
Reducing OWL Entailment
to Description Logic Satisfiability?

Ian Horrocks1 and Peter F. Patel-Schneider2

1 Department of Computer Science
University of Manchester

Email: horrocks@cs.man.ac.uk
2 Bell Labs Research
Lucent Technologies

Email: pfps@research.bell-labs.com

Abstract. We show how to reduce ontology entailment for the OWL DL and
OWL Lite ontology languages to knowledge base satisfiability in (respectively)
the SHOIN (D) and SHIF(D) description logics. This is done by first estab-
lishing a correspondence between OWL ontologies and description logic knowl-
edge bases and then by showing how knowledge base entailment can be reduced
to knowledge base satisfiability.

1 Introduction

The aim of the Semantic Web is to make web resources (not just HTML pages, but a
wide range of web accessible data and services) more readily accessible to automated
processes. This is to be done by augmenting existing presentation markup with semantic
markup, i.e., meta-data annotations that describe their content [2]. According to widely
known proposals for a Semantic Web architecture, ontologies will play a key role as
they will be used as a source of shared and precisely defined terms that can be used in
such metadata [15].

The importance of ontologies in semantic markup has prompted the development
of several ontology languages specifically designed for this purpose. These include
OIL [7], DAML+OIL [13] and OWL [4, 16]. OWL is of particular significance as it
has been developed by the W3C Web Ontology working group, and is now an official
W3C recommendation.

The OWL recommendation actually consists of three languages of increasing
expressive power: OWL Lite, OWL DL and OWL Full. Like OWL’s predecessor
DAML+OIL, OWL Lite and OWL DL can be viewed as expressive description log-
ics with an RDF syntax. They can therefore exploit the considerable existing body of
description logic research. In particular, these two languages can utilize previous work
reported on in the description logic literature to define their semantics and to under-
stand their formal properties such as the decidability and complexity of key inference

? This is a revised and extended version of a paper of the same name that was presented at
ISWC-2003 in October 2003.

problems [6]. OWL Full provides a more complete integration with RDF, but its for-
mal properties are less well understood, and key inference problems would certainly be
much harder to compute.3 This paper, therefore, concentrates on the provision of rea-
soning services for OWL Lite and OWL DL, and does not consider reasoning in OWL
Full.

1.1 OWL Reasoning

Reasoning with ontology languages will be important in the Semantic Web if applica-
tions are to exploit the semantics of ontology based metadata annotations. For example,
if semantic search engines are to find pages based on the semantics of their annotations
rather than their syntax, then they need to perform semantic reasoning in the language
of the annotations. As well as providing insights into OWL’s formal properties, OWL’s
relationship to expressive description logics provides a source of algorithms for solving
key inference problems, in particular satisfiability. Moreover, in spite of the high worst
case complexity of reasoning in such description logics, highly optimised implementa-
tions of these algorithms are available and have been shown to work well with realistic
problems. Two difficulties arise, however, when attempting to use such implementations
to provide reasoning services for OWL:

1. OWL’s RDF syntax uses frame-like constructs that do not correspond directly to
description logic axioms; and

2. as in RDF, OWL inference is defined in terms of ontology entailment rather than
ontology satisfiability.

Note that entailment between ontologies (similarly, entailment between RDF graphs) is
a basic inference task into which most other inference tasks can be transformed: given
an ontology O, a class C is subsumed by a class D with respect to O just in case O
entails the ontology {SubClassOf(C D)}, and i is an instance of C with respect to
O just in case O entails the ontology {Individual(i type(C)}. Moreover, trans-
forming these inference tasks into ontology (graph) satisfiability requires full negation,
which is not available in either RDF or RDF Schema, and is not directly supported in
OWL Lite.

The obvious solution to the first difficulty is to define a mapping that decomposes
OWL frames into one or more description logic axioms. It turns out, however, that the
RDF syntax used in OWL cannot be directly translated into any “standard” description
logic because it allows the use of anonymous individuals in axioms asserting the types
of and relationships between individuals. The obvious solution to the second difficulty
is to reduce entailment to satisfiability. Doing this naively would, however, require role
negation, and this is not supported in any implemented description logic reasoner.

In this paper we will show that, in spite of these difficulties, ontology entailment
in OWL DL and OWL Lite can be reduced to knowledge base satisfiability in the
SHOIN (D) and SHIF(D) description logics respectively. This is achieved by map-
ping OWL to an intermediate description logic that includes a novel axiom asserting the

3 Inference in OWL Full is clearly undecidable as OWL Full does not include restrictions on the
use of transitive properties which are required in order to maintain decidability [11].

2

non-emptiness of a class, and by using a more sophisticated reduction to satisfiability
that both eliminates this constructor and avoids the use of role negation.

