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Abstract

This work constitutes an advance in the direc-
tion of the development of Description logic sys-
tems providing efficient and powerful reasoning
in presence of individuals. We present the em-
pirical evaluation of an algorithm for checking
the satisfiability of Description logic knowledge
bases.

The experiments we performed show that a mod-
ular algorithm, which separates terminological
and hybrid reasoning, can provide as good per-
formance as an hybrid Description logic rea-
soner. We are experimenting with the expressive
Description logicSHf, which extends the stan-
dard Description logicALC with transitive roles,
role hierarchy, and attributes.

1 Introduction

A description logic (DL) knowledge base (KB) is made up
of two parts, a terminological part (the Tbox) and an as-
sertional part (the Abox), each part consisting of a set of
axioms. The Tbox asserts facts aboutconcepts(sets of ob-
jects) androles (binary relations), usually in the form of
inclusion axioms, while the Abox asserts facts aboutindi-
viduals (single objects), usually in the form of instantia-
tion axioms. For example, a Tbox might contain an axiom
asserting thatHuman is subsumed byMammal, while an
Abox might contain axioms asserting thatJohn , Peter
andBill are instances of the conceptHumanand that the
pairs 〈John ,Peter 〉 and 〈Peter ,Bill 〉 are instances
of the roleBrother .

Transitive roles play an important part in knowledge rep-
resentation, and they have been identified as a requirement
in application domains concerned with complex physically
composed objects (e.g. medical or engineering domains,
see Artale et al. [1996], Rector and Horrocks [1997], Sattler

[1995]). Several previous papers have also shown the effi-
cacy of using a logic that includes a set of transitive roles,
without incurring the cost entailed by the introduction of
the transitive closure operator (see Horrocks and Gough
[1997], Horrocks and Sattler [1998]).

There has been a great deal of work on the development
of reasoning algorithms for expressive DLs (see Baader
[1991], Horrocks and Sattler [1999], De Giacomo and Mas-
sacci [2000]), but most of this effort has been devoted to
terminological reasoning (i.e. with an empty Abox). Im-
portant theoretical results have been published on the prob-
lem of reasoning with individuals as well as terminology
(see for example Buchheit et al. [1993] or De Giacomo and
Lenzerini [1996]). However, only a few works, like Hor-
rocks et al. [2000] and the RACE system (see Haarslev and
Möller [2000]), tackle the problem of developing practical
Abox algorithms. This can be explained by the fact that
for many applications Tbox reasoning can be enough, and
realistic Aboxes tend to be far bigger than Tboxes. The
size problem could lead to practical intractability, given the
high complexity of reasoning in expressive DLs.

This paper presents an empirical evaluation of an algo-
rithm which extends the above mentioned work for rea-
soning within a knowledge representation system which
also includes ABox assertions. The approach used is based
on an extension of the so–calledprecompletiontechnique
(see Hollunder [1994], Donini et al. [1994]) for reduc-
ing the KB satisfiability problem to concept satisfiabil-
ity. The cited works focused on DL knowledge bases
with empty terminologies, and languages without transitive
roles, while we generalise the precompletion technique for
KBs with general inclusion axioms, transitive roles, and
functional roles.

The main idea behind this technique consists of a
correctness–preserving process which eliminates specific
information regarding dependencies between individuals,
while maintaining the consequences of such information.
Once these dependencies are eliminated, the assertions



about a single individual can be independently verified, ig-
noring the fact that an individual is involved. The precom-
pletion, or elimination of the dependencies, is performed by
adding new assertions using a set of nondeterministic syn-
tactic rules. Because of the nondeterminism of the rules,
many different precompletions can be derived from a sin-
gle knowledge base, which is satisfiable if and only if at
least one of these precompletions is satisfiable.

The algorithm is completely independent from the termino-
logical reasoner which is used for the concept satisfiability
test. In this way, an Abox can be easily added to most ex-
isting DL systems without re-implementing the whole sys-
tem. Moreover, optimisation strategies implemented at the
terminological level do not adversely interact with the pre-
completion algorithm.

