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Abstract. Heavily-optimised decision procedures for propositional modal satis-
fiability are now becoming available. Two systems incorporating such procedures
for modal K, Dlp and KsatC, are tested on randomly-generated CNF formulae
with several sets of parameters, varying the maximum modal depth and ratio of
propositional variable to modal subformulae. The results show some easy-hard-easy
behaviour, but there is as yet no sharp peak as in propositional satisfiability.
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1. Introduction

Propositional modal satisfiability has lagged behind standard proposi-
tional satisfiability in that until recently there have been no heavily-
optimised propositional modal systems. This has changed in the last
few years with the appearance of several heavily-optimised systems that
can be used to determine the satisfiability of formulae in propositional
modal logics.

One factor driving the development of such propositional modal
systems is the relationship between propositional modal logics and
description logics. A system that correctly reasons with information
in an expressive description logic includes a decision procedure for an
expressive propositional modal logic. This decision procedure must be
heavily optimised if it is to be able to usefully reason with knowledge
bases of any complexity. Description logic systems that incorporate a
heavily-optimised propositional modal logic decision procedure include
FaCT [27], Dlp [39], and Ham-ALC [24].

Another factor that has lead to the development of heavily-optimised
propositional modal systems is the availability of heavily-optimised de-
cision procedures for non-modal propositional logic. It is possible to use
such a procedure as the core of a decision procedure for a propositional
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modal logic. Modal decision procedures built in this fashion include
Ksat and its successor, KsatC [22, 23, 21].

These systems perform well on hand-generated problems. In the
comparison at Tableaux’98 [7, 30], Dlp solved many of the supposedly-
difficult problems without even performing any search. Even when
search was required, the optimisations in Dlp resulted in very short
execution times for many of the problems. A Ksat system also did
well on the Tableaux’98 problems, although it did not perform as well
as Dlp.

There has also been some testing of decision procedures for propo-
sitional modal logics on random formulae. Giunchiglia et al [22, 23, 21]
designed a random generator for formulae in the modal logic K and
tested their systems, Ksat and KsatC, on formulae produced by the
generator. Unfortunately, some versions of their generator suffered from
problems which made the results of their testing suspect. The generator
was modified by Hustadt and Schmidt[34, 35] to remove some of its
problems and used to test the performance of their system, TA, a
decision procedure for various propositional modal logics.

We have created a new generator that extends the previous gener-
ators, and tested both Dlp and KsatC on the formulae produced by
this new generator. The results show that it is easy to produce modal
formulae that are difficult for both Dlp and KsatC, even when there
are only six propositional variables and the modal depth is limited to
one or two. Nevertheless, both systems performed much better than
previous decision procedures for propositional modal logic. The two
systems have quite different behaviour on the generated formulae, with
neither dominating the other, showing that their optimisations are
effective for different kinds of formulae.

We also used the new generator to test the two systems on modal
formulae with a maximum modal depth of 100. To our knowledge, this
is the first time that propositional modal satisfiability procedures have
been tested with such highly modal formulae. Although such problems
are mostly very easy, the test did highlight an important difference be-
tween the two systems: KsatC finds a small number of these formulae
very hard to solve, whereas Dlp found them uniformly easy.

2. Dlp and KsatC

The two systems we compare are similar in that they both system-
atically search for a model of a formula. Thus they are complete,
non-stochastic procedures. They are quite different from stochastic
systems like Gsat [42], or from the TA system, which translates propo-
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sitional modal formulae into a fragment of first-order logic (basic path
logic) and tests the satisfiability of the resulting formulae using a first-
order prover (FLOTTER/SPASS [44]) that always terminates on this
fragment.

Although Dlp and KsatC both use search techniques, they are
otherwise quite different. Dlp was developed as the core of a description
logic reasoner. It includes a complete decision procedure for a very
expressive description logic; one that includes propositional dynamic
logic as a subset. Because Dlp can reason in a superset of propositional
dynamic logic, it can be used as a decision procedure for many (multi)
modal logics, including K(m) and K4(m), and, through simple embed-
dings, KT(m) and S4(m). Dlp is similar in capabilities and design to
other description logic systems, including FaCT and Ham-ALC.

The system KsatC was designed as a reasoner for the propositional
modal logic K(m). Through the standard embedding it can be used
to reason in the propositional modal logic KT(m). However, KsatC

cannot handle transitive modalities, so it is unable to reason in K4(m),
S4(m), or propositional dynamic logic, except by using a complex en-
coding that produces very difficult to solve formulae.

2.1. Dlp

Dlp [39] is based on a modal tableaux procedure. Given an input
formula, it attempts to create a modal structure that is a witness to
the satisfiability of the input formula. This modal structure consists
of a collection of nodes and binary relations between the nodes. Each
relation corresponds to a particular modality, and if a node x is related
to a note y by a relation r, then y is said to be an r-successor of x.
Each node x is annotated with a set of subformulae called its label
(denoted L(x)), and a structure is said to be contradictory (or contain
a clash) if some label contains both a formula and its negation. Dlp in-
corporates and extends the implementation philosophy of FaCT [27], a
description logic system written in LISP. Disjunctions and other choice
points are handled via a backtracking mechanism. If the procedure
terminates with a suitable (non-contradictory) structure, the formula
is satisfiable; if the procedure cannot find such a structure, the formula
is unsatisfiable.

Because Dlp allows transitive roles and the transitive closure of
roles, it has to be able to handle loops in the modal structure. It does
this by looking for nodes with the same label (annotated with the same
collection of subformulae) and checking for satisfiability or unsatisfia-
bility of the loop. As the testing analysed in this paper does not have
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transitive features we will not detail this mechanism of Dlp, nor will
we detail the other mechanisms that support transitive features.

Each diamond formula (♦rφ) that is true at a node gives rise to
an r-successor node labelled with {φ}. Each box formula (�rφ) that
is true at a node adds the formula φ to the label of each r-successor
node. (Transitivity modifies this somewhat.) Dlp delays the genera-
tion of successor nodes until there is no more propositional processing
to be performed at a node. This delay is important for some of the
optimisations and enhancements that Dlp incorporates.

The details of the algorithm, including details of the processing of
the various formulae constructors and the precise termination con-
ditions, are fairly standard, and can be found in [41]. Dlp is im-
plemented in Standard ML of New Jersey, using a mostly-functional
implementation style.

The basic algorithm sketched above is much too slow to form the
basis of a useful decision procedure. Dlp thus includes a variety of
optimisations to improve its performance. These optimisations were
initially chosen in an attempt to improve the processing of description
logic knowledge bases but have since been revised based on several
experiments with Dlp. The optimisations include lexical normalisa-
tion, semantic branching search, unit resolution, dependency directed
backtracking, caching, and heuristic guided search.

