
OWL-QL – A Language for Deductive Query Answering on the Semantic Web 

Richard Fikes 
Knowledge Systems Laboratory 
Computer Science Department 

Stanford University 
Mailing Address: Gates Building, Room 246 

Stanford University 
Stanford, California 94305, U.S.A. 

Fax:   650-725-5850 
E-Mail:  fikes@ksl.stanford.edu 

Patrick Hayes 
Institute for Human and Machine Cognition 

University of West Florida 
Mailing Address: Institute for Human and Machine Cognition

The University of West Florida 
40 South Alcaniz Street 
Pensacola, FL 32501 

Fax:   850-202-4440  
E-Mail:  phayes@coginst.uwf.edu 

Ian Horrocks 
Information Management Group 

Department of Computer Science 
University of Manchester 

Mailing Address: Department of Computer Science, 
University of Manchester 
Oxford Road 
Manchester, M13 9PL, UK 

Fax:   (+44 161) 275 6211  
E-Mail:  horrocks@cs.man.ac.uk 

 1 



OWL-QL – A Language for Deductive Query Answering on the Semantic Web 

Abstract 
We discuss issues in designing a query language for the Semantic Web and present OWL Query 
Language (OWL-QL) as a candidate standard for query-answering dialogues among Semantic Web 
agents using knowledge represented in the Ontology Web Language (OWL).  OWL-QL formally 
specifies the semantic relationships among a query, an answer, and the knowledge base(s) used to 
produce the answer.  Unlike typical query languages, OWL-QL supports derivation of answers, use of 
multiple knowledge bases, and selection of knowledge bases by the answering agent.  Queries may have 
an unpredictable number of answers, and determining each answer may require an unpredictable amount 
of time. 

Keywords:  Query language, Semantic Web, Question-answering 

I. Introduction 
OWL Query Language (OWL-QL) is a formal language and protocol for a querying agent and an answering agent 
to use in conducting a query-answering dialogue using knowledge represented in the Ontology Web Language 
(OWL) [MH03].  OWL-QL is an updated version of the DAML Query Language (DQL) developed by the Joint 
United States/European Union ad hoc Agent Markup Language Committee1, and the authors of this paper, who 
are members of that committee, are the editors of both the DQL specification [FHH03a] and the OWL-QL 
specification [FHH03b].   

OWL-QL is intended to be a candidate standard language and protocol for query-answering dialogues among 
Semantic Web computational agents during which answering agents (which we refer to as servers) may derive 
answers to questions posed by querying agents (which we refer to as clients).  As such, it is designed to be 
suitable for a broad range of query-answering services and applications.  Also, although OWL-QL is specified for 
use with OWL, it is designed to be prototypical and easily adaptable to other declarative formal logic 
representation languages, including, in particular, first-order logic languages such as KIF [G98] and the earlier 
W3C languages, RDF [B03], RDF-S [BG03], and DAML+OIL [HHP01]. 

The OWL-QL Web site (http://ksl.stanford.edu/projects/owl-ql/) provides links to the OWL-QL specification 
and to current OWL-QL implementations, including an OWL-QL client with a Web browser user interface 
suitable for use by humans for asking queries of an OWL-QL server.  This paper describes OWL-QL and 
discusses significant design issues that arise in the development of a language for deductive query answering on 
the Semantic Web.  

II. Querying on the Semantic Web 
The design of OWL-QL is predicated on a number of basic assumptions about query-answering dialogs on the 
Semantic Web, and on the intended role of OWL-QL.  

First, the Semantic Web is expected to include many kinds of query-answering services with access to many 
types of information represented in many formats.  Traditional database query languages like SQL [I92] and 
languages for retrieving information from the Web (e.g., XML query [M03] and RQL [KC03]) are not suitable for 
supporting such heterogeneity, ranging from simple services that provide retrieval-based functionality to complex 
services that provide sophisticated automated reasoning functionality and may act as intermediary agents between 
their clients and more specialized servers.  OWL-QL supports query-answering dialogues in which the answering 
agent may use automated reasoning methods to derive answers to queries, as well as scenarios in which the 
knowledge to be used in answering a query may be in multiple knowledge bases on the Semantic Web, and/or 
where those knowledge bases are not specified by the client. 