This is a significant result from both a theoretical and a practical perspective: it
demonstrates that computing ontology entailment in OWL DL (respectively OWL Lite)
has the same complexity as computing knowledge base satisfiability in SHOIN (D)
(SHIF(D)), and that description logic algorithms and implementations (such as
RACER [8]) can be used to provide reasoning services for OWL Lite. The design of
“practical” algorithms for SHOIN (D) is still an open problem, but one that is the
subject of active investigation.

2 The OWL Web Ontology Language

As mentioned above, OWL [4, 16] is an ontology language that has recently been de-
veloped by the W3C Web Ontology Working Group. OWL is defined as an extension
to RDF in the form of a vocabulary entailment [9], i.e., the syntax of OWL is the syntax
of RDF and the semantics of OWL are an extension of the semantics of RDF.

OWL has many features in common with description logics, but also has some sig-
nificant differences. The first difference between OWL and description logics is that the
syntax of OWL is the syntax of RDF. OWL information is thus encoded in RDF/XML
documents [1] and parsed into RDF Graphs [14] composed of triples. Because RDF
Graphs are such an impoverished syntax, many description logic constructs in OWL
are encoded into several triples. Because RDF Graphs are graphs, however, it is possi-
ble to create circular syntactic structures in OWL, which are not possible in description
logics. Subtle interactions between OWL and RDF cause problems with some of these
circular syntactic structures.

The second difference between OWL and description logics is that OWL contains
features that do not fit within the description logic framework. For example, OWL
classes are objects in the domain of discourse and can be made instances of other con-
cepts, including themselves. These two features, also present in RDF, make a semantic
treatment of OWL quite different from the semantic treatment of description logics.

2.1 OWL DL and OWL Lite

Fortunately for our purpose, there are officially-defined subsets of OWL that are much
closer to description logics. The larger of these subsets, called OWL DL, restricts OWL
in two ways. First, unusual syntactic constructs, such as descriptions with syntactic
cycles in them, are not allowed in OWL DL. Second, classes, properties, and individuals
(usually called concepts, roles and individuals in description logics) must be disjoint in
the semantics for OWL DL. These two restrictions make OWL DL much closer to a
description logic.

Because of the syntactic restrictions in OWL DL, it is possible to develop an abstract
syntax for OWL DL [16] that looks much like an abstract syntax for a powerful frame
language, and is not very different from description logic syntaxes. This is very similar
to the approach taken in the OIL language [7]. The abstract syntax for OWL DL has
classes and data ranges, which are analogues of concepts and concrete datatypes in

3

Classes
A

intersectionOf(C1 . . . Cn)
unionOf(C1 . . . Cn)
complementOf(C)
oneOf(o1 . . . on)
restriction(R
{allValuesFrom(C)} {someValuesFrom(C)}
{value(o)} [minCardinality(n)]
[maxCardinality(m)] [cardinality(`)])

restriction(T
{allValuesFrom(D)} {someValuesFrom(D)}
{value(v)} [minCardinality(n)]
[maxCardinality(m)] [cardinality(`)])

Data Ranges
B

oneOf(v1 . . . vn)

Fig. 1. OWL DL Description Constructors

description logics, and axioms and facts, which are analogues of axioms in description
logics. Axioms and facts are grouped into ontologies, the analogue of description logic
knowledge bases, which are the highest level of OWL DL syntax. Ontologies can input
other ontologies in OWL, but this importing should be handled outside of the semantics
for OWL and thus does not affect the reduction to description logics.

The constructors used to form OWL DL descriptions and data ranges are provided in
Figure 1; in the figure A is a class name, C (possibly subscripted) is a class, o (possibly
subscripted) is an individual name, R (possibly subscripted) is an object property (also
called abstract or individual-valued properties), T (possibly subscripted) is a datatype
property,4 B is a datatype, D (possibly subscripted) is a data range, v (possibly sub-
scripted) is a data value, and `,m, n are non-negative integers. A data value is either
of the form "`"ˆˆd, where d is the name of a supported datatype and ` is a lexical
form in that datatype, or an untyped string with an optional language tag. For exam-
ple, "1"ˆˆxsd:integer denotes the integer 1, whereas both "1"ˆˆxsd:string
and "1" denote one-character strings. An OWL DL or OWL Lite reasoner may sup-
port many datatypes, but must support at least the XML Schema datatypes xsd:integer
and xsd:string. Data values of the form "ℓ"ˆˆd, where d is not a supported
datatype, are also allowed in OWL DL and OWL Lite. The denotation of these data
values are unconstrained.

Elements enclosed in braces (i.e., {element}) can be repeated zero or more times
and elements enclosed in square brackets (i.e., [element]) are optional. A more leisurely
description of these constructors can be found in the OWL documentation [4, 16].