A further advantage of precompletion is that it confines the
exponential blow up of the complexity to terminological
reasoning. In fact, the size of precompletions is polynomial
in the size of the KB. This may indicate that a system based
on precompletion can run with a smaller memory footprint
compared to a system based on an extension of Tableaux
methods.1 This, together with the fact that precompletion
exploits the connectivity of the knowledge base, suggests
that the algorithm can perform well in large and loosely
connected KBs.

Due to space restrictions, correctness and completeness
proofs for the algorithm are not included in this paper; they
can be found in Tessaris [2001].

1.1 SHf knowledge bases

The DL SHf extendsALC with transitively closed prim-
itive roles, role hierarchy and functional restrictions on
roles. Valid concept expressions are defined by the syntax:

C ::= > | ⊥ | A | ¬A | C1 uC2 | C1 tC2 | ∀R.C | ∃R.C
whereA is a concept name chosen from a setCN , andR is
a role name chosen from a setRN . We consider two dis-
joint subsets ofRN : the set of transitive role namesT RN ,
and the set of functional role namesFRN . In addition, we
assume a set of individual namesO. A standard Tarski
style model theoretic semantics provides the meaning for
the expressions by means of interpretationsI = (∆I , ·I)
(see Schmidt-Schauss and Smolka [1991]). The set∆I is
the domain, and·I is an interpretation function which maps
each concept name inCN to a subset of∆I , each role name
in RN to a binary relation over∆I , and each individual
name inO to a distinct element of∆I .2 In addition, re-

1This actually depends on the kind of optimisation imple-
mented in the DL system. As we are going to suggest later on,
the precompletion technique can be used as a testbed for improv-
ing strategies for Tableaux based systems.

2We use the unique name assumption for individuals.

lations corresponding to transitive roles must be transitive,
and the interpretation of functional roles must be a partial
function. In the rest of the paper capital lettersC orD in-
dicate concepts,R or S roles, and small letterso, a or b
individual names.

A DL knowledge base is a pairΣ = 〈T ,A〉, whereT is a
TBoxandA anABox. The TBox, or terminology, contains
concept axioms of the formC vD and role axioms of the
form S v R, while the ABox contains assertions about a
set of individual namesO. These assertions are of the form
a:C or 〈a, b〉:R, wherea,b are individual names inO. We
say that an interpretation satisfies an axiomC v D if the
interpretation ofD includes that ofC, and analogously for
inclusion between roles. An assertiona:C is satisfied if the
interpretation ofa is an element of the interpretation ofC;
role assertions like〈a, b〉:R talk about the membership of
the pair to the relation. A knowledge baseΣ is said to be
satisfiable if and only if there exists at least one interpreta-
tion which satisfies all the assertions in the knowledge base
(i.e. the inclusion and membership relations represented in
the KB are satisfied).

Role inclusion axioms contain only role names, and if there
are cyclical definitions (e.g.SvR andRvS), all the names
involved in the cycle must correspond to the same binary
relation in every interpretation (satisfying the axioms). For
these reasons, we assume that role axioms are summarized
by a partial order� defined over the set of role names.

2 KB satisfiability via precompletion

Let us consider for example a very simple Abox containing
only the assertions:

A = {a:∀R.C, 〈a, b〉:R, b:¬C} .
The two first assertions can be used to derive the new as-
sertion b:C; it is easy to realise thatA is satisfiable iff
A′ = A∪{b:C} is satisfiable as well (which is not the case,
becauseb cannot be inC and¬C at the same time). The
interesting point is that when we check the satisfiability of
A′ we do not need to consider the role assertion, because
its effects have been made “explicit” in the new assertion.
Therefore we can verify the KB satisfiability by checking
the satisfiability of the concepts∀R.C andC u ¬C sepa-
rately.