                                                      
1 The committee is chaired by Michael Dean, and the members during the development of DQL were Harold Boley, Daniel Brickley, 

Stefan Decker, Richard Fikes, Benjamin Grosof, Frank van Harmelen, Patrick Hayes, Jeffrey Heflin, Ian Horrocks, Ora Lassila, Deborah 
McGuinness, Peter Patel-Schneider, and Lynn Andrea Stein.
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Second, we must expect that some servers will have only partial information about the topic, some will have 
performance limitations, and some will be simply unable to handle certain kinds of queries.  So, it is important 
that the querying protocol provide some means for the transfer of partial query results and about the querying 
process itself.  In this setting, the set of answers to a query may be of unpredictable size and may require an 
unpredictable amount of time to compute.  OWL-QL therefore provides an adaptable query answering protocol 
which both allows a server to return partial sets of answers as the answers are computed and allows a client to 
specify the maximum number of answers that it wants the server to include in the next set of answers it sends to 
the client. 

Third, a Semantic Web query language needs to support queries that do not include a specification of the 
knowledge base(s) to be used in answering the query.  That is, just as the user of a current Web browser does not 
specify which Web sites to consider when given a search request, we anticipate that a common use of the 
Semantic Web will be to send a query to a server and expect the server to select reliable knowledge sources from 
which to produce answers.  OWL-QL supports server selection of the knowledge base(s) to be used in answering 
a query, and client requests that a server identify the knowledge base(s) used in answering a query.     

Fourth, the set of notations and surface syntactic forms used on the Web is already large, and various 
communities have different preferences, none of then universal.  Even within the nearest to a single established 
syntax, XML, there are many alternative ‘styles’ of notational design in use.  The essential aspects of the design 
of OWL-QL are independent of the surface syntax of the language.  So, we have stated the OWL-QL specification 
at an ‘abstract’ or structural level, allowing essentially the same language to be implemented in multiple surface 
syntactic forms.  The specification describes the types of objects (e.g., queries and answers) that are passed 
between server and client during a query-answering dialogue, the necessary and optional components of each of 
those object types, and the expected response of a server to each type of object sent to it by a client.  In addition, 
we have included with the abstract specification of OWL-QL a syntax specification for the language in XML 
Schema in order to provide an example syntax for the language.  We claim that this style of ‘meta-specification’ 
of OWL-QL will be of more utility in a Semantic Web context than the more traditional approach.  For the 
examples in this paper, we use an informal human readable surface syntax for queries and answers. 

Finally, a basic premise of the Semantic Web is that the declarative languages used to represent knowledge on 
the Web will have a formally defined semantics and theory of logical entailment.  That is the case for OWL, and 
for most of its predecessors, including DAML+OIL, RDF, and RDF-S.  That premise also applies to query 
languages for the Semantic Web in that the specification of a Semantic Web query language needs to include a 
formal description of the semantic relationships among a query, a query answer, and the knowledge base(s) used 
to produce the answer.  The OWL-QL specification provides those formal descriptions. 

III. Queries and Answers 

A. Query Patterns and Variables 
An OWL knowledge base K is considered to be a collection of logical sentences KS that represents a logical 
theory in which a collection of entailed sentences KES are true such that KS⊆KES.  It is natural, therefore, to think 
of a query as asking for sentences in KES that “satisfy” a given “sentence schema”, and to think of using bindings 
to variables in that sentence schema as specifying answers to the query.  This conventional picture, which we 
have adopted for OWL-QL, is compatible with the semantics of Semantic Web representation languages and is 
consistent with the Codd database model [C70] and many other logical formalisms.  

An OWL-QL query-answering dialogue is initiated by a client sending a query to an OWL-QL server.  An 
OWL-QL query is an object necessarily containing a query pattern that specifies a collection of OWL sentences 
in which some URIrefs are considered to be variables.  For example, a client could ask “Who owns a red car?” 
with a query having the query pattern shown in Figure 1. 
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2Query:  (“Who owns a red car?”) 
Query Pattern:  {(owns ?p ?c) (type ?c Car)  (has-color ?c Red)} 
Must-Bind Variables List:  (?p) 
May-Bind Variables List:  () 
Don’t-Bind Variables List:  () 
Answer Pattern: {(owns ?p “a red car”)} 
Answer KB Pattern: … 