Theoretical descriptions of tableaux algorithms often assume that
the formula to be tested is in negation normal form, with negations
applying only to propositional variables [26, 4, 8]. Assuming that for-
mulae are in negation normal form simplifies the (description of the)
algorithm, but then clashes will only be detected when a propositional
variable and its negation appear in the same node label, as in negation
normal form negation only applies to propositional variables. If there
are complex subformulae that occur both positively and negatively in
the input formula, there are opportunities to detect clashes earlier.

Clashes can be detected early by transforming formulae into a lex-
ically normalised form that does not move negation inward. Then a
clash can be detected whenever any formula, not just propositional
variables, and its negation occur in the same node label.

In the lexically normalised form used in Dlp, formulae consist only
of propositional variables, conjunctions, and diamond formulae, plus
their negations. All other formulae are transformed into one of these
forms using the obvious equivalences. The normalisation process used
in Dlp also removes repeated conjuncts and replaces conjunctions that
directly contain a formulae and its negation with the negation of the
empty conjunction. Further, conjunction is treated as working on a set
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of conjuncts, and nested conjunctions are flattened. Tableau expansion
of formulae in this form is no more complex than if they are in negation
normal form [28].

Unrestricted branching on disjunctions can be another source of
inefficiency in tableaux procedures. If disjunctions are expanded by
searching the different models obtained by adding each of the disjuncts,
the alternative branches of the search tree are not disjoint, so there
is nothing to prevent the recurrence of an unsatisfiable disjunct in
different branches, as noted in [22]. The resulting wasted expansion
could be costly if discovering the unsatisfiability requires the solution
of a complex sub-problem.

This source of inefficiency is dealt with in Dlp by using a seman-
tic branching technique adapted from the Davis-Putnam-Logemann-
Loveland procedure (DPLL) commonly used to solve propositional sat-
isfiability (SAT) problems [11, 17]. Instead of choosing an unexpanded
disjunction in L(x), a single disjunct φ is chosen from one of the un-
expanded disjunctions in L(x). The two possible sub-trees obtained by
adding either φ or ¬φ to L(x) are then searched. Because the two sub-
trees are strictly disjoint, there is no possibility of wasted search as
in syntactic branching. There are other methods for reducing repeated
work in tableaux procedures, including improved analytic tableaux [43].

An additional advantage of using a DPLL based search technique
is that a great deal is known about the implementation and optimisa-
tion of this algorithm. In particular, both unit resolution and heuristic

guided search can be used to try to minimise the size of the search tree.

Unit resolution (UR) is a technique used to maximise deterministic
expansion, and thus pruning of the search tree via clash detection,
before performing non-deterministic expansion (branching) [17]. Before
semantic branching is applied to the label of a node x, UR determinis-
tically expands disjunctions in L(x) which present only one expansion
possibility and detects a clash when a disjunction in L(x) has no
expansion possibilities. In effect, UR is using the inference rule

¬φ, φ ∨ ψ

ψ

to simplify the expression represented by L(x).

Inherent unsatisfiability concealed in sub-problems can easily lead to
large amounts of unproductive backtracking search known as thrash-
ing. The problem is exacerbated when all propositional reasoning is
performed at a node before any successors are examined.

This problem is addressed in Dlp by adapting a form of depen-
dency directed backtracking called backjumping, which has been used
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in solving constraint satisfiability problems [6] (a similar technique was
also used in the HARP theorem prover [38]). Backjumping works by
labeling formulae with a dependency set indicating the branching points
on which they depend. A formula φ ∈ L(x) depends on a branching
point when φ was added to L(x) at the branching point or when
φ ∈ L(x) depends an another formula ψ ∈ L(y), and ψ ∈ L(y) depends
on the branching point. A formula φ ∈ L(x) depends on a formula
ψ ∈ L(y) when φ was added to L(x) by a deterministic expansion
which used ψ ∈ L(y), e.g., if p ∈ L(x) was derived from the expansion
of (p ∧ q) ∈ L(x), then p ∈ L(x) depends on (p ∧ q) ∈ L(x).

When a clash is discovered, the dependency sets of the clashing
formulae can be used to identify the most recent branching point where
exploring the other branch might alleviate the cause of the clash. The
algorithm can then jump back over intervening branching points with-

out exploring alternative branches, which can result in considerable
savings. It is possible for this backjumping to jump out of nodes into
their ancestors.

During a satisfiability check there may be many successor nodes
created. These nodes tend to look considerably alike, particularly as the
labels of the r-successors for a node x each contain the same formulae
derived from the box formulae (�rφ) in L(x). Considerable time can
thus be spent performing computations on nodes that have the same
label, and as the satisfiability algorithm only cares whether a node is
satisfiable or not, this time is wasted.

If the modal successors of a node are only created when all purely
propositional processing at that node is exhausted, then all the for-
mulae that would be added to a successor node because of modal
formulae in the parent node can be determined when the successor node
is first created. The satisfiability status of the successor node is then
completely determined by this set of formulae. Under this condition, if
there exists another node with the same set of “initial” formulae, then
the two nodes will have the same satisfiability status [13].

If the satisfiability status of these sets of formulae are suitably
stored, or cached, they can then be later retrieved and used to determine
the satisfiability status of any new node whose set of initial formulae has
already been encountered. Each time this cache is used to successfully
determine the satisfiability status of a new node, a considerable amount
of processing can be saved, as not only is the work at the new node
saved, but also the work at any successors it may have had.

One downside of caching is that the dependency information re-
quired for backjumping cannot be effectively calculated for nodes whose
processing is eliminated. This happens because the dependency set
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of any clash detected depends on the dependency sets of the incom-
ing formulae, which will differ between the two nodes. Backjumping
can still be performed, however, by combining the dependency sets of
all incoming formulae and using that as the dependency set for the
unsatisfiable node. This combination may underestimate the amount
of backjumping possible, but is generally better than not performing
backjumping. Another problem with caching is that it requires that
nodes, or at least sets of formulae, be retained until the end of a
satisfiability test, changing the storage requirements of the algorithm
from polynomial to exponential in the worst case.

Heuristic techniques can be used to guide the search in a way which
tries to minimise the size of the search tree. A method which is widely
used in DPLL SAT algorithms is to branch on the disjunct which
has the Maximum number of Occurrences in disjunctions of Minimum
Size—the well known MOMS heuristic [16] and its variants, including
the heuristic from Jeroslow and Wang [36]. By choosing a disjunct
which occurs frequently in small disjunctions, this heuristic tries to
maximise the effect of UR. For example, if the label of a node x contains
the unexpanded disjunctions φ ∨ ψ1, . . . , φ ∨ ψn, then branching on φ
leads to their deterministic expansion in a single step: when φ is added
to L(x), all of the disjunctions are fully expanded and when ¬φ is added
to L(x), UR will expand all of the disjunctions. Branching first on any
of ψ1, . . . , ψn, on the other hand, would only cause a single disjunction
to be expanded.