4 An object property is one that associates pairs of individuals; a datatype property associates an
individual with a data value.

4

Class Axioms
Class(A partial C1 . . . Cn)
Class(A complete C1 . . . Cn)
EnumeratedClass(A o1 . . . on)
DisjointClasses(C1 . . . Cn)
EquivalentClasses(C1 . . . Cn)
SubClassOf(C1 C2)

Property Axioms
DatatypeProperty(T super(T1) . . . super(Tn) [Functional]

domain(C1) . . . domain(Cm) range(D1) . . . range(D`))
ObjectProperty(R super(R1) . . . super(Rn) [inverseOf(R0)]

[Functional] [InverseFunctional] [Symmetric] [Transitive]
domain(C1) . . . domain(Cm) range(D1) . . . range(D`))

EquivalentProperties(T1 . . . Tn)
SubPropertyOf(T1 T2)
EquivalentProperties(R1 . . . Rn)
SubPropertyOf(R1 R2)

Facts
Individual([o] type(C1) . . . type(Cm)

value(p1 x1) . . . value(pn xn))
SameIndividual(o1 . . . on)
DifferentIndividuals(o1 . . . on)

Fig. 2. OWL DL Axioms and Facts

Names in OWL are officially URI references, but all that matters here is that they
are treated in our semantics as atomic names.

Classes and data ranges can be used in OWL DL axioms and facts to provide infor-
mation about classes, properties, and individuals. Figure 2 provides the syntax of these
axioms and facts. In this figure, the same conventions are used as in Figure 1 with the
addition that value(pi xi) is a value condition where pi is either a datatype property,
in which case xi is a data value, or an object property, in which case xi is either an
individual name or an individual fact.

To preserve decidability of reasoning in OWL DL, complex object properties cannot
be specified to be transitive. An object property is complex if either

1. it is specified as being functional or inverse-functional,
2. there is some cardinality restriction that uses it,
3. it has an inverse that is complex, or
4. it has a super-property that is complex.

Again, a more leisurely description of these constructors can be found in the OWL
documentation [4, 16]. Figure 2 ignores annotations and deprecation, which allow un-
interpreted information to be associated with classes and properties, but which are not
interesting from a logical point of view.

Because of the syntactic restrictions in OWL DL, metaclasses and other notions that
do not fit into the description logic semantic framework can be ignored. In fact, OWL

5

DL has a semantics that is very much in the description logic style, and that has been
shown to be equivalent to the RDF-style semantics for all of OWL [16]. The semantics
for OWL DL will be presented below.

There is a subset of OWL DL, called OWL Lite, the motivation for which is in-
creased ease of implementation. This is achieved by supporting fewer constructors than
OWL DL, and by limiting the use of some of these constructors. In particular, OWL Lite
does not support the oneOf constructor (equivalent to description logic nominals), as
this constructor is known to increase theoretical complexity and to lead to difficulties in
the design of practical algorithms [10]. In Section 5 we will examine the differences be-
tween OWL DL and OWL Lite in more detail, and explore their impact on the reduction
from OWL entailment to description logic satisfiability.

2.2 Semantics for OWL DL

OWL DL has two forms of semantic specification: a direct model-theoretic seman-
tics, and an RDF-compatible model-theoretic semantics [16]. The two are said to
have “a strong correspondence”, but the specification explicitly states that the direct
model-theoretic semantics takes precedence. We will, therefore, only consider the di-
rect model-theoretic semantics, and from now on when we refer to the semantics for
OWL DL (or OWL Lite), this can be taken to mean the direct model-theoretic seman-
tics.

The semantics for OWL DL is fairly standard by description logic standards. The
OWL semantic domain is a set whose elements can be disjointly divided into abstract
objects (the abstract domain, written ∆I) and datatype values (the datatype or concrete
domain, written ∆I

D and often called concrete objects). Datatypes in OWL are derived
from the built-in XML Schema datatypes [3], with inappropriate datatypes removed,
although as mentioned in Section 2.1, an OWL DL or OWL Lite reasoner may not
support all of these datatypes. Datatype values are denoted by special literal constructs
in the syntax, as indicated above.

In order to be closer to the RDF semantics [9], an interpretation in the semantics for
OWL DL is officially a sextuple consisting of the abstract domain, the concrete domain,
a mapping from class names into subsets of the abstract domain and from datatype
names into subsets of the concrete domain, a mapping from object properties to sets of
pairs over the abstract domain and from datatype properties to sets of pairs from the
abstract domain and the concrete domain,5 a mapping from individual names to values
in the abstract domain, and a mapping from literals to values in the concrete domain.
This does not quite match up with the description logic method of using a two-tuple
consisting of the domain (written ∆I) and a single mapping (written ·I) for concepts,
properties, and individuals, with datatypes handled as an external parameter. There is,
however, an obvious isomorphism between the two methods, and so either one can be
used for our purposes.