Answer:  (“Joe owns a red car?”) 
Answer Pattern Instance: {(owns Joe “a red car”)} 
Query: … 
Server: … 

A ich provides bindings of URIrefs or literals to some of the 
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Figure 1.  A simple OWL-QL query and answer 

 query may have zero or more answers, each of wh

riables in the query pattern such that the conjunction  of the answer sentences - produced by applying the 
ndings to the query pattern and considering the remaining variables in the query pattern to be existentially 
antified - is entailed by a knowledge base (KB) called the answer KB.  For example, the answer “Joe owns a 
d car.” shown in Figure 1 means the answer KB entails the following sentence, expressed here in first-order 
gic (using KIF syntax): 

(exists   (?c)   (and  (owns Joe ?c)  (type ?c Car)  (has-color ?c Red))) 

 formal description of the relationships between a query and its answers is given in the appendix of this paper.  
Each binding in a query answer is a URIref or a literal that either explicitly occurs as a term in the answer KB 

 is a term in OWL.  That is, OWL-QL is designed for answering queries of the form "What URIrefs and literals 
om the answer KB and OWL denote objects that make the query pattern true?” or, when there are no variables 
 be bound in the query pattern, “Is the query pattern true in the answer KB?”.  We will say that a variable that 
s a binding in a query answer is identified in that query answer.  The use of entailment here is what most clearly 
stinguishes OWL-QL from SQL and other retrieval languages, since although a database may be understood to 
tail its table entries considered as atomic assertions, entailment in OWL also allows more complex relationships 
 hold which may be much more expensive to compute. 

We now describe how a client specifies which syntactic elements of a query pattern are to be considered as 
riables and what bindings are expected and required in a query answer.  OWL has no suitable notion of a 
riable, so an OWL-QL query pattern is simply an OWL knowledge base, and a query specifies which URI 
ferences in its query pattern are to be considered to be variables.  Data base query languages typically designate 
subset of the variables in a query as being the variables for which bindings are to be included in a query answer.  
 typical knowledge representation languages (including OWL), a knowledge base may entail the existence of a 
ery answer but not entail a binding for every variable in the query.  For example, a knowledge base that says 
ery person has exactly one father (i.e., that every object of type “Person” has exactly one value of the property 
asFather”) and that Joe is a person (i.e., that “Joe” is type “Person”), entails that Joe has a father but may not 
tail a value of property “hasFather” for Joe.  (I.e., the knowledge base may not identify the father.) 
OWL-QL supports existentially quantified answers by enabling the client to designate some of the query 

riables for which answers will be accepted with or without bindings.  That is, each variable that occurs in a 
WL-QL query is considered to be a must-bind variable, a may-bind variable, or a don’t-bind variable.  Answers 
e required to provide bindings for all the must-bind variables, may provide bindings for any of the may-bind 
riables, and are not to provide bindings for any of the don’t-bind variables.  These designations are made by 
clusion of a must-bind variables list, a may-bind variables list, and a don’t-bind variable list in an OWL-QL 
ery.  These lists contain URI references that occur in the query, and no URI reference can be an item of more 
an one of these lists. 

                                                   
e show a query pattern as a set of triples of the form (<property> <subject> <object>), where any item in the triple can be a variable.  

We show variables as names beginning with the character “?”. 
e use “conjunction” informally in this introductory section since OWL does not have a logical connective for conjoining sentences or 

for conjoining knowledge bases.  We consider a conjunction of sentences to be a sentence that is true if and only if all of its conjuncts are 
true.   We consider a conjunction of knowledge bases to be a knowledge base consisting of all the sentences in all the conjunct 
knowledge bases. 
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The following example illustrates the effects of having must-bind, may-bind, and don’t-bind variables.  
Consider an answer KB containing sentences saying that every person has exactly one father, each of a large 
number of Cis is a person, and Fk is a father of Ck for each Ck in a small subset of the Cis.  Then consider a query 
with the query pattern “{(hasFather ?p ?f)}”, meaning “?p has father ?f”, and the following cases: 
• If ?f is a don’t-bind variable, then the complete set of query answers contains Ci answers (i.e., one for each 

known person), and each query answer identifies a person but does not identify the person’s father. 
• If ?f is a must-bind variable, then the complete set of query answers contains only Ck answers (i.e., one for 

each known father), and each query answer identifies both a person and the person’s father. 
• If ?f is a may-bind variable, then the complete set of non-redundant query answers contains Ci answers (i.e., 

one for each known person), and each query answer identifies a person and identifies the person’s father in 
the cases where the father is known.   

