:R are rolled up,6 and the corresponding edges are removed from the
graph; (iii) if the graph still contains edges but no leaf nodes and no confluent nodes,
then it must contain a cycle. In this case a nodey in a cycle is chosen (preferably an
individual as this reduces nondeterminism) and rolled up asin case (ii) above. Sec-
ondly, the query (which now contains only concept terms) evaluates to true iff there
is at least one nondeterministic replacement of variables with individual names such
that every term is a logical consequence of the KB.

5 Discussion

In this paper we have presented a general technique for providing an expressive query
language for a DL based knowledge representation system. For the sake of simplicity,
we have only considered conjunctive queries overALC KBs. However, the technique
is general enough to be used with other DL languages, and it can be extended to deal
with a disjunction of conjunctive queries [13]. Our work is motivated by the fact
that many DL systems (including state of the art systems) provide no proper query
language, and are only able to perform simple instantiationand retrieval reasoning
tasks.

The only other comparable proposals in the literature are inthe direction of in-
tegrating a DL system with Datalog [14, 8, 6]. Using Datalog as a query language
can provide the ability to formulate recursive queries [4],but on the other hand, the
combination with expressive DLs soon leads to undecidability [14]. In addition, a
special algorithm (dependent on the DL language) must be implemented in order to
reason with the resulting hybrid language.

Our approach sacrifices some expressivity in the query language, but it works with
very expressive DL languages and it can easily be adapted foruse with any existing
(and most future) DL system equipped with the KB satisfiability reasoning service.
The limits of the approach lie in the required tree model property of the underlying

5Some earlier DL systems cannot reason with Tbox axioms of this kind [2, 3], and this might
restrict the kinds of query that could be answered.

6If y is a variable, then it is first replaced with an individual name chosen nondeterministically from
those occurring in the the KB.



DL and in the availability of general inclusion axioms.
Our plans for future work include an implementation of the technique on top of the

FaCT system [10], which has recently been extended to include Abox reasoning [20],
as well as the analysis of suitable optimisations for reducing the nondeterminism due
to variable substitution, both in the rolling up and the retrieval procedures.

References

[1] F. Baader. Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. InProc. of IJCAI-91, 1991.

[2] F. Baader and B. Hollunder. KRIS: Knowledge representation and inference
system.SIGART Bulletin, 2(3):8–14, 1991.

[3] P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive
description logics: a preliminary report. InProc. of of KRUSE’95, pages 28–39,
1995.

[4] M. Cadoli, L. Palopoli, and M. Lenzerini. Datalog and description logics: Ex-
pressive power. InProc. of DBPL-97, 1997.

[5] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. InProc. of PODS-98, pages 149–158, 1998.

[6] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answeringqueries using
views in description logics. InProc. of DL’99, pages 9–13, 1999.

[7] G. De Giacomo and F. Massacci. Combining deduction and model checking
into tableaux and algorithms for converse-pdl.Information and Computation,
1998. To appear.

[8] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Al-log: Integrating
datalog and description logics.Journal of Intelligent Information Systems,
10(3):227–252, 1998.

[9] V. Haarslev and R. Möller. An empirical evaluation of optimization strategies
for abox reasoning in expressive description logics. InProc. of DL’99, pages
115–119, 1999.

[10] I. Horrocks. Using an expressive description logic: FaCT or fiction? InProc. of
KR’98, pages 636–647, 1998.

[11] I. Horrocks and U. Sattler. A description logic with transitive and inverse roles
and role hierarchies.Journal of Logic and Computation, 9(3):385–410, 1999.



[12] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. Query containment using a
DLR ABox. LTCS-Report 99-15, LuFG Theoretical Computer Science, RWTH
Aachen, Germany, 1999a.

[13] I. Horrocks and S. Tessaris. A conjunctive query language for description logic
aboxes. InProc. of AAAI-00, 2000. to appear.

[14] A. Y. Levy and M.-C. Rousset. The limits on combining recursive horn rules
and description logics. InProc. of AAAI-96, 1996.

[15] R. M. MacGregor and D. Brill. Recognition algorithms for the LOOM classifier.
In Proc. of AAAI-92, pages 774–779. AAAI Press, 1992.

[16] P. F. Patel-Schneider. DLP system description. InProc. of DL’98, pages 87–89,
1998.

[17] M.-C. Rousset. Backward reasoning in aboxes for query answering. InProc. of
DL’99, pages 18–22, 1999.

[18] A. Schaerf. Reasoning with individuals in concept languages.Data and Knowl-
edge Engineering, 13(2):141–176, 1994.

[19] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with com-
plements.Artificial Intelligence, 48:1–26, 1991.

[20] S. Tessaris and G. Gough. Abox reasoning with transitive roles and axioms. In
Proc. of DL’99, 1998.