Unfortunately this heuristic interacts adversely with the backjump-
ing optimisation by overriding any “oldest first” order for choosing
disjuncts: older disjuncts are those that resulted from earlier branch-
ing points and will thus lead to more effective pruning if a clash is
discovered [27]. Moreover, the heuristic itself is of little value in many
interesting modal formulae because it relies for its effectiveness on find-
ing the same disjuncts recurring in multiple unexpanded disjunctions:
this is likely in SAT problems, where the disjuncts are propositional
variables, and where the number of different variables is usually small
compared to the number of disjunctive clauses (otherwise problems
would, in general, be easily satisfiable); it is unlikely in modal sat-
isfiability problems, where the disjuncts can be modal formulae, and
where the number of different modal formulae is usually large compared
to the number of disjunctive clauses. As a result, the heuristic will
often discover that all disjuncts have similar or equal priorities, and
the guidance it then provides is not particularly useful.

An alternative strategy is to employ a heuristic that tries to max-
imise the effectiveness of backjumping by using dependency sets to
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guide the expansion. Whenever a choice is presented, the heuristic
chooses the formula whose dependency set includes the earliest branch-
ing points. This technique can be used both when selecting disjuncts
on which to branch and when selecting the order in which r-successors
are expanded.

The current version of Dlp allows for various heuristics. The heuris-
tics used in the tests are to use the oldest-first heuristic to select some
disjunctions, and then use MOMS along with some weighting based on
the size and kind of a formula to select the best-looking disjunct from
amongst these disjunctions.

2.2. KsatC

KsatC is based on Böhm’s C implementation of the DPLL algorithm.
It implements a decision procedure for K(m) (multi-modal K). KsatC

requires its input formulae to be in extended conjunctive normal form,
where each formula is a conjunction of disjunctions of (possibly negated)
propositional variables and box formulae. The subformula of these box
formulae are disjunctions as above.

Böhm’s DPLL algorithm was the winner of a 1992 SAT competition
[9]. The algorithm is a standard DPLL algorithm that takes a propo-
sitional formula in conjunctive normal form and determines whether
the formula is satisfiable by giving assignments to the propositional
variables in the formula. It uses a very efficient set of data structures to
minimise overhead in determining which variable to assign next and to
modify the assignments of other variables. It also implements a collec-
tion of smart heuristics to determine the order of variable assignments,
including the MOMS heuristic.

In KsatC this DPLL algorithm is modified by allowing modal for-
mulae to masquerade as propositional variables as far as the DPLL
algorithm is concerned. Thus the DPLL algorithm assigns values to
both propositional variables and modal formulae. Further, the pure
literal rule is removed, as it is not valid if the literal is a modal formula.
Finally, the DPLL algorithm is modified to allow for the possibility of
many instances of the algorithm being active at once.

KsatC uses this DPLL algorithm to determine the propositional
satisfiability of a node. When a propositional assignment is found,
successor nodes are generated as necessary, and their satisfiability is
determined by a recursive call. If these successors are all satisfiable, then
the node itself is satisfiable; if not, then the DPLL algorithm resumes
control and continues to look for other propositional assignments.

KsatC includes one other important optimisation. Successor nodes
are not only investigated when a complete propositional assignment is
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found, they are also investigated just before a new propositional vari-
able is chosen as a branching variable. Only those successors that have
new information are actually investigated, however. If some successor is
unsatisfiable at this point, then both branches will be unsatisfiable and
do not need to be explored, potentially saving a considerable amount
of processing.

KsatC incorporates lexical normalisation, much as Dlp does, al-
though, of course, only for formulae in conjunctive normal form. This
amounts mostly to sorting disjuncts and then checking for syntactic
identity.

2.3. Differences between Dlp and KsatC

Dlp is tableaux-based, in that it allows assignment to any subfor-
mula, even though it performs semantic branching instead of syntactic
branching. Because Dlp is tableaux-based, it does not need formulae to
be in conjunctive normal form—its normalisation steps do not increase
the size of input formulae. KsatC is DPLL-based, in that it assigns
only to propositional variables and modal formulae. KsatC requires
its input formulae to be in a conjunctive normal form.

Dlp includes a large collection of optimisations, including input for-
mulae normalisation, semantic branching, unit resolution, backjumping
between modal nodes, caching of modal node status, and heuristic
optimisations. KsatC employs a fast DPLL procedure, and thus incor-
porates most of its optimisations inside each modal node, augmenting
these with a modal lookahead optimisation.

Dlp is implemented in a functional programming style. Its data
structures and low-level algorithms are only moderately optimised. For
example, Dlp uses a binary tree with functional updates to store the
collection of assignments for a node, resulting in changes to the as-
signments taking time logarithmic in the number of assignments and
updates to the status of formulae taking time linear in the number of
formulae in the node label. On the other hand, KsatC is written in an
imperative programming style, with heavily optimised data structures
and low-level algorithms. In KsatC updates to assignments take con-
stant time and updates to the status of formulae take time linear in
the number of occurrences of the assigned propositional variable.

We expected that these differences between Dlp and KsatC would
result in considerable differences between their performance on various
test suites.
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3. Previous Testing Methodology

Variants and precursors of Dlp and KsatC have been tested on various
test suites, including the test suite for the Tableaux’98 propositional
modal logic comparison [25] and various collections of random formulae.

Randomly generated modal formulae were were first used by Giunchiglia
and Sebastiani [22, 23] to test Ksat0 and Ksat, two predecessors of
KsatC that use the same DPLL-based methodology, but not the same
optimised implementation of DPLL. Giunchiglia and Sebastiani took
their cue from the testing of non-modal propositional satisfiability deci-
sion procedures on randomly-generated 3CNF formulae [14, 42]. Their
generator generates formulae in 3CNFK(m)

.
A 3CNFK(m)

formula is a conjunction of 3CNFK(m)
clauses. A 3CNFK(m)

clause is a disjunction of three 3CNFK(m)
literals, i.e., 3CNFK(m)

atoms
or their negations. A 3CNFK(m)

atom is either a propositional variable
or a formula of the form �rφ, where φ is a 3CNFK(m)

clause. 3CNFK(m)

formulae capture all K(m) formulae, as there is a satisfiability preserv-
ing transformation from K(m) into 3CNFK(m)

.
The generator of Giunchiglia and Sebastiani has several parameters:

− the number of clauses in the main formula, L.

− the number of propositional variables, N .

− the number of modalities, m.

− the probability that an atom is propositional, p.

− the maximum modal depth, d.

A propositional variable is said to have modal depth 0, the modal
depth of a propositional formula is the maximum modal depth of its
components, and the modal depth of a modal atom �rφ is one more
than the modal depth of φ. Regardless of the value of p, the generator
will not choose a modal atom if so choosing would result in an overall
formula with depth greater than d.

The generator is similar to the one widely used for 3CNF formu-
lae [42]: the first two parameters (L and N) correspond to two of
the 3CNF parameters, and in both generators propositional variables
(and modal subformulae in the 3CNFK(m)

generator) are negated with
probability 0.5.