Specifying a query pattern and the variables lists does not indicate how the answers – the bindings to the pattern 
variables – are to be returned from the server to the client.  OWL-QL allows a client to specify the format in 
which answer bindings are returned by (optionally) including an answer pattern in a query that can be any list 
expression containing all of the query’s must-bind and may-bind variables.  If no answer pattern is specified, a 
two item list whose first item is the query’s must-bind variables list and whose second item is the query’s may-
bind variables list is used as the answer pattern.  Each query answer contains an instantiation of the answer pattern 
in which each variable having a binding in the answer is replaced by its binding. 

B. Including Assumptions in a Query 
Since OWL does not have an “implies” logical connective, “if-then” queries such as “If Joe is a person, then does 
Joe have a father?” cannot be stated using only a query pattern.  OWL-QL facilitates the representation of “if-
then” queries by enabling a query to optionally include a query premise that is an OWL KB or a KB reference.  
When a premise is included in a query, it is considered to be included in the answer KB.  Omitting the query 
premise is equivalent to providing an empty query premise.  Figure 2 provides an example of a query that 
includes a premise. 

Query: “If C1 is a Seafood Course and W1 is a drink of C1, then what color is W1?” 
Premise:  {(type C1 Seafood-Course) (has-drink W1 C1)} 
Query Pattern:  {(has-color W1 ?x)} 
Must-Bind Variables List:  (?x) 
… 
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Figure 2.  Example if-then query.

. Specifying Answer KBs 

he set of OWL sentences that are used by the server in answering a query is referred to as the answer KB.  This 
ay be one or more actual knowledge bases, or a virtual entity representing the total information available to the 

erver at the time of answering.  An OWL-QL query contains an answer KB pattern that is a KB, a list of KB 
ferences, or a variable.  If a query’s answer KB pattern is a KB or a reference to a KB, then the conjunction of 
e answer sentences specified by each query answer must be entailed by that KB.  If a query’s answer KB pattern 
 a list of KBs and/or KB references, then the conjunction of the answer sentences specified by each query 
nswer must be entailed by the conjunction of the KBs in or referenced in that list.  If a query’s answer KB 
attern is a variable, then the server is free to select or to generate an answer KB from which to answer the query, 
ut if the variable is a must-bind variable, then the answer must provide a binding to the variable that is a 
ference to a resource representing the answer KB.  In many cases, that URIref will be a URL that can be used to 

ccess the KB or to communicate with the server about the KB, but the URIref is not required to be a URL. 

V. Query Answering Dialogues 
 query may have any number of answers, including none.  In general, we cannot expect that a server will 
roduce all the answers at once, or that the client is willing to wait for an exhaustive search to be completed by 
e server.  We also cannot expect that all servers will guarantee to provide all answers to a query, or to not 
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provide any redundant answers.  OWL-QL attempts to provide a basic tool kit to enable clients and servers to 
interact under these conditions.   

Answers are delivered by the server in bundles, and the client can specify the maximum number of answers in 
each bundle.  Each request from a client to a server for answers to a query can include an answer bundle size 
bound, and the server is required to respond by delivering an answer bundle containing at most the number of 
query answers given by the answer bundle size bound.  The collection of all answers sent to the client by the 
server in a query-answering dialogue is called the response collection of that dialogue.   

An answer bundle must also contain either a process handle or one or more character strings called 
termination tokens.  The presence of a termination token in an answer bundle indicates that the server will not 
deliver any more answers to the query, and the presence of a server continuation in an answer bundle represents a 
commitment by the server to deliver another answer bundle if more answers to the query are requested by a client.   

A client requests additional answers to a query by sending the server a server continuation containing the 
process handle provided by the server in the previously produced answer bundle and an answer bundle size bound 
for the next answer bundle to be produced by the server.  Upon receiving a server continuation from a client, the 
server is expected to respond similarly by sending to that client another answer bundle.  A client terminates a 
query-answering dialogue by sending the server a server termination containing the process handle provided by 
the server in the previously produced answer bundle.  The overall structure of the dialogue is illustrated in Figure 
3. 