In OWL DL all classes are interpreted as subsets of the abstract domain, and for
each constructor the semantics of the resulting class is defined in terms of the semantics

5 This mapping is also used to provide meaning for annotations, which are not considered in this
paper.

6

of its components. For example, given two classes C1 and C2, the interpretation of the
intersection of C1 and C2 is defined to be the intersection of the interpretations of C1

and C2 (i.e., C1
I ∩ C2

I).
OWL DL axioms and facts result in semantic conditions on interpretations. For

example, an axiom asserting that D1 is a subclass of D2 results in the semantic condi-
tion that the interpretation of D1 must be a subset of the interpretation of D2, (written
D1

I ⊂ D2
I), while a fact asserting that o has type D results in the semantic condi-

tion that the interpretation of o must be an element of the set that is the interpretation
of D (written oI ∈ DI), just as happens in description logic semantics. An OWL DL
ontology O is satisfied by an interpretation I just when all of the semantic conditions
resulting from the axioms and facts in O are satisfied by I, just as is the case in descrip-
tion logic knowledge bases. Because this part of semantics for OWL DL is so close to
the semantics of description logics, it will not be further provided here; instead, we will
use the description logic semantics directly, as we will mainly be interested in descrip-
tion logic knowledge bases derived from OWL ontologies. More details of OWL DL
semantics can be found in the OWL documentation [16].

The main semantic relationship in OWL DL is entailment—a relationship between
pairs of OWL ontologies. An ontology O1 entails an ontology O2, written O1 |= O2,
exactly when all interpretations that satisfy O1 also satisfy O2. This semantic relation-
ship is different from the standard description logic relationships, such as knowledge
base and concept satisfiability. The main goal of this paper is to show how OWL DL
entailment can be transformed into DL knowledge base (un)satisfiability, and that the
two problems have the same complexity.

3 SHOIN (D) and SHIF(D)

The main description logic that we will be using in this paper is SHOIN (D), which
is similar to the well known SHOQ(D) description logic [10], but is extended with
inverse roles (I) and restricted to unqualified number restrictions (N).

In description logics, a datatype theory D is a mapping from a set of datatypes
to a set of values, e.g., from xsd:integer to the integers, plus a mapping from
data values to their denotation which must be one of the set of values, e.g., from
"l"ˆˆxsd:integer to the integer 1. The datatype (or concrete) domain, written
∆I

D, is the union of the mappings of the datatypes.
Given a datatype theory D, let A, RA, RD, and I be pairwise disjoint sets of concept

names, abstract role names, datatype (or concrete) role names, and individual names.6

The set of SHOIN (D)-roles is RA ∪ {R− | R ∈ RA} ∪ RD. In order to avoid
considering roles such as R−− we will define Inv(R) s.t. Inv(R) = R− and Inv(R−) =
R. The set of SHOIN (D)-concepts is the smallest set that can be built using the
constructors in Figure 3.

Figure 3 also gives the axiom syntax for SHOIN+(D), an extension of
SHOIN (D) with the concept existence axiom (the last axiom in Figure 3), which

6 Datatype roles names are generally referred to as concrete role names in the description logic
literature.

7

Constructor Name Syntax Semantics
atomic concept A A AI ⊆ ∆I

datatype D D DD ⊆ ∆I

D

abstract role RA R RI ⊆ ∆I × ∆I

datatype role RD U UI ⊆ ∆I × ∆I

D

individuals I o oI ∈ ∆I

data values v vI = vD

inverse role R− (R−)I = (RI)−

top > >I = ∆I

bottom ⊥ ⊥I = {}
conjunction C1 u C2 (C1 u C2)

I = CI

1 ∩ CI

2

disjunction C1 t C2 (C1 t C2)
I = CI

1 ∪ CI

2

negation ¬C (¬C)I = ∆I \ CI

oneOf {o1, . . . , on} {o1, . . . , on}
I = {oI1 , . . . , oIn}

exists restriction ∃R.C (∃R.C)I = {x | ∃y.

〈x, y〉 ∈ RI and y ∈ CI}
value restriction ∀R.C (∀R.C)I = {x | ∀y.

〈x, y〉 ∈ RI → y ∈ CI}
atleast restriction > n R (> n R)I = {x |]({y.

〈x, y〉 ∈ RI}) > n}
atmost restriction 6 n R (6 n R)I = {x |]({y.

〈x, y〉 ∈ RI}) 6 n}
datatype exists ∃U.D (∃U.D)I = {x | ∃y.