Giunchiglia and Sebastiani proceeded by fixing N , m, p, and d. They
then generated random formulae for various values of L, and used the
resulting formulae to test both their own systems and older decision
procedures. Their results showed that their systems, Ksat0 and Ksat,
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were much more effective than previous decision procedures for K(m).
They also showed that multiple modalities, i.e., m 6= 1, were easier than
single modalities. Subsequent testing has generally been restricted to a
single modality.

Unfortunately, the generator of Giunchiglia and Sebastiani suffers
from a serious flaw. Instead of selecting different atoms when generat-
ing a 3CNFK(m)

clause, their generator allows for repeated 3CNFK(m)

atoms to occur in a 3CNFK(m)
clause. If the atoms are given the

same negation status, then the size of the clause is effectively reduced,
changing the character of the generated formula. If the atoms are given
different negation status the situation can be even worse: tautological
or contradictory clauses can be generated, such as ¬�1(p ∨ ¬p ∨ q).
A contradictory clause, even nested deep in a modal subformula, can
result in the entire formula being contradictory from just a single one
of its clauses. When such formulae are used as input to a decision
procedure that includes lexical normalisation, such as Dlp, many of
the formulae are determined to be satisfiable or unsatisfiable just by
lexical normalisation.

Hustadt and Schmidt [34, 35] modified the generator of Giunchiglia
and Sebastiani to eliminate some of these problems. The generator of
Hustadt and Schmidt ensures that propositional variables only occur
once in a 3CNFK(m)

clause. In this way they eliminated many of the
problematic formulae generated by Giunchiglia and Sebastiani. With
this new generator, and turning off the normalisations of Ksat, they
determined that Ksat is much less dominant over previous decision
procedures and that their system, TA, is faster than Ksat. This result
is somewhat controversial in that it can be claimed on the one hand
that normalisation is an integral part of the Ksat system, while on
the other hand it can be seen as extraneous to the underlying decision
procedure.

We used the improved generator of Hustadt and Schmidt to test
the performance of several systems [31, 29, 32], including a previous
version of Dlp as well as Ksat, as part of a larger series of tests of
various modal decision procedures. We concluded that Dlp was faster
than Ksat, although the speed difference was least on the random
formulae.

Giunchiglia, Giunchiglia, Sebastiani, and Tacchella [21] took the im-
proved generator of Hustadt and Schmidt and further improved it. The
generator of Hustadt and Schmidt only removes repetitions of propo-
sitional variables from clauses. Even if the depth parameter d is 1, this
will not remove all repetitions from within clauses, as modal atoms can
reoccur. This happens because the number of propositional variables is
very small in current tests, and the number of different modal atoms of
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depth 1 is thus quite small: with 4 propositional variables there are only
32 different depth-1 modal atoms [27]. As the testing often involves top-
level formulae with hundreds of clauses there is a significant chance that
a top-level formula includes clauses that have repetitions or are tau-
tologies or contradictions. The presence of such clauses can significantly
change the expected difficulty of a formula. In our previous testing we
found that with formulae from the Hustadt and Schmidt generator, as
well as from the earlier Giunchiglia and Sebastiani generator, lexical
normalisation was the most important optimisation in Dlp.

Giunchiglia et al modified the Hustadt and Schmidt generator so
that it does not generate repeated modal formulae and tested their
improved system, KsatC, on generated formulae. They found that
their improved system (with normalisation turned on) was much faster
than TA, often by orders of magnitude.

This later testing suffers from flaws of a methodological nature.
Hustadt and Schmidt observed that some of the formulae become un-
satisfiable simply from top-level propositional interaction1, and can be
determined to be unsatisfiable without investigating any modal suc-
cessors. They proposed that this factor be eliminated by ensuring that
propositional letters only occur at the maximum modal depth, and that
this be achieved by setting the parameter p to 0. Their own testing was
of this form, as has been most subsequent testing.

Although it is true that formulae that are propositionally unsat-
isfiable are not very hard, it is not true that test suites that con-
tain significant numbers of propositionally unsatisfiable formulae are
uninteresting. First, even formulae with propositional variables only
occurring within modal formulae can be determined to be unsatisfiable
by Dlp without examining any modal successors, because the modal
subformulae may repeat in different clauses. Second, restricting propo-
sitional variables to only occur at the deepest level eliminates many
kinds of formulae. As different systems may perform well (or badly) on
different sorts of formulae, it is not a good idea to so severely restrict
the sorts of formulae considered.

On the basis of Giunchiglia and Sebastiani’s results for formulae of
varying modal depth, Hustadt and Schmidt concluded that, relative
to the size of formulae, the hardest problems were generated when
the modal depth was 1, and they thus fixed d at 1 in all their subse-
quent experiments. Unfortunately, this result is partly an artifact of
Giunchiglia and Sebastiani’s generator in that the probability of gen-

1 They call these formulae trivially unsatisfiable, although they are different from
the problems called trivially unsatisfiable in random constraint satisfaction problems
and random QSAT problems [18].
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erating formulae amenable to the normalisation optimisation increases
with increasing modal depth.

4. Our Testing Methodology

To show the importance of testing with different sorts of formulae,
and also to evaluate the performance of Dlp and KsatC, the best-
performing modal decision procedures, we have developed a new ran-
dom formula generator and performed several experiments employing
it. These experiments extend the range of hard problems for proposi-
tional modal logics and show the effects of the differing optimisations.

Our generator is similar to the twice-improved generator of Giunchiglia
et al [21], but modified so that it is able to generate less uniform
formulae, e.g., by employing different probabilities for negating proposi-
tional variables and modal formulae. The modified generator generates
CNFK(m)

formulae employing the following parameters:

− the number of clauses in the main formula, L.

− the number of propositional variables, N .

− the number of modalities, m.

− the maximum modal depth, d.

− the minimum and maximum number of clauses in a disjunct, cmin, cmax,
with equal probability for each number in the range.

− the probability that an atom is propositional, p (except at depth
d where all atoms are propositional).

− the probability that a modal formula is negated, nm.

− the probability that a propositional variable is negated, np.

When generating the atoms in a clause, our generator employs a scheme
that is equivalent to picking formulae from a population, without rep-
etition, so that the modal structure of a formula is defined by p. The
generator does not ensure that the 3CNFK(m)

clauses in the main
conjunctive formula are distinct, effectively picking clauses from a pop-
ulation, but in this case with the possibility of repetition. Because the
generator is often employed for smallN but large L, there is the distinct
possibility that there would be too few clauses of a certain form, such as
purely propositional clauses, to allow for distinct clauses while retaining
the correct probabilities for modal structures.
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We restricted the testing as follows. We used only 1 modality (m =
1) because, as discovered earlier, multiple modalities generally cause the
problems to become easier. We used only 3CNFK(m)

formulae (cmin =

cmax = 3). We set the probability of negated propositional variables to
0.5 (np = 0.5).