Query 
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Figure 3.  OWL-QL Query-Answering

ote that more than one client can participate in a g
at sends a server continuation to the server need
rver continuations during the dialogue.   

The OWL-QL specification does not restrict the nature or content of process handles.  Different servers may 

e process handles in different ways.  Some database servers may generate a complete table of answers, store it 
 association with a record of the query, and then use as a process handle an index or hash code keyed to the 
ery record.  Other servers may take advantage of the protocol to store enough information in a process handle to 
able them to reconstruct the state of a search process and continue the search.  Still others may simply store the 
swers already produced in a record of the query, use the query record as a process handle, and restart the query 
swering process from the beginning each time additional answers are requested.  Note that the inclusion of a 
ocess handle in an answer bundle is not a commitment to provide more answers.  If, for example, a server is 
able to reconstruct the state of a query process when asked for more answers, it can always respond with an 
swer bundle containing a termination token and no answers. 
OWL-QL specifies the following three termination tokens: 
• “End” simply indicates that the server is unable to deliver any more answers; it is conventionally used to 

terminate the process of responding to a query.  One possible response to any query is a single answer 
bundle containing “End”, indicating that the server will not provide any answers to the query.   
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• “None” expresses an assertion by the server that no other answers are possible. This assertion should be 
used with care, particularly when in response to a query containing a don’t-bind variable, where it has the 
semantic force of a negated existential, i.e. a universal negation.  

• “Rejected” can be used by a server to indicate that the query is outside its scope for some reason, e.g., by 
being posed in a subset of the language which it is unable to process, or by being in some way ill-formed.  
This is a crude device for expressing what could be a complex topic, but servers may also define their 
own termination tokens to be used in conjunction with the OWL-QL tokens, which can be used to express 
more nuanced forms of rejection. 

The use of “None” would be appropriate in a case where a server has access to a collection of data which is 
known to be complete or exhaustive in some way, such as a database of employees of a company.  Suppose a 
query asks for all employees with a salary over $200K, and the returned answer bundle is empty, terminated with 
“None”.  This would be sufficient grounds for the client to conclude that the company has no employees with that 
salary.  Notice that the termination token “End” would not provide this kind of a guarantee, given the monotonic 
semantics of OWL.  To treat an “End” token as though it meant “None” would be to make a ‘closed-world 
assumption’, which is not valid.  The distinction between these tokens was motivated in part by the widely noted 
utility of closed-world reasoning.  Making the distinction explicit in the exchange protocol provides a way to 
express closure without forcing clients to draw invalid conclusions in cases where a closed-world assumption is 
inappropriate.  

These conventions, taken together, allow a simple expression of a ‘yes/no’ query.  Such queries can be 
expressed by a query pattern with no variables; an answer bundle containing one answer indicates that the pattern 
is entailed by the KB; an answer bundle containing no answers and the termination token “None” indicates that 
the query is known to not be entailed by the answer KB; and any other answer bundle containing no answers 
indicates that entailment of the query cannot be determined by the server. 

OWL-QL does not specify a complete inter-agent protocol (e.g., with provisions for time-outs, error handling, 
resource budgets, etc.).  OWL-QL servers are required to support the specified core protocol elements and are not 
constrained by the OWL-QL specification as to how additional protocol functionality is provided.  Queries, 
answer bundles, server continuations, and server terminations are all designed to support additional protocol 
functionality in that they are objects consisting of property value pairs and can include values of additional 
properties as specified and supported by a given server.   

A. Duplicate and Redundant Answers 
While there are no global requirements on the response collection of a query answering dialogue other than that 
all its members are correct answers, clients will typically find it useful to know whether a given server ensures 
that its response collections contain no duplicate or redundant answers.  Redundant answers can be a particularly 
vexing problem for queries that contain a variable that is a value of a maxCardinality restriction in a query pattern 
since a server could potentially produce an unlimited number of answers with less and less specific bindings for 
such a variable.  For example, if a property for an individual has a maxCardinality restriction value of 3, then it 
also has a maxCardinality restriction value of 4 and 5 and 6, etc. 

For some servers, assuring that no duplicate or redundant answers are produced would be very expensive, and 
imposing such a requirement as part of an intended standard would impose a high initial implementation cost for 
simple servers.  On the other hand, a server that is able to deliver non-repeating or non-redundant responses may 
wish to advertise this useful quality.  OWL-QL specifies a set of conformance levels which a server can use to do 
that advertising.  