Intuitively, the precompletion algorithm uses a set of trans-
formation rules to propagate restrictions imposed by uni-
versal expressions along the role assertions in the Abox; in
the exampleC is propagated tob because of∀R.C. In the
meantime, the propositional parts of the assertions (con-
junctions and disjunctions) are expanded. Modal parts of
the assertions (e.g.∃R.C) are ignored and left to the termi-
nological reasoner.



In SHf the choice of whether an universal expression ap-
plies to a role assertion is complicated by the interaction
between functional roles and role hierachy. For example
let us consider a functional roleF and two rolesR, S in-
cluded inF (i.e. R � F andS � F ). From the set of
assertions{〈a, b〉:R, a:∃S.C} we can deriveb:C, because
the functionality restriction onF forces any element related
to a throughR andS to be the same. This phenomenon is
extended to “chains” of roles as well; e.g. likeR � F1,
S � F1, S � F2, andT � F2, with F1 andF2 functional
roles. Precompletion rules are designed to take account of
this interaction and to simplify their structure we introduce
a set of binary operators· ≈o · (one for each individual
nameo in O). Roughly speaking, two role namesR and
S are · ≈o · related if they are functional, and the Abox
assertions force theR andS successors of the individual
nameo to be the same element (see Tessaris [2001] for its
formal definition).

A→v{o:C} ∪ A
if o is inO,>v C is in T
ando:C is not inA.

A→t{o:D} ∪ A
if o:C1 t C2 is inA,
andD = C1 orD = C2

ando:D is not inA.

A→∃1{o′:C} ∪ A
if o:∃R.C and〈o, o′〉:S are inA,
R ≈o S, ando′:C is not inA.

A→∀+{o′:∀R.C} ∪ A
if o:∀T.C in A, 〈o, o′〉:S is inA,
and there isR ∈ T RN such thatS � R � T ,
ando′:∀R.C is not inA.

A→u{o:C1, o:C2} ∪ A
if o:C1 u C2 is inA,
and eithero:C1 or o:C2 if not in A.

A→∀1{o′:C} ∪ A
if o:∀R.C and〈o, o′〉:S are inA,
there isR′ � R s.t.R′ ≈o S
ando′:C is not inA.

A→∀{o′:C} ∪ A
if o:∀R.C is inA, and〈o, o′〉:S is inA,
andS � R, ando′:C is not inA.

Figure 1: Precompletion rules forSHf

The input to the algorithm consists of a set containing the
set of assertions in the Abox, which in this context are
calledconstraints. The set of all concepts appearing in con-
straints likeo:C, and associated to a single individual name
is called the label of this name.

The rules in Figure 1 are repeatedly applied to the initial
set until either no rule is applicable or a contradictory com-
bination of constraints is detected (a so-calledclash). The
t-rule generates several alternative branches, which are ex-
haustively explored by means ofbacktrack pointswhere the

algorithm restarts in case of a clash detection.

Intuitively, a clash corresponds to a trivially unsatisfiable
combination of constraints in the constraint set. When the
precompletion process encounters a clash there is no need
to continue adding new constraints, the precompletion will
be unsatisfiable anyway; therefore the algorithm backtracks
to the most recent nondeterministic choice and tries to ex-
plore the other possibilities. InSHf there are two kind of
clashes. The first one occurs when two contradictory con-
cepts are in the label of the same individual (e.g. a con-
straint system containing botho:A ando:¬A). The second
one involves the functional roles, which may force two dif-
ferent individual names to be interpreted as the same el-
ement of the domain. This contradicts the unique name
assumption, and the precompletion would be unsatisfiable.
Due to the interaction between role hierarchy and function-
ality, the relation· ≈o · must be taken into account: two
constraints〈o, a〉:R, 〈o, b〉:R′ constitute a clash ifa 6= b
andR ≈o R′.

If none of the rules is applicable and there are no clashes,
then a precompletion has been generated and must be
checked for its satisfiability. This is done by gathering all
the concept assertions concerning an individual. The con-
cepts are then conjoined, generating a new single concept
associated to each single individual. Each of these concepts
is then verified by using an external call to a terminological
reasoner; if they are all satisfiable then the algorithm ter-
minates with success, otherwise it backtracks as in the case
of clash detection. If the process fails to find a satisfiable
precompletion after all the nondeterministic branches have
been explored, then it terminates with failure.