However, we varied all the other parameters, not just L and N as
in recent testing. We varied the propositional probability (p), using 0.5
and 0.4, as well as 0.0. We varied the maximum modal depth (d), using
2 as well as 1. We varied the probability of negated modal formulae
(nm), using 0.1, as well as 0.5. We varied the number of propositional
variables (N) from 3 to 9, ranging the number of clauses from N to
150N in increments of N , and generating 100 formulae at each data
point. We also performed a separate series of tests with d = 100 and
p between 0.9 and 0.7. The parameters used in the various tests are
summarised in Figure 1.

Both Dlp and KsatC were tested using the same seed for the
random number generator in the formula generator. We did not see
any disagreements between Dlp and KsatC on any of the formulae
although we did not make a systematic search for disagreements.

We would have liked to try all combinations of the parameters
above. However, this would have taken much too long, so we had
to pick various combinations of the parameters and various ranges of
N . Moreover, we used a timeout of 1,000 seconds of CPU time, and
terminated processing on a data point as soon as it became evident
that the median time would exceed the timeout. All times reported
are CPU times, provided from Dlp and KsatC, exclusive of any time
required to read, translate, or preprocess the formulae: the extra time
just confuses the results, and would include different sorts of processing
for the two systems.

4.1. Testing Details

The February 1999 version (version 3.2) of Dlp was used for the tests.
This version is very close to previous versions of Dlp; the only differ-
ences are some optimisations to make processing of large formulae more
efficient. This version of Dlp is available at http://www.bell-labs.com
/user/pfps/dlp. Dlp was run under Standard ML of New Jersey,
version 110.0.3.

A single setting of the options for Dlp was used throughout the
tests. All the optimisations mentioned above were turned on, and the
heuristics were set to select a formulae from among the backjumping-
oldest clauses using a MOMS-style heuristic. The code to handle the
transitive closure of modalities was turned off.
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For the tests KsatC was compiled under g++, version 2.7.2.3,
with optimisation -O2, as in the supplied makefile. The version of
KsatC used for previous testing was used in these tests. It is available
at ftp://ftp.mrg.dist.unige.it/pub/mrg-systems/KR98-sources

/KSat-source/KSatC.
Our testing was performed on two classes of machines. Most testing

was performed on upgraded SPARCstation 20s with two 150 MHz Ross
RT626 CPUs, roughly equivalent to a 140M SPARC Ultra-1, and 128M
of main memory. Testing for propositional probability 0.0 was per-
formed on a SPARC Ultra-2 with two 296 MHz UltraSPARC-II CPUs
and 256M of main memory. The testing machines were otherwise very
lightly loaded. Tests that were rerun showed almost exactly the same
timing; in all examined cases the difference was less than the maximum
of 0.02 seconds or 1 percent of the run time. Using a different seed for
the random number generator did result in different timing results, but
the qualitative and comparative results were unchanged in all examined
cases.

The formula generator was coded in Standard ML of New Jersey.
Each test started with a known random seed, which was not reset
during the run. The random number generator was used only to gen-
erate formulae, so that the tests would be reproducible. If a test was
terminated prematurely, it was restarted by reading the results of the
previous run of the test, generating random formulae without testing
them for each test performed by the previous run, and then continuing
in the normal fashion.

For the Dlp tests, the formulae were generated and tested in the
same process. Each test was terminated as soon as the time limit of
1,000 CPU seconds was exceeded, as calculated by the built-in timing
facilities of Standard ML of New Jersey. The times reported include
any garbage collection that happened during the test. For the KsatC

tests, the formulae were written in a format acceptable to KsatC and
then read in and tested by a different process. This separate process was
limited to 1200 seconds of real time; if this time limit was exceeded, the
test was deemed to have take at least 1000 seconds of CPU time. This
extra limit was needed, as KsatC sometimes did not terminate grace-
fully. As the testing systems were very lightly loaded, it is extremely
unlikely that any results would have been different without this real
time limit.

The results of our testing are presented in two kinds of graph. The
first and most common kind of graph plots run time against the ratio
of clauses to number of propositional variables (L/N) for a single test,
i.e., various values of N , and fixed values of maximum modal depth
(d), propositional probability (p), and modal negation probability (nm).

sat.tex; 6/02/2002; 18:01; p.15



16

Tests N m d cmin cmax p nm np

1 3–9 1 2 3 3 0.5 0.5 0.5

2 3–9 1 1 3 3 0.5 0.5 0.5

3 3–7 1 1 3 3 0.0 0.5 0.5

4 3–8 1 1 3 3 0.4 0.5 0.5

5 3–7 1 2 3 3 0.5 0.1 0.5

6 3–8 1 2 3 3 0.4 0.5 0.5

7 3–6 1 100 3 3 0.9–0.7 0.5 0.5

Figure 1. Test parameter settings

Each graph shows, on a log scale, either the median, the 90th percentile,
or the worst case run time for either Dlp or KsatC. The P th percentile
is the maximum time taken by the fastest P% of the tests, so the 50th
percentile would be equivalent to the median.

The second kind of graph is three-dimensional and plots, again on
a log scale, the fiftieth through one hundredth percentile run times
against L/N for a single test and a single value of N . Overlaid on
these plots are dotted surfaces that show the ratio of satisfiable to total
solvable formulae, as determined by Dlp or KsatC, provided that the
program could solve at least half of the formulae at that point.

5. Test Results

The first series of tests that we performed was for maximum modal
depth 2, propositional probability 0.5, and modal negation probability
0.5. We ran tests with 3 through 9 propositional variables. The tests
with 3, 4, and 5 variables correspond to some of the original tests
performed by Giunchiglia and Sebastiani [23], while those with 3, 4, 5,
and 8 variables correspond to some of the tests performed by Hustadt
and Schmidt, although in both cases the improved formulae generator
now eliminates local redundancies, tautologies, and contradictions.

The results for Dlp and KsatC are given in Figure 2. These for-
mulae are not all easy, and there is a general easy-hard-easy behaviour
for both Dlp and KsatC. However, the shape of the curves is very
different from the narrow, pronounced peak in propositional satisfiabil-
ity. Instead, there is a general “half-dome” shape to the curves. This
shape is caused by two factors. First, there are many modal successors
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Dlp times for N = 9 KsatC times for N = 9
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Figure 2. Results for test 1 (d = 2, p = 0.5, and nm = 0.5)

and if the formula is satisfiable they all have to be investigated. If
the successors are all or almost all easily determined to be satisfiable
then they contribute a polynomial growth in difficulty as the formula
grows in size, resulting in the left-hand-side of the half-dome. Second,
at some point enough formulae become trivially unsatisfiable, and thus
easy for both Dlp and KsatC, resulting in the steep “cliff”. This point
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varies somewhat with the number of variables and there may be some
“ringing”, particularly at the higher percentiles.

The only major exception to this smooth half-dome shape occurs
with small numbers of propositional variables, most prominently at
N = 3. Here for L/N in the range 50–70 there are some formulae that
are harder than would be indicated by half-dome-shaped successor eval-
uation. This behaviour shows up most clearly at the higher percentiles.
The hard formulae are those where there are a significant number
of modal successors whose satisfiability status is hard to determine,
resulting in backtracking and a peak in the difficulty. These extra-hard
formulae are highlighted in Figure 3.