A server which always produces a response collection that contains no duplicate answers can be called non-
repeating, where two answers are considered to be duplicates if they have the same set of bindings.  A server 
which always produces a response collection that contains no redundant answers can be called terse, where an 
answer is considered to be redundant if it subsumes (i.e., duplicates or is less specific than) some other answer in 
the response set.  An answer is considered to be less specific if it binds fewer may-bind variables or has less-
specific bindings for variables that occur only as values of minCardinality or maxCardinality restrictions.  
Formally: 

An answer A1 subsumes an answer A2 if and only if
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for every variable V that has a binding in A1’s binding set, 
V has a binding in A2’s binding set and
the binding of V in A1’s binding set subsumes the binding of V in A2’s binding set. 

For every V that occurs in a query Q,  
binding B1 of a variable V subsumes a binding B2 of V if and only if  

B1 is identical to B2 or  
V occurs in Q only as a value in a minCardinality restriction in the query pattern of Q and  

B1 is less than B2 or  
V occurs in Q only as a value in a maxCardinality restriction in the query pattern of Q and  

B1 is greater than B2. 
Guaranteeing terseness is a quite harsh requirement on a server that is incrementally deriving answers and 
returning bundles of answers as they are produced.  The difficulty is that if such a server derives and returns an 
answer A1 with an unbound may-bind variable (i.e., A1 does not provide a binding for that variable), then it 
cannot later return any answer A2 that it derives containing the same bindings as those in A1 with the addition of a 
binding for the unbound may-bind variable because A1 would subsume any such A2.  Similarly, if such a server 
derives and returns an answer A1 with a binding B for a variable V that occurs in the query only as a value in a 
minCardinality (maxCardinality) restriction in the query pattern, then it cannot later return any answer A2 that it 
derives containing the same bindings as those in A1 with the addition of a binding for V that is less than (greater 
than) B because A1 would subsume any such A2. 

A much more reasonable requirement is for a server to guarantee that it will not return any answer that 
subsumes any previous answer it has produced in a given query answering dialogue; that is, it will not 
gratuitously return answers to a client that are duplicates of or are less specific than answers it has already 
returned.  Such a server can advertise itself as being serially terse.  Note that a terse server is necessarily a serially 
terse server and that a serially terse server is necessarily a non-repeating server.  We expect that most applications 
will require the OWL-QL servers they use to be serially terse.   

Note that although additional criteria for answers being redundant would be useful for clients, care must be 
taken to consider the computational burden on a server satisfying such criteria would impose. For example, 
consider a variable V that occurs only as the value of an allValuesFrom restriction in a query pattern.  If V has a 
binding to class C in a query answer, then answers which differ only in that they have a binding of V to a 
superclass of C would also be correct.  However, those answers would be redundant and very unlikely to be useful 
to a client.  If the definition of redundant answers were to be extended to include such variables values, a serially 
terse server could not return an answer containing a binding for such a variable until it determined that the 
subclassOf relationship is false (not just that it is unknown) between that binding and all the other bindings that it 
has produced for that variable in answers that differ only in their binding of that variable.   

V. Discussion 

A. Utilizing the Expressive Power of OWL 
Query languages for description logics and other logic-based knowledge representation formalisms often include 
explicit “structural queries”, such as queries asking about the subsumers, subclasses, and instances of classes 
[BM96] [BBH91] [BHP99].  In OWL-QL, these kinds of questions can be formulated using the standard query 
mechanism, taking advantage of the expressive power of the OWL language itself.  For example, answers to the 
query using the query pattern {(subclassOf ?x Person)}, where ?x is a must-bind variable, will be the derivable 
subclasses of class Person.  Similarly, answers to the query using the query pattern {(type ?x Person)}, where 
?x is again a must-bind variable, will be the derivable instances of class Person.  This ability is limited to 
concepts which can be expressed using OWL: for example, there is no way in OWL to express the concept of a 
most general subclass or a most specific type.  The OWL-QL query pattern language was not extended beyond the 
expressive capabilities of the content language used in the knowledge bases being queried (i.e., OWL) so as not to 
impose greater computational burdens on a server than are defined by the specification of the language it uses. 