As presented here the algorithm sounds rather naive and
prone to inefficient exploration of the search space. In fact,
we need a few “tricks” to avoid a hopelessly slow algo-
rithm. In the following section we will show how to im-
prove the algorithm to obtain acceptable behaviour in typ-
ical cases. Note that the theoretical worst case complexity
of reasoning is EXPTIME-complete, therefore there can be
pathological KBs manifesting this complexity.

3 Optimising the algorithm

The experience with previous DL systems shows that the
direct implementation of the tableaux–based satisfiability
algorithms provides very poor performance, unacceptable
for any real application. Even though the experiments with
other DL systems have been mainly at the terminological
level, we can try to extract some lessons from those ex-
periences (see Haarslev and Möller [1999], Horrocks and
Patel-Schneider [1999]). The precompletion phase is com-
pletely separated from the terminological reasoning, so op-
timisation techniques implemented at the two levels do not



interact adversely. Moreover, the terminological reasoner
we are using (FaCT) is already optimised, therefore we fo-
cus on the optimisation we can perform during the precom-
pletion.

Section 3.1 introduces some of the well known optimiza-
tion techniques adopted by most of the state of the art DL
reasoners, while Section 3.2 and Section 3.3 describe tech-
niques developed in conjunction with the precompletion al-
gorithm.

3.1 Standard techniques

Axiom absorption and lazy expansion General axioms
are one of the major sources of nondeterminism; in fact,
in every axiomC v D is hidden the disjunctive formula
D t ¬C applied to every individual name. One of the
most effective ways of reducing the effects of axioms is
the so calledabsorptiontechnique used in conjunction with
lazy expansion of concept names (see Horrocks and Tobies
[2000]).

Roughly speaking, the idea behind this technique is to
transform a general axiom into the special formA v C
whereA is a concept name. Then the axiom is treated as a
sort of definition for the nameA and ignored until a con-
cept constraint of the formo:A is examined; at this point
the “definition”C of A is added to the label ofo (i.e. the
new constrainto:C). This basic idea can be extended to
negated concept names as well; i.e. having definitions of
the form¬A v C. However, their combination must be
used carefully to avoid incorrect results. We implemented
the absorption algorithm described in Horrocks and Tobies
[2000].

Lexical normalisation Concept expressions are nor-
malised and encoded according to the transformation rules
described in Horrocks and Patel-Schneider [1999]. In the
normal form, concept expressions can be concept names,
conjunctions of normal form concepts, universal quantifi-
cation constructors, and the negation of a normal form.
Conjunctions are represented as sets, so the order of the
conjuncts does not affect the syntactic equivalence of dif-
ferent expressions; in addition, nested conjunctions are flat-
tened (e.g. expressions like((C1uC2)uD) are transformed
into (C1 u C2 uD)).

Backjumping Inherent unsatisfiability concealed in sub-
problems can lead to large amounts of unproductive back-
tracking search known as thrashing. Consider for example
the set of constraints{

a:(C1 tD1), . . . , a:(Cn tDn), a:∀S.∀R.¬C,
b:∃R.(C uD), 〈a, b〉:S

}
,

which may cause the exploration of2n alternative com-
binations of constraints ona deriving from the concepts
(C1 t D1), . . . , (Cn t Dn), while the true cause for the
failure is related to the individualb. For example, this will
happen if the rule application strategy forces the evaluation
of all the constraints associated with an individual before
considering a different individual.

This problem is addressed by adapting a form of depen-
dency directed backtracking calledbackjumping, which has
been used in solving constraint satisfiability problems (see
Baker [1995]). Backjumping works by labeling concept
constraints with a dependency set indicating the branching
points on which they depend. A concept constrainta:C de-
pends on a branching point ifa:C was added to the label
by thet–rule generating the branching point or ifa:C was
generated by a different rule and the concept constraints
involved in the rule depend on the branching point.3

When a clash is discovered, the dependency sets of the
clashing concept constraints can be used to identify the
most recent branching point where exploring the other
branch might alleviate the cause of the clash. The algo-
rithm can then jump back over intervening branching points
without exploring alternative branches.