Dlp generally performs better than KsatC for these tests, being
often two orders of magnitude faster than KsatC. However, Dlp is
not always faster than KsatC.

In the trivially-unsatisfiable region KsatC is faster than Dlp (less
than 0.01 seconds compared with about 0.1 seconds). This is because
Dlp’s data structures and low-level algorithms are not heavily opti-
mised, and it takes several hundredths of a second just to go through
these large formulae. The DPLL algorithm in Ksat can perform single
passes over a large set of clauses in a very short time, and Ksat can
thus process large trivially unsatisfiable formulae very quickly.

For data points in the L/N range from about 20–50, where all or
most of the successors are satisfiable, Dlp is uniformly faster than
KsatC. Much of this difference is due to KsatC investigating modal
successors every time a new branching variable is chosen. Modal suc-
cessors do not produce much, if any, unsatisfiability in these tests, so
the investigation of modal successors does not cut off search. Worse,
KsatC has to investigate some modal successors very often, as each
time a new box formula is assigned true, every modal successor has to
be re-examined.

Even outside the above ranges (of L/N values), Dlp consistently
performs better than KsatC for satisfiable formulae. Although there
may be some benefit in examining modal successors early for these
formulae, this benefit would occur only when a large number of box for-
mulae have been assigned true. Because of the repeated work performed
by KsatC on such successors, it does not appear that the benefits are
realised.

This series of tests shows that it is not a good idea to restrict testing
to depth 1 and propositional probability 0, as this would ignore at least
one area where Dlp significantly outperforms KsatC.

The second series of tests that we performed was for maximum
modal depth 1, propositional probability 0.5, and modal negation prob-
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Dlp times for N = 5 KsatC times for N = 5
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Figure 3. Detailed results for test 1 (d = 2, p = 0.5, and nm = 0.5)
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Dlp times for N = 9 KsatC times for N = 9
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Figure 4. Results for test 2 (d = 1, p = 0.5, and nm = 0.5)

ability 0.5. We again ran tests with 3 through 9 propositional variables.
These tests do not correspond to any previous tests, as all previous
testing with propositional probability different from 0.0 was performed
with maximum modal depth greater than 1.

The results of the tests for Dlp and KsatC are given in Figure 4.
In these tests there is a more distinct easy-hard-easy behaviour with
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a pronounced peak from both Dlp and KsatC although the peak is
quite wide by propositional satisfiability standards.

Again, Dlp generally performs better than KsatC, but the differ-
ence is less: only slightly more than one order of magnitude. Also, there
is a new area where KsatC outperforms Dlp.

In these tests, when the formulae are mostly unsatisfiable but not
trivially unsatisfiable, the modal successors do provide an important
source of the unsatisfiability. KsatC’s early investigation of the modal
successors can thus be used to cut off search. This shows up in the re-
sults for values of L/N around about 40, where KsatC is considerably
faster than Dlp.

As pointed out by Hustadt and Schmidt, the tests with maximum
modal depth 1 are in some sense harder than the tests with maximum
modal depth 2. This is true almost uniformly for Dlp for larger num-
bers of propositional variables, except where the low-level overhead is
most prominent. It is also true in some sense for KsatC, as with a
given number of propositional variables the hardest median depth-1
problems are harder for KsatC than the hardest depth-2 problems. If
the difference in average formula size between the two sets of formulae
is taken into consideration, the depth-1 formulae are decidedly harder.

This being the case, why should the depth-2 formulae be investigated
at all? First, it is not appropriate to limit investigations to just some
small group of formula unless the excluded formulae can be transformed
into the investigated ones. This is certainly not the case here, as a
limitation to a modal depth of 1 removes from consideration the vast
majority of modal formulae. Second, the hardest formulae may change
with different systems. Although this is not the case here, at least for
Dlp, there are significant differences in the results for the groups of
formulae. If attention had been paid to only one group, these differences
would not have been seen.

But why is modal depth 1 “harder” than modal depth 2? Well,
both Dlp and KsatC include the MOMS heuristic. Because there are
more modal atoms than propositional variables, and because modal
atoms and propositional variables are picked with the same probability
(except at the deepest depth), the atom that has the highest MOMS
score will almost certainly be a propositional atom. Therefore both
Dlp and KsatC will end up with assignments at the root node that
are heavily weighted to giving values to propositional variables. The
only modal atoms that will be given assignments are those that are
required to make all the clauses evaluate to true.

So how many modal atoms will be given assignments? Clauses with
three propositional literals will generate no assignments to modal atoms.
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Clauses with two propositional literals will, on average, have one of
their propositional literals assigned to true in three out of four cases,
and thus will produce an assignment to a modal atom in only one out
of four cases. Clauses with one propositional literal will, on average,
have it assigned to true in one out of two cases, and thus will produce
an assignment to a modal atom in only one out of two cases. Clauses
with no propositional literals will give rise to an assignment to a modal
atom in every case.

If we make the assumption that modal atoms occur only once2, then
for propositional probability 0.5 about

3

8

1

4
+

3

8

1

2
+

1

8
1

or 13/32 of the clauses will give rise to an assignment to a modal atom.
About half of these assignments will result in a box formula and about
half in a diamond formula. Therefore at the next depth there will only
be about 13/64 or 1/5 as many clauses as at the current depth.

For maximum modal depth of 1, this means that a top-level formula
with about 30N clauses will give rise to modal successors with about
6N clauses. Such clauses will be propositional, and because clauses
can occur multiple times at the top level, this is just about at the
hardest L/N point for propositional formulae. This is also near the
point where the strictly propositional clauses in the formula as a whole
(1/8 of the total clauses) are providing a non-trivial problem at that
level. The compounding of the two sources of hardness results in very
hard problems.

As the number of clauses increases, the sub-problems generated
become more unsatisfiable, so early detection of this unsatisfiability
becomes more beneficial. This is precisely where KsatC outperforms
Dlp.

For maximum modal depth of 2, a top-level formula with about 40N
clauses will give rise to modal successors with about 8N clauses. Such
clauses will have maximum modal depth 1, and give rise to problems
similar to (but not exactly the same as) the maximum modal depth 1
problems generated by the formula generator. With only 8N clauses,
the chance of such problems being satisfiable is almost exactly 1.0, and
both Dlp and KsatC are able to find a satisfying assignment in very
little time and with very little search. Therefore, the time taken here is
due to the very large number of modal successors investigated rather
than to their individual hardness. As KsatC goes through this search

2 This is not a valid assumption for small numbers of propositional variables and
large numbers of clauses, but it is not too far off for the analysis here, except for very
small numbers of propositional variables where the analysis breaks down somewhat.
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multiple times for each top-level assignment, it takes longer on some
depth 2 problems. As Dlp does this investigation only once for each
top-level assignment, and thus often only once in total, it is much faster
on these sorts of problems.