〈x, y〉 ∈ UI and y ∈ DD}
datatype value ∀U.D (∀U.D)I = {x | ∀y.

〈x, y〉 ∈ UI → y ∈ DD}
datatype atleast > n U (> n U)I = {x |]({y.

〈x, y〉 ∈ UI}) > n}
datatype atmost 6 n U (6 n U)I = {x |]({y.

〈x, y〉 ∈ UI}) 6 n}

datatype oneOf {v1, . . .} {v1, . . .}
I = {vI

1 , . . .}
Axiom Name Syntax Semantics

concept inclusion C1 v C2 CI

1 ⊆ CI

2

object role inclusion R1 v R2 RI

1 ⊆ RI

2

object role transitivity Trans(R) RI = (RI)+

datatype role inclusion U1 v U2 UI

1 ⊆ UI

2

individual inclusion a : C aI ∈ CI

individual equality a = b aI = bI

individual inequality a 6= b aI 6= bI

concept existence ∃C](CI) > 1

Fig. 3. Syntax and semantics of SHOIN+(D)

is used internally in our translation. Concept existence axioms will be eliminated in the
final step of our translation, leaving only SHOIN (D) axioms.

A SHOIN+(D) knowledge base K is a finite set of SHOIN+(D) axioms. We
will use v* to denote the transitive reflexive closure of v on roles, i.e., for two roles S,R

in K, S v* R in K if S = R, S v R ∈ K, Inv(S) v Inv(R) ∈ K, or there exists some

8

role Q such that S v* Q in K and Q v* R in K. A role R is called simple in K if for each
role S s.t. S v* R in K, Trans(S) 6∈ K and Trans(Inv(S)) 6∈ K. To maintain decidability,
a knowledge base must have no number restrictions on non-simple roles [11].

The semantics of SHOIN+(D) is given by means of an interpretation I =
(∆I , ·I) consisting of a non-empty domain ∆I , disjoint from the datatype domain ∆I

D,
and a mapping ·I , which interprets atomic and complex concepts, roles, and nominals
according to Figure 3. (In Figure 3,] is set cardinality.)

An interpretation I = (∆I , ·I) satisfies a SHOIN+(D)-axiom under the condi-
tions given in Figure 3. An interpretation satisfies a knowledge base K iff it satisfies
each axiom in K; we will often call such an interpretation a model of K. A knowledge
base K is satisfiable (unsatisfiable) iff there exists (does not exist) a model of K. A
SHOIN+(D)-concept C is satisfiable with respect to a knowledge base K iff there is
a model I of K with CI 6= ∅. A concept C is subsumed by a concept D with respect to
K iff CI v DI in every model I of K. Two concepts are said to be equivalent with re-
spect to K iff they subsume each other with respect to K. A knowledge base K1 entails
a knowledge base K2 iff every model of K1 is also a model of K2.

Although this is not usually done in description logics, we define a notion of en-
tailment in SHOIN+(D) in the same way as it was defined for OWL DL. One
SHOIN+(D) knowledge base entails another, written K |= K′, if every model of
the first knowledge base, K is also a model of the second, K′. It is easy to show that
K |= K′ iff K |= A for every axiom A in K′.

The description logic SHIF(D) is just SHOIN (D) without the oneOf con-
structor and with the atleast and atmost constructors limited to 0 and 1. We define
SHIF+(D) as SHIF(D) extended with the concept existence axiom.

4 From OWL DL Entailment to SHOIN (D) Unsatisfiability

We will now show how to translate OWL DL entailment into SHOIN (D) unsat-
isfiability. The first step of our process is to translate an entailment between OWL
DL ontologies into an entailment between knowledge bases in SHOIN+(D). Then
SHOIN+(D) entailment is transformed into unsatisfiability of SHOIN (D) knowl-
edge bases. Note that concept existence axioms are eliminated in this last step, leaving
a SHOIN (D) knowledge base.

From now on D will be a particular kind of datatype theory, namely for the well-
behaved XML Schema datatypes [3] plus a datatype for untyped OWL literals plus
one other datatype, whose extension is the entire datatype domain, and using the OWL
syntax for data values. (See the OWL documentation [16] for the particulars of which
XML Schema datatypes are well-behaved and why.) The extra datatype, which cannot
occur in the ontologies being translated, will be used as a way to write unknown data
values.

It is easy to see that these datatypes comprise a datatype theory.