Note that when a contradiction is discovered by the verifi-
cation of a label, there is no way for our algorithm to know
the source of the contradiction; therefore, the union of the
dependency set of all constraints of the label is returned.
As we are going to show in Section 3.2, we can modify the
algorithm in order to make the backjumping more effective
in such cases.

With respect to the given example, the precompletion algo-
rithm generates the first precompletion

a:(C1 tD1), . . . , a:(Cn tDn), a:∀S.∀R.¬C,
a:C1, . . . , a:Cn
b:∃R.(C uD), b:∀R.¬C, 〈a, b〉:S

 ,

by choosing the first concept for each constraint containing
the disjunction, and applying the∀–rule to the constraints
a:∀S.∀R.¬C and 〈a, b〉:S. In this process, the algorithm
generatesn different branching points, and every constraint
a:C1, . . . , a:Cn is labelled with a different branching point.
The constraints associated withb have no branching point
associated with them (this indicate a dependency with the
top level), so when the terminological reasoner discovers
the inconsistency of the label associated withb there is no
reason to explore the alternative options for the individual
a.

3Since new role assertions are never introduced, the depen-
dency is only related to concept expressions.



3.2 Precompletion techniques

In the algorithm described above, the terminological rea-
soner is used only when a precompletion is generated.
However, it can be used in different phases of the algorithm
in a more sophisticated way.

Result caching As pointed out in Donini et al. [1996],
caching the satisfiability results for the tested concept ex-
pressions is essential for maintaining the complexity of the
actual algorithm in the EXPTIME theoretical complexity.
In addition, in our case it can allow us to avoid the over-
head of converting a concept expression from the internal
representation to a format suitable for the terminological
reasoner.

Early inconsistency detection This is based on the ob-
servation that if the constraints applied to an individual are
inconsistent they will be inconsistent in any generated pre-
completion. Therefore the label of an individual can be
verified even before an actual precompletion is generated.
If an individual is found to have an inconsistent label, the
algorithm stops exploring the current search branch and
backtracks to the appropriate saved state of the precomple-
tion process.

The label is verified when all the constraints associated to
an individual have been considered, before considering a
different individual. If during subsequent precompletion
of the rest of the KB no new constraints are added to an
individual which as been already precompleted, there is no
reason to verify its label again.

Modal verification Backjumping only works properly
with a precise knowledge of the constraints which gener-
ate a clash. Our problem is that in case of a clash detected
by the terminological reasoner, we cannot get the informa-
tion about the constraints responsible for the clash. The
assumption that any concept in the label can be the cause
of the clash makes the backjumping technique much less
effective.

For example, the label{C,¬D,∃S.C,∃R.C, ∀R.D} is in-
consistent if the terminology contains an axiom likeC v
¬D. However, the inconsistency can only be detected by
the terminological reasoner. Once the unsatisfiability of the
label is discovered, the system cannot tell which element of
the label caused the inconsistency.

We can improve the algorithm by observing that if dur-
ing the precompletion a clash has not been detected, the
only possible cause for an inconsistency must be associ-
ated with an “anonymous” element whose existence is en-
forced by an existential quantification.4 This is because the

4A constraint likea:∃R.C implies that there is an element re-

tree-like model property of the logic (see Vardi [1997], Tes-
saris [2001]) guarantees that no constraints can be “pushed
back” from these “anonymous” elements, and contradic-
tions generated in the propositional part of the labels (e.g.
like C and¬C) are detected during the precompletion pro-
cess.

When there is the necessity of verifying the satisfiability of
a label, the standard algorithm builds a new concept by con-
joining all the concepts in the label. With the modal verifi-
cation technique, the only concepts considered are the uni-
versal and existential quantifications (i.e.∃R.C and∀R.C).
Moreover, the algorithm selects the smallest subsets of the
label which can be independently verified without compro-
mising the completeness of the algorithm. In the previous
example the terminological reasoner is used to verify the
two concepts(∃R.C u ∀R.D) and∃S.C independently.