Top-level formulae with more clauses are usually trivially unsatisfi-
able, and thus do not give rise to any modal processing. Those top-level
formulae that are not trivially unsatisifiable, however, can be difficult,
as their modal successors may have enough clauses to be moderately
difficult in their own right. This is the cause of the occasional difficult
problems for L/N > 80.

Our third series of tests has maximum modal depth 1, propositional
probability 0.0, and modal negation probability 0.5. We ran tests with
3 through 7 propositional variables. These are similar to some of the
tests performed by Hustadt and Schmidt and by Giunchiglia et al [21].

The results of the tests for Dlp and KsatC are given in Figure 5.
The qualitative behaviour of both Dlp and KsatC is yet again differ-
ent. There is an easy-hard-easy pattern, but the hard section is spread
over most of the L/N values and the formulae only gradually become
easier.

In these tests KsatC performs much better than Dlp. This is to
be expected, as almost all of the unsatisfiability comes from the modal
successors, which are all easy to investigate, because there are a small
number of propositional variables and the maximum modal depth is 1.
Because KsatC aggressively investigates the modal successors it can
significantly reduce search in the root node, and for these formulae the
advantage of this reduction outweighs the disadvantage of potentially
repeated investigations of each successor. Dlp, on the other hand, does
not investigate modal successors until it has discovered a complete
top-level assignment. It will therefore generate many more top-level
assignments and have to examine the modal successors, although in
many cases these will be nearly the same. Dlp’s caching of modal
results does not help very much as there are so many different modal
successors that can be generated.

We next ran a series of tests with an “intermediate” value for the
propositional probability to see where the cross-over between Dlp and
KsatC lies. These tests have maximum modal depth 1, propositional
probability 0.4, and modal negation probability 0.5.

The results of the tests for Dlp and KsatC are given in Figure 6.
Here the two systems are very close in performance, with KsatC being
slightly faster and having a smaller range of L/N in which it finds
hard problems. With a propositional probability of 0.4, the benefits of
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Figure 5. Results for test 3 (d = 1, p = 0.0, and nm = 0.5)

KsatC’s aggressive modal investigation are starting to outweigh its
detriments, especially in the slightly overconstrained area.

The qualitative behaviour of both systems is intermediate between
the two previous tests, with a pronounced peak in difficulty but one
quite a bit wider than the peak for p = 0.5.
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Dlp times for N = 7 KsatC times for N = 7
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Figure 6. Results for test 4 (d = 1, p = 0.4, and nm = 0.5)

So with a maximum modal depth of 1, Dlp performs better than
KsatC when the propositional probability is high and worse when the
propositional probability is low. When the propositional probability is
low the modal successors have a high chance of being overconstrained
and KsatC’s early investigation of the incomplete successors will find
unsatisfiability early, thus cutting off considerable amounts of search.
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Dlp times for N = 5 KsatC times for N = 5
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Figure 7. Results for test 5 (d = 2, p = 0.5, and nm = 0.1)

When the propositional probability is high the modal successors have
a high chance of being satisfiable, or only being unsatisfiable when all
information is known about them. Here, most or all of KsatC’s early
investigation of incomplete successors will be wasted effort.
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Our fifth set of tests further investigated formulae with a maxi-
mum modal depth of 2. There are two ways to make the tests with
maximum modal depth of 2 harder. The first approach is to reduce
the propositional probability. The second approach to make the tests
harder is to have fewer but larger modal successors by reducing the
probability of negating a modal atom, which, in this generator, are
always box formulae. This approach has the advantage that the change
does not affect the size of the resulting formulae, whereas reducing the
propositional probability considerably increases formula size.

We performed a series of tests with maximum modal depth 2, propo-
sitional probability 0.5, and modal negation probability 0.1. The results
for Dlp and KsatC are given in Figure 7. In these tests Dlp has by
far the better median performance, by a couple of orders of magni-
tude. However, Dlp is slower on the harder formulae in this series.
This is because the harder formulae provide places for KsatC’s early
investigation of modal successors to cut off search, whereas Dlp has to
investigate many more choice points before determining that the modal
successors block any solution.

We also performed testing with maximum modal depth 2 and propo-
sitional probability 0.4. These results of these tests are given in Figure 8.
Again Dlp is generally faster than KsatC, often by several orders of
magnitude. The only place where Dlp is slower than KsatC is in the
trivially unsatisfiable region.

KsatC’s early investigation of modal successors performs very poorly
in these tests, as indicated by the relative height of the half-dome
section of the tests. Even where there are hard modal successors, and
early investigation might provide some early cutoffs, KsatC performs
worse than Dlp. This is probably due to the backjumping optimisation
in Dlp.

These tests have some of the half-dome behaviour indicative of many
but easy modal successors. However, there is even more indication of
backtracking behaviour, most prominent for small numbers of proposi-
tional variables, but still evident with 8 propositional variables. Plots
detailing this behaviour are given in Figure 9.

The plots show that, for Dlp, the tests with smaller numbers of
propositional variables are harder than the test with 8 propositional
variables. This unusual behaviour occurs because of conditions in the
modal successors for very small numbers of propositional variables hav-
ing to do with the few modal formulae of depth 1 and the presence of
conjunctions supplied by the top-level diamond formula. These condi-
tions give rise to modal subproblems that are more difficult than they
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Dlp times for N = 8 KsatC times for N = 8
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Figure 8. Results for test 6 (d = 2, p = 0.4, and nm = 0.5)

would otherwise be. KsatC experiences similar hardness effects but
they are masked by its repeated examination of the modal successors.

For our last set of tests we investigated a very different kind of
formulae. We wanted to see what would happen if there were no “hard
stop” to the modal structure, and thus create formulae where the modal
subformulae looked just like the main formula, except smaller. One way
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Dlp times for N = 5 KsatC times for N = 5
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Figure 9. Detailed results for test 6 (d = 2, p = 0.4, and nm = 0.5)
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Dlp times for N = 6 KsatC times for N = 6
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Figure 10. Results for test 7, part 1 (d = 100, p = 0.75, and nm = 0.5)

of creating such formulae would be to have no maximum modal depth.
We approximated formulae with no maximum modal depth by setting
the maximum modal depth parameter, d, to 100. We ran tests with the
propositional probability, p, ranging from 0.9 to 0.7 and the number of
propositional variables, N ranging from 3 to 6.
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Dlp times for N = 6 KsatC times for N = 6
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Figure 11. Results for test 7, part 2 (d = 100, p = 0.7, and nm = 0.5)

In these tests the propositional probability cannot be lowered much
beyond 0.7 or else the generated formulae become too large to store.
Even with a propositional probability of 0.7 the formulae generated are
very large, as at each level the expected number of clauses shrinks by
only about 5 percent. (However, the number of clauses in the modal
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Dlp worst times for p = 0.8 KsatC worst times for p = 0.8

0.01

0.1

1

10

100

1000

20 40 60 80 100 120 140
L/N

N=6
N=5
N=4
N=3

0.01

0.1

1

10

100

1000

20 40 60 80 100 120 140
L/N

N=6
N=5
N=4
N=3

Dlp worst times for p = 0.75 KsatC worst times for p = 0.75

0.01

0.1

1

10

100

1000

20 40 60 80 100 120 140
L/N

N=6
N=5
N=4
N=3

0.01

0.1

1

10

100

1000

20 40 60 80 100 120 140
L/N

N=6
N=5
N=4
N=3

Dlp worst times for p = 0.7 KsatC worst times for p = 0.7

0.01

0.1

1

10

100

1000

20 40 60 80 100 120 140
L/N

N=6
N=5
N=4
N=3

0.01

0.1

1

10

100

1000

20 40 60 80 100 120 140
L/N

N=6
N=5
N=4
N=3

Figure 12. Worst-case for test 7 (d = 100; p = 0.8, 0.75, 0.7; nm = 0.5)

successors shrinks by about 50 percent, because only half of the modal
clauses are box formulae.)