Some SQL-style queries can be expressed using a similar technique.  For example, a simple relational table 
might be encoded in OWL as a collection of assertions using rdf:value with the following format: 
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(rdf:value ex:Joe _:x) 
(rdf:type _:x ex:employeeInfo) 
(ex:surname _:x “Jones”) 
(ex:SSnumber _:x “234-55-6789”) 
(ex:age _:x xsd:number^^“43”) 
(ex:location _:x ex:marketing) 

where the value of rdf:type is the ‘table entry’ and the table name is its type.  The SQL command ‘select 
SSnumber from employeeInfo’ then translates into the OWL-QL query pattern  
(rdf:type ?x ex:emplyeeInfo)  
(ex:SSnumber ?x ?y) 

with ?y being a must-bind variable and ?x being a don’t bind variable.  More complex SQL conditions can be 
expressed by more complex OWL query patterns – for example, a conditional selection can be expressed as an 
OWL restriction on a class such as ex:employeeInfo - but these will provide answers only if the server is able to 
perform the appropriate reasoning.  In general, in contrast to the presumptions of the SQL querying model, the 
OWL-QL assumption is that nontrivial inferences about the data are performed by the server rather than by the 
client. 

B. Iterative Optimization 
Clients can use OWL-QL to obtain answers to queries involving concepts not expressible in OWL such as “most 
general subclass” or “most specific type”, and indeed to optimize any variable with respect to any given transitive 
property, by using an iterative optimization technique as follows.  To optimize the value of a must-bind variable 
V in a query Q with respect to a transitive property P and a server S, send Q to S asking for at most one answer.  
If S provides an answer to Q with a binding of Bi for V, then send S a query Q’ consisting of Q with the additional 
premise “(P Bi V)” and ask for at most one answer.  If S does not provide an answer to Q’, then Bi is the optimal 
binding that S can provide for V.  If S provides an answer to Q’ with a binding of Bj for V, then send S a new 
query Q’ consisting of Q with the additional premise “(P Bj V)”.  Continue this iterative querying until S does not 
provide an answer.  The last binding produced for V is the optimal binding that S can provide for V.  For 
example, a client could use iterative optimization to find the most general subclass of C by asking for at most one 
answer to a query with query pattern {(subclassOf ?x C)} and must-bind variable ?x, and then successively 
asking for at most one answer to the same query with the addition of premise {(subclassOf Ci ?x)}, where Ci is 
the most recently returned binding for ?x. 

C. Asking About the Number of Answers 
Many problems involve asking “how many” queries, such as “How many cars does Joe own?”.  One might be 
tempted to ask a “how many” query by asking an OWL-QL query and counting the number of answers produced 
by the server.  The problems with that strategy are two fold:  Firstly, the server may complete the query answering 
dialogue without guaranteeing that it has found all the answers; and secondly, the bindings for a given variable in 
multiple answers may all denote the same entity (i.e., they may be equal).  So, for example, a server may respond 
to a query having query pattern {(type ?x car) (owns Joe ?x)} with three answers that bind ?x respectively to 
“Car1”, “Car2”, and “Car3”.  If the server terminates the dialogue with the termination token “End” (rather than 
“None”), then the client doesn’t know whether the answer KB entails more bindings that denote cars owned by 
Joe, and the client doesn’t know whether Car1=Car2, Car1=Car3, and/or Car2=Car3.  So, all that the client can 
conclude from the server’s response about how many cars Joe owns is that Joe owns at least one car.  In order for 
the client to determine how many cars are owned by Joe, it would have to ask the query of a server that advertises 
itself as “complete”, and it would have to make (typically multiple) subsequent queries to determine which 
bindings denote different cars.  

The primary means that OWL provides for expressing the number of entities in a domain of discourse that 
satisfy some set of conditions (e.g., how many cars are owned by Joe) are cardinality restrictions on the number of 
values of a given property for a given individual or class of individuals (e.g., “What is the value of a cardinality 
restriction on property “ownsCar” for “Joe”?”, where “ownsCar” is a subproperty of “owns” that has a “Car” 
allValuesFrom restriction of “Car” for Joe).  Thus, in general, the way to meaningfully ask “how many” queries 
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using OWL-QL is to ask for the value of an appropriate cardinality restriction, rather than asking a query and 
counting the answers. 