The basic idea for selecting these subsets is to consider
each existential concept in a different subset, and adding
the universal restrictions which can apply to it (i.e. hav-
ing the same or a more general role name). However, this
simple approach does not work withSHf, because of the
interaction between functional role and role hierachy. In
fact, the operators· ≈o · introduced in Section 2 are used
to group the relevant concepts of the label.

Using this technique, in case of unsatisfiability we can nar-
row the set of involved constraints. Therefore it can be ex-
tremely useful in conjunction with backjumping, because it
enables a more precise identification of the backtrack point
responsible for the clash.

Let us consider the following constraints{
a:(C1 t C2), . . . , a:(C2n−1 t C2n),
a:∀R.¬C, a:∃R.(C uD)

}
.

In this case backjumping alone would not provide any im-
provement because the generated precompletions are of the
form 

a:(C1 t C2), . . . , a:(C2n−1 t C2n),
a:Ci1 , . . . , a:Cin
a:∀R.¬C, a:∃R.(C uD)

 ,

and the terminological reasoner is invoked to verify the
concept

Ci1 u . . . u Cin u ∀R.¬C u ∃R.(C uD).
The algorithm is unable to detect which constraints are the
cause of the unsatisfiability. By checking the modal part
only, the terminological reasoner is invoked with the con-
cept∀R.¬C u ∃R.(C uD). When the unsatisfiability is
reported, the algorithm knows that the clash is generated
by one of the two constraintsa:∀R.¬C, a:∃R.(C uD) and

lated to individual namea through roleR. The precompletion
process would not investigate its existence since it is a task left to
the terminological reasoner.



the backjumping is more effective.

3.3 Instance checking by subsumption

Instance checking is the problem of verifying whether the
interpretation of an individual name belongs to a certain
concept in every interpretation. This is a fundamental ser-
vice for any Abox reasoner and it is usually performed by a
reduction to KB satisfiability (see Schaerf [1994]). In fact,
an individual namea is a member of a conceptC in ev-
ery interpretation satisfying a KB iff adding of the Abox
assertiona:¬C makes the KB unsatisfiable.

The terminological reasoner can sometimes be used to
avoid precompletion in case of instance checking, by using
an approximation of the Most Specific Concept technique
(see Era and Donini [1992], K̈usters and Molitor [2001]).
The idea is to build a concept expression which is guaran-
teed to contain the individual, and is as specific as possible.
The trivial way of doing it is by conjoining all the concepts
in the label of the individual, but the role constraints can
be considered as well to narrow the expression by using
existential quantification.

For example, from the set of constraints
{a:C, 〈a, b〉:R, b:D} we know that the individuala
must be contained in the expression(C u ∃R.D). This
process can be carried on for different levels of role asser-
tions (e.g.b can be related to a third individualc or even to
a itself); we decided to build the MSC by stopping when a
cycle is detected. Note that the result is an approximation
of the Most Specific Concept for a given individual name;
however, it is good enough for our purpose.

Now, let us assume that we calculated the MSC associated
to the elementa and we call itMSCa. If we are interested
in verifying whether the individuala is in the extension of
the conceptC in every interpretation, we can first check if
MSCa is subsumed byC or by¬C before performing any
precompletion. In fact, ifMSCa is subsumed byC thena
is an instance ofC, while if it is subsumed by¬C we know
for sure thata cannot be an instance ofC in any interpre-
tation satisfying the KB. If neither of the tests succeed, we
cannot say anything about the membership of the individual
to the given concept, and a standard precompletion process
is performed.