The results for Dlp and KsatC for propositional probabilities of
0.75 and 0.7 are given in Figures 10 and 11. It is obvious that these
formulae are not nearly as difficult as some of the earlier formulae. Dlp

found all the formulae extremely easy—the processing required for the
formulae that required the most search (for L/N from around 30 to 50)
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was less than the processing required for the largest formulae, which
are trivially unsatisfiable and require almost no search.

KsatC found most of the formulae easy, although there is a small
harder section for L/N around 10–30, resulting in behaviour qualita-
tively different from that of Dlp. In this section there were even a few
formulae that KsatC found very hard, as shown in the top graphs of
Figures 10 and 11. To better illustrate this effect, the results for the
hardest formulae at each data point for propositional probabilities of
0.8, 0.75, and 0.7 are given in Figure 12. As these results show, for
propositional probability 0.7 KsatC usually took between 0.5 and 10
seconds to solve the hardest formulae at data points with L/N between
15 and 50. However, in some cases it took around 100 seconds, and in
a very few cases it took longer than 1,000 seconds. The results for
propositional probability 0.75 are similar, except that the usual worst-
case was slightly under 0.1 seconds, and only a couple of formulae took
a very long time.

These harder formulae are those where KsatC is investigating many
modal successors multiple times. On the other hand, Dlp found all
these formula very easy, with the hardest of the hardest taking only
around 0.1 seconds, except for the very large formulae where Dlp’s
processing overhead pushed the processing time up to 0.5 seconds.

If the size of the formulae are taken into consideration, these formu-
lae are much easier than the previous ones, even though KsatC finds
some of them very hard. However, they do provide another useful data
point indicating that concentration on one kind of formula does not
present a complete performance picture.

6. Conclusion

Our experiments with Dlp and KsatC show that they are both effec-
tive decision procedures. Both systems are vastly better than previous
approaches. Neither system dominates the other: Dlp is better when
there are complex modal subproblems, or these modal subproblems are
mostly satisfiable; KsatC is better for big, simple problems, and where
the modal subproblems provide early cutoffs.

Both systems still have weaknesses. Dlp suffers from a mostly-
functional implementation style; KsatC suffers from the divorce be-
tween its propositional and modal components. While it would be
relatively easy to reimplement Dlp with better data structures and low-
level algorithms, we believe that the problem with the KsatC approach
is more fundamental as its use of a pre-existing propositional reasoner
makes it extremely hard to employ any optimisation techniques, such
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as backjumping, that cut across the separate modal and propositional
reasoning steps. This is because adding such optimisations to KsatC

would involve significant modifications of its propositional reasoner
which is not created by the authors of KsatC.

Further, the early investigation of modal successors, which is a major
optimisation in KsatC, is also a source of inconsistent performance.
This early investigation can be very effective if the modal successors can
quickly shown to be unsatisfiable before all the propositional reasoning
is performed. However, it can also result in much extra work if the
modal successors are mostly satisfiable or only unsatisfiable when all
information is known about them. In the experiment with maximum
modal depth 100, the extra work caused by this optimisation produces
a “false” peak in difficulty, which is completely absent in Dlp.

Moreover, extending KsatC to deal with more expressive logics may
be problematical as the loop-checking required to guarantee termina-
tion, and other processing required for the more-expressive logics, may
be difficult to interface with the propositional reasoner. Tableaux sys-
tems on the other hand can easily be extended to deal with a wide range
of expressive logics [2, 3, 5, 19, 33]: Dlp, for example, already deals with
a superset of propositional dynamic logic. However, in KsatC’s favour
is the fact that it can take advantage of most advances in propositional
satisfiability testing simply by substituting Böhm’s DPLL implementa-
tion with a more efficient SAT procedure and making the few changes
required to eliminate optimisations that are not valid in a modal set-
ting;3 this would be more difficult in Dlp where the propositional and
modal components are tightly integrated.

Our experiments also show that concentrating on one set of tests is
not appropriate, and can give misleading results if used as a method-
ology for comparing satisfiability testers. The two systems tested here
behaved differently on the different sets of tests, and concentrating on
one set of tests would have masked the benefits of certain optimisa-
tions and the drawbacks of others. Moreover, the increased complexity
of propositional modal formulae, and the interaction between propo-
sitional and modal reasoning, gives rise to results that would have
been difficult to predict without detailed analysis of both formulae and
algorithms.

3 Some propositional reasoners may, of course, be implemented in a fashion that
makes the changes required for the KsatC approach difficult or impossible. How-
ever, the changes are not extensive and should be possible for most propositional
reasoners. They are certainly much less involved than the modifications required
to augment the control structure of a propositional reasoner to incorporate an
optimisation like backjumping across modal nodes.
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Our experiments generally show an easy-hard-easy distribution, as
in propositional satisfiability. However, there is no hard peak evidenced
in many of the experiments, and the different experiments produce
qualitatively different results. The differences are partly due to the
greater numbers of parameters in the modal case; with more ways of
setting the parameters there are more kinds of behaviour possible. The
lack of a hard peak may also be partly due to the inadequacies of the
provers being tested, and there may be optimisations yet undiscovered
that would restrict the hard problems to a small range of parameter
values. The lack of a hard peak may also be partly due to the hardness
of the problem: current provers cannot reach beyond small numbers
of propositional variables, so asymptotic behaviour may not yet be
evidenced.

There are other parameter settings that should be investigated. We
have only reported results for modal depths 1 and 2 with a clause
length of 3, and results for modal depth 100. We have mostly used a
modal negation probability of 0.5. Changing any of these would result
in different kinds of tests.

We are experimenting with new approaches for building modal deci-
sion procedures as part of a continuing effort to build effective systems
for expressive description logics. Our newest system, in its early stages
of development, employs an advanced form of backtracking, called dy-
namic backtracking [20]. It also performs early analysis of modal succes-
sors but does not throw away the successful successor nodes, retaining
them instead for the duration of the proof. In this way we hope to
further improve the performance of propositional modal satisfiability
testing procedures.
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