OWL-QL does, in fact, allow a client to ask for how many answers a server will provide for a given query by 
including in the query an answer number request and an accompanying query variable.  If the variable is a must-
bind variable, then providing the number of answers is required, if the variable is a may-bind variable, then 
providing the number of answers is optional.  The primary motivation for including this feature in OWL-QL is 
that many database servers record information about the number of entries in their data tables and can rapidly 
respond to requests for this information.  Thus, such servers can often inform a client as to how many answers 
they will provide to a query with no significant additional effort.   

VI. Closing Comments 
In this paper, we have discussed what were to us surprisingly difficult issues involved in designing a query 
language for the Semantic Web, and have presented a candidate standard language and protocol for query-
answering dialogues among Semantic Web computational agents using knowledge represented in the W3C’s 
Ontology Web Language (OWL).  OWL-QL is a formally specified language with precisely defined semantic 
relationships among a query, a query answer, and the knowledge base(s) used to produce the answer.  Unlike 
standard database and Web query languages, OWL-QL supports query-answering dialogues in which the 
answering agent may use automated reasoning methods to derive answers to queries, as well as dialogues in 
which the knowledge to be used in answering a query may be in multiple knowledge bases on the Semantic Web, 
and/or where those knowledge bases are not specified by the querying agent.  In this setting, the set of answers to 
a query may be of unpredictable size and may require an unpredictable amount of time to compute. 

Although OWL-QL is specified for use with OWL, it is designed to be prototypical and easily adaptable to 
other declarative formal logic representation languages, including, in particular, first-order logic languages such 
as KIF and the earlier W3C languages RDF, RDFS, and DAML+OIL.  OWL-QL is, in fact, being used in 
multiple projects in which knowledge and query patterns can be represented in KIF as well as OWL. 
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Appendix – Formal Relationship between a Query and a Query Answer 
An OWL-QL query necessarily includes a query pattern that is an OWL knowledge base, a list of must-bind 
variables, a list of may-bind variables, and a list of don’t-bind variables.  Each variable in these lists is a URIref.  
Also, a query optionally includes an answer pattern that is an arbitrary list structure.  If there is no answer pattern 
included in a query, a two item list whose first item is the query’s must-bind variables list and whose second item 
is the query’s may-bind variables list is used as the answer pattern. 

A query answer necessarily includes an answer pattern instance that is the query’s answer pattern with each of 
the query’s must-bind variables and zero or more of the may-bind variables (and none of any other variables that 
occur in the answer pattern) replaced by a URIref or literal.  The answer pattern instance specifies a binding set 
that satisfies the following conditions: 
• Each element of the binding set is a lexical mapping that associates a URIref or literal to a query variable. 
• The binding set contains a binding to each of the must-bind query variables, to zero or more of the may-bind 

query variables, and to none of the don’t-bind query variables; 
• If the binding set contains a binding to a variable that is the answer KB pattern, then the binding is to a 

reference to the answer KB; 
• If the binding set contains a binding to a variable that accompanies an answer number request, then the 

binding is to a literal that is a non-negative integer; 
• All bindings in the binding set to variables in the query pattern are URIrefs or literals that occur in the OWL 

language or in the answer KB; 
In addition, a binding set in a query answer specifies a set of OWL sentences that the server claims are entailed by 
the answer KB.  That claim is specified formally as follows.  Suppose: 

• Q is the query pattern for the query of which this is an answer; 
• B is the subset of the binding set consisting of all the bindings to variables that occur in Q; 
• B(Q) is the KB obtained by applying the bindings B to Q, i.e., by substituting the URIref or literal that is 

associated with v for every variable v that has a binding in B; and 
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• The “remaining variables” are those variables in B(Q) that are not replaced by B.   
Then, 

• An interpretation I satisfies B(Q) if there is a mapping C from the remaining variables of B(Q) to the 
universe of I such that I+C satisfies B(Q); that is, if the interpretation can be extended to provide 
interpretations of the remaining variables in some way that makes B(Q) true.   

• The answer KB entails B(Q) just in case B(Q) is true in every interpretation that makes the answer KB true.  
Intuitively, this means that the remaining variables are treated as existential 'blanks' which indicate that 
something exists without saying what it is. 

The additional condition, then, that the server is claiming is satisfied by a binding set is that the answer KB 
entails B(Q). 
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