9

OWL fragment F Translation V(F)

A, OWL class name A

B, OWL datatype name B

R, OWL object property name R

T , OWL datatype property name T

o, OWL individual name o

v, OWL data value v
intersectionOf(C1 . . . Cn) V(C1) u . . . u V(Cn)
unionOf(C1 . . . Cn) V(C1) t . . . t V(Cn)
complementOf(C) ¬V(C)
oneOf(o1 . . . on) {V(o1), . . . ,V(on)}
restriction(R r1 r2 . . . rn) V(restriction(R r1)) u . . . u V(restriction(R rn))
restriction(R allValuesFrom(C)) ∀V(R).V(C)
restriction(R someValuesFrom(C)) ∃V(R).V(C)
restriction(R value(o)) ∃V(R).{V(o)}
restriction(R minCardinality(n)) > nV(R)
restriction(R maxCardinality(n)) 6 nV(R)
restriction(R cardinality(n)) > nV(R) u 6 nV(R)
restriction(T r1 r2 . . . rn) V(restriction(T r1)) u . . . u V(restriction(T rn))
restriction(T allValuesFrom(D)) ∀V(T).V(D)
restriction(T someValuesFrom(C)) ∃V(T).V(D)
restriction(T value(v)) ∃V(T).{V(v)}
restriction(T minCardinality(n)) > nV(T)
restriction(T maxCardinality(n)) 6 nV(T)
restriction(T cardinality(n)) > nV(T) u 6 nV(T)

oneOf(v1 . . . vn) {V(v1), . . . ,V(vn)}

Fig. 4. Translation from OWL classes and names to SHOIN (D)

4.1 From OWL DL to SHOIN
+(D)

An OWL DL ontology is translated into a SHOIN+(D) knowledge base by taking
each axiom and fact in the ontology and translating it into one or more axioms in the
knowledge base.

For OWL DL axioms, this translation is very natural, and is almost identical to
the translation of OIL described by Decker et al. [5]. For example, the OWL DL
axiom Class(A complete C1. . . Cn) is translated into the pair of SHOIN+(D) ax-
ioms A v V(C1) u . . . u V(Cn) and V(C1) u . . . u V(Cn) v A, where V is the
obvious translation from OWL classes to description logic concepts, again very sim-
ilar to the transformation described by Decker et al. [5]. Similarly, an OWL DL ax-
iom DisjointClasses(C1...Cn) is translated into the SHOIN+(D) axioms
V(Ci) v ¬V(Cj) for 1 ≤ i < j ≤ n. The translation from OWL DL classes to
SHOIN (D) classes is given in Figure 4 and the translation from OWL DL axioms to
SHOIN (D) axioms is given in Figure 5.

The translation of OWL DL facts to SHOIN+(D) axioms is more complex.
This is because facts can be stated with respect to anonymous individuals, and can
include relationships to other (possibly anonymous) individuals. For example, the fact
Individual(type(C) value(R Individual(type(D)))) states that there exists an individual

10

OWL fragment F Translation V(F)

Class(A partial C1 . . . Cn) A v V(C1) u . . . u V(Cn)
Class(A complete C1 . . . Cn) A v V(C1) u . . . u V(Cn), V(C1) u . . . u V(Cn) v A

EnumeratedClass(A o1 . . . on) A v {V(o1), . . . ,V(on)}, {V(o1), . . . ,V(on)} v A

DisjointClasses(C1 . . . Cn) V(Ci) v ¬V(Cj), 1 ≤ i < j ≤ n

EquivalentClasses(C1 . . . Cn) V(Ci) = V(Ci+1), 1 ≤ i < n

SubClassOf(C1 C2) V(C1) v V(C2)

DatatypeProperty(T r1 r2 . . . rn) V(DatatypeProperty(T r1)), . . . ,V(DatatypeProperty(T rn))
DatatypeProperty(T super(T1)) V(T) v V(T1)
DatatypeProperty(T Functional) > v 6 1V(T)
DatatypeProperty(T domain(C)) > 1V(T) v V(C)
DatatypeProperty(T range(D)) > v ∀V(T).V(D)
ObjectProperty(R r1 r2 . . . rn) V(ObjectProperty(R r1)), . . . ,V(ObjectProperty(R rn))
ObjectProperty(R super(R1)) V(R) v V(R1)
ObjectProperty(R inverseOf(R0)) V(R) v V(R)−

ObjectProperty(R Functional) > v 6 1V(R)
ObjectProperty(R InverseFunctional) > v 6 1V(R)−

ObjectProperty(R Symmetric) V(R) v V(R)−

ObjectProperty(R Transitive) Trans(V(R))
ObjectProperty(R domain(C)) > 1V(R) v V(C)
ObjectProperty(R range(C)) > v ∀V(R).V(C)
EquivalentProperties(T1 . . . Tn) V(Ti) v V(Tj), 1 ≤ i, j ≤ n

SubPropertyOf(T1 T2) V(T1) v V(T1)
EquivalentProperties(R1 . . . Rn) V(Ri) v V(Rj), 1 ≤ i, j ≤ n

SubPropertyOf(R1 R2) V(R1) v V(R1)

Fig. 5. Translation from OWL axioms to SHOIN (D)

that is an instance of class C and is related via the property R to an individual that is an
instance of the class D, without naming either of the individuals.