4 Empirical evaluation

The main purpose of the experiments we performed with
the system was to verify the feasability of the approach in
terms of performance. In particular, whether optimisations
made at the precompletion level make a real difference, and
which ones produce the best results. We compared our im-
plementation with RACE (see Haarslev and Möller [2000])

because it is the fastest available Abox rasoner, and it pro-
vides a superset ofSHf (it has unqualified number restric-
tions as well). The comparison of RACE with other DL
systems can be found in Franconi et al. [1998]. In this
paper we show a summary of the experiments, for a full
description refer to Tessaris [2001].

4.1 DL benchmark suite

The main problem in performing experiments with an
Abox reasoner is the lack of real data (i.e. KBs). For
our experiments we used thesynthetic Abox testsof the
DL benchmark suite,5 a collection of tests for DL systems
which has been introduced in the DL’98 workshop (see
Horrocks and Patel-Schneider [1998]). Unfortunately, the
test suite is mainly oriented towards terminological reason-
ing, because the tests were originated in the modal logic
community.

There are 9 classes of tests, each one containing different
instances of problems of increasing difficulty. Each in-
stance is automatically generated according to a schema re-
lated to the class, and it consists of a Tbox, an Abox and a
set of instance checking queries. Each instance is evaluated
by loading the knowledge base (i.e. Tbox and Abox), then
the KB satisfiability is checked and all the Abox queries
are evaluated with a fixed CPU time limit of 500 seconds.6

For each class is recorded the latest instance the system has
been able to evaluate within the time limit.

Abox test instances derive from the concepts generated for
the Concept Satisfiability Tests(see Horrocks and Patel-
Schneider [1998]). The Tbox is generated by naming all
the sub-concepts appearing in the test concept, while the
Abox is generated from the model generated by a satisfi-
ability test over the concept itself. This approach has the
advantage of being well defined, and the results for each
Abox query is known in advance; this is crucial for verify-
ing the correctness of the DL system. On the other hand, it
has several disadvantages that make the tests unsatisfactory
as examples of realistic problems. Firstly, the originating
concepts contain a single role name, and this is very un-
likely in any real KB. The second problem is the terminol-
ogy. Since all the sub–concepts are recursively named the
resulting Tbox is acyclic, and this means that it can be con-
sidered as an empty terminology. The last problem of the
synthetic Abox tests is the fact that Aboxes are built start-
ing from a model generated by a tableaux based DL system
for a concept. The kind of models these systems generate

5It is available at the URL http://kogs-www.
informatik.uni-hamburg.de/˜moeller/
dl-benchmark-suite.html .

6Experience shows that, due to the exponential nature of the
problem, instance problems not solved within this time limit are
unlikely to be solved in a reasonable amount of time.

http://kogs-www.informatik.uni-hamburg.de/~moeller/dl-benchmark-suite.html
http://kogs-www.informatik.uni-hamburg.de/~moeller/dl-benchmark-suite.html
http://kogs-www.informatik.uni-hamburg.de/~moeller/dl-benchmark-suite.html


are not unstructured, but they are always tree shaped and
mostly fully connected. Obviously they cannot be taken as
a representative sample for generic KBs.

As we are going to show in the next section, the inadequacy
of the data tests is highlighted by some of the results of
our experiments. Unfortunately, these synthetic Abox tests
are the only coherent suite for testing DL systems, so we
must make the most of them. However, the results must be
considered in the light of their limitations. We do not think
that the available Abox tests reflect realistic KBs, so they
cannot give an estimate of the size/type of KB our system
can handle.

4.2 Measurements

Our objective is to etablish a correlation between the per-
formance of the system on different tests and the behaviour
of the optimization techniques. We assumed that each class
of tests presents a different pattern, therefore we took sep-
arate measurements for each class. The results are sum-
marised in the following table:

MSC Default Backjumping
only

None RACE

k branchn 2 2 2 1 3
k d4 n 2 2 2 1 2
k dum n 16 8 2 1 13
k grz n 8 7 7 2 10
k lin n 4 4 4 3 4
k pathn 3 4 3 1 3
k ph n 6 6 6 6 5
k poly n 4 4 4 4 4
k t4p n 5 2 2 0 2

Results of the experiments are grouped by the class of
tests, and each column shows the last instance of the test
which has been solved within the given timeout of 500 sec-
onds. Different columns contain the results with different
configuration for the optimizations described in Section 3.
As a reference, the last column shows the results of the
RACE system (version 1.2).7 All the experiments have
been performed on a machine equipped with a Celeron 450
MHz processor, with 256 Mb of main memory and running
Linux with the kernel version 2.2.17. Both the systems are
written in Common Lisp and run using Allegro Common
Lisp version 5.0.1.