The need to translate this kind of fact is the reason for introducing the
SHOIN+(D) existence axiom. For example, the above fact can be translated into
the axiom ∃(C u ∃R.D), which states that there exists some instance of the concept
C u ∃R.D, i.e., an individual that is an instance of C and is related via the role R to
an instance of the concept D. Figure 6 describes a translation F that transforms OWL
Individual facts into SHOIN+(D) existence axioms (and the other OWL facts into
SHOIN (D) axioms).

Theorem 1. The translation from OWL DL to SHOIN+(D) preserves satisfiability.
That is, an OWL DL axiom or fact is satisfied by an interpretation I if and only if the
translation is satisfied by I.7

Proof. A simple recursive argument based on the semantics of OWL DL and
SHOIN+(D) shows that the extension of OWL DL classes, data ranges, and pieces

7 The statement of the theorem here ignores the minor differences between OWL DL interpreta-
tions and SHOIN+(D) interpretations. A stricter account would have to worry about these
stylistic differences.

11

OWL fragment F Translation F(F)

Individual(x1. . . xn) ∃(F(x1) u . . . u F(xn))
type(C) V(C)
value(R x) ∃R.F(x)
value(T v) ∃T.{V(v)}
o {V(o)}
SameIndividual(o1 . . . on) V(oi) = V(oj), 1 ≤ i < j ≤ n

DifferentIndividuals(o1 . . . on) V(oi) 6= V(oj), 1 ≤ i < j ≤ n

Fig. 6. Translation from OWL facts to SHOIN+(D)

Axiom A Transformation G(A)

c v d x : c u ¬d

∃c > v ¬c

Trans(r) x : ∃r.∃r.{y} u ¬∃r.{y}
r v s x : ∃r.{y} u ¬∃s.{y}

f v g
x : ∃f.{b} u ¬∃g.{b}
for b a fresh data value of the extra datatype

a = b a 6= b

a 6= b a = b

Fig. 7. Translation from Entailment to Unsatisfiability

of Individual facts is maintained in the translation. Similarly, a simple semantics based
argument shows that the translation of OWL DL axioms and facts preserves satisfac-
tion.

The above translation increases the size of an ontology to at most the square of its
size. It can easily be performed in time linear in the size of the resultant knowledge
base.

4.2 From Entailment to Unsatisfiability

The next step of our process is to transform SHOIN+(D) knowledge base entailment
to SHOIN (D) knowledge base unsatisfiability. We do this to relate our new notion
of description logic entailment to the well-known operation of description logic knowl-
edge base unsatisfiability.

We recall from Section 3 that K |= K′ iff K |= A for every axiom A in K′. We
therefore define (in Figure 7) a translation, G, such that K |= A iff K ∪ {G(A)} is
unsatisfiable, for K a SHOIN+(D) knowledge base and A a SHOIN+(D) axiom.
In this transformation we have need of names of various sorts that do not occur in the
knowledge base or axiom; following standard practice we will call these fresh names.
Throughout the translation, x and y are fresh individual names.

Most of the translations in G are quite standard and simple. For example, an object
role inclusion axiom r v s is translated into an axiom x : ∃r.{y} u ¬∃s.{y} that
requires the existence of an individual that is related to some other individual by r but
not by s; a knowledge base K∪{x : ∃r.{y}u¬∃s.{y}} will clearly be unsatisfiable iff

12

K |= r v s. The only unusual translation is for datatype role inclusions f v g. We have
included an extra datatype, whose semantics are purposely left underdefined, precisely
to serve as a source of fresh values whose denotation can be arbitrarily adjusted.

The translation G increases the size of an axiom by at most a constant amount. It
can easily be performed in time linear in the size of the axiom.

The translation G eliminates concept existence axioms from the knowledge base K′

on the right-hand side of the entailment. Our last step is to eliminate concept existence
axioms from the knowledge base K on the left-hand side of the entailment. We do this
by applying a translation E(K) that replaces each axiom of the form ∃C ∈ K with an
axiom a : C, for a a fresh individual name. It is obvious that this translation preserves
satisfiability, can be easily performed, and only increases the size of a knowledge base
by a linear amount.

Theorem 2. Let K and K′ be SHOIN+(D) knowledge bases. Then K |= K′ iff the
SHOIN (D) knowledge base E(K)∪{G(A)} is unsatisfiable for every axiom A in K′.