In the first configuration (MSC) all the previously de-
scribed optimizations are active; however, almost all the
queries are solved by a single subsumption test; therefore
precompletion is not used. The second column is the de-
fault settings with all optimization active with the excep-
tion of theinstance checking by subsumptiontechnique, be-

7This was the version of the RACE system available at that
time.

cause it prevents the precompletion, so other optimizations
are not exercised. In the fourth column only backjumping
is active, andmodal verificationis turned off. Finally, the
fifth column shows the results for the system without any
optimization apart from the basiclexical normalisationand
axiom absoption.

5 Conclusions

We noticed that most of the instance checking tests can be
solved by terminological reasoning only, without precom-
pleting the KB. In all classes exceptk d4 n andk grz n all
the instance checks are solved without precompleting the
Abox, and even in those two classes over 98% of the in-
stance checks are solved by using the MSC. This is a clear
indication that the tests are not adequate for fully evaluating
an Abox reasoner.

Note that using the MSC is not always the best way (in
terms of efficiency) of performing the instance checking.
Although, in some cases it provides remarkably good re-
sults (e.g.k dum n andk t4p n), in others it actually man-
ifests a loss of performance (e.g.k path n). In these cases
the algorithm is able to discover clashes in early stages of
the precompletion and backjumping is very effective, while
the overhead of building and testing the MSC does not pay
off.

Given the fact that during the precompletion no new indi-
viduals are created, nondeterminism is definitely the main
source of slow down of the system, and optimisations that
are directed at pruning the search space (such as back-
jumping) seem to provide uniformly better results. This is
clearly indicated by the fact that the performances degraded
significantly in the last two configurations. Moreover, as
predicted in Section 3.1, backjumping provides better re-
sults if associated with themodal verificationtechnique.

With the Abox tests from the benchmark suite, we really
did not expect our system to be faster than the RACE sys-
tem; even in a few classes. In fact, we know that RACE
is no slower than FaCT as a terminological reasoner,8 and
it uses the very same engine for both Abox and termino-
logical reasoning. If you look closely at the precompletion
technique, it uses transformation rules which are very sim-
ilar to the ones implemented in RACE; the difference lies
the fact that our system made a sharp distinction between
rules working with the Abox (the precompletion rules) and
rules working at the terminological level (delegated to the
terminological reasoner FaCT).

A system without this separation (like RACE) has the pos-

8In fact, w.r.t.SHf DL both RACE and FaCT use almost the
same algorithm and optimizations, and difference in their perfor-
mance is mainly due to implementation details.



sibility to maximise the effect of optimisations like back-
jumping because it has better information about constraints
causing contradictions (something we tried to simulate by
verifying the modal part of the label only). We think that
with classes likek branch n it is this fact that makes
the real difference in performance. In addition, RACE
is a more mature system and it has more optimisation
techniques implemented (for example model merging, see
Haarslev and M̈oller [2000]).

For these reasons, we did not expect to outperform RACE
for any test having a small and almost fully connected
Abox, where partitioning and memory occupation do not
make any difference. Obviously, it could be the case that
some of the results exhibited by our system depend on the
peculiar structure of the test problems. However, if this
behaviour is exhibited even with general KBs, it means
that there is some unnecessary overhead in the hybrid rea-
soning in RACE which can be reduced by separating the
treatment of Abox and “terminological” constraints. This
would suggest that the performance of tableaux–based al-
gorithms, such as the one implemented in RACE, might be
improved by using an evaluation strategy more similar to
the precompletion strategy (e.g. work on individuals first).
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