Proof. Firstly, K |= K′ iff E(K) |= K′. This follows from the obvious correspondence
between models of K and models of E(K): a model I of E(K) is also a model of K,
because for every axiom of the form ∃C ∈ K there is an axiom a : C ∈ E(K), so
aI ∈ CI and #(CI) > 1; a model I of K can be trivially extended to a model of E(K)
by interpreting each fresh individual a in an axiom a : C in E(K) as an element of CI

(such an element must exist as there is a corresponding axiom ∃C in K).
Given that E(K) |= K′ iff E(K) |= A for every axiom A in K′, we only need to show

that E(K) |= A iff E(K) ∪ {G(A)} is unsatisfiable for any given axiom A. We can do
this on a case by case basis for the seven kinds of axiom described in Figure 7. In most
cases the proof is a trivial consequence of the semantics, and of the fact that the fresh
individuals introduced by the transformation can be interpreted as any element of ∆I

(because they are not mentioned elsewhere in E(K)). In the following, c, d are concepts,
r, s are roles, a, b are individuals, d is a data value, x, y are fresh individuals, v, w, z

are elements of ∆I and i is an element of ∆I

D. We will often refer to an extension of an
interpretation I, meaning an interpretation I ′ in which ∆I

′

= ∆I and ·I
′

is extended
to interpret fresh individuals.

– E(K) |= c v d iff E(K) ∪ {x : c u ¬d} is not satisfiable. If E(K) |= c v d then in
every model I of E(K), cI ⊆ dI and (cu¬d)I = ∅, so I cannot satisfy x : cu¬d.
For the converse, if I is a model of E(K) in which cI 6⊆ dI , then there exists some
w ∈ (c u ¬d)I , and I can be extended to I ′ such that xI

′

= w. I ′ therefore
satisfies x : c u ¬d, and it is still a model of E(K) because x is not mentioned in
E(K), so I ′ is a model of E(K) ∪ {x : c u ¬d}.

– E(K) |= ∃c iff E(K) ∪ {> v ¬c} is not satisfiable. If E(K) |= ∃c, then in every
model I of E(K), cI 6= ∅, so (¬c)I ⊂ ∆I and I does not satisfy > v ¬c. For the
converse, if E(K) ∪ {> v ¬c} is not satisfiable, then (¬c)I ⊂ ∆I and cI 6= ∅ in
every model I of E(K).

– E(K) |= Trans(r) iff E(K)∪{x : ∃r.∃r.{y}u¬∃r.{y}} is not satisfiable. If E(K) |=
Trans(r), then in every model I of E(K), rI = (rI)+, and {(xI , w), (w, yI)} ⊆
rI implies (xI , yI) ∈ rI , so I cannot satisfy x : ∃r.∃r.{y}u¬∃r.{y}. For the con-
verse, if I is a model of E(K) in which in which for some v, w, z, {(v, w), (w, z)} ⊆

13

rI but (v, z) 6∈ rI , then I can be extended to I ′ such that xI
′

= v and yI
′

= z, so
xI

′

∈ (∃r.∃r.{y})I
′

, xI
′

∈ (¬∃r.{y})I
′

and xI
′

∈ (∃r.∃r.{y} u ¬∃r.{y})I
′

. I ′

therefore satisfies x : ∃r.∃r.{y} u ¬∃r.{y}, and it is still a model of E(K) because
x is not mentioned in E(K), so I ′ is a model of E(K)∪{x : ∃r.∃r.{y}u¬∃r.{y}}.

– E(K) |= r v s iff E(K) ∪ {x : ∃r.{y} u ¬∃s.{y}} is not satisfiable. If E(K) |=
r v s, then in every model I of E(K), (xI , yI) ∈ rI implies (xI , yI) ∈ sI , so
I cannot satisfy x : ∃r.{y} u ¬∃s.{y}. For the converse, if I is a model of E(K)
in which for some v, w, (v, w) ∈ rI but (v, w) 6∈ sI , then I can be extended to
I ′ such that xI

′

= v and yI
′

= w, so xI
′

∈ (∃r.{y})I
′

, xI
′

∈ (¬∃s.{y})I
′

and
xI

′

∈ (∃r.{y} u ¬∃s.{y})I
′

. I ′ therefore satisfies x : ∃r.{y} u ¬∃s.{y}, and it
is still a model of E(K) because neither x nor y is mentioned in E(K), so I ′ is a
model of E(K) ∪ {x : ∃r.{y} u ¬∃s.{y}}.

– E(K) |= f v g iff E(K) ∪ {x : ∃f.{d} u ¬∃g.{d}} is not satisfiable, where
d is a fresh data value of the extra datatype (i.e., a data value not mentioned in
E(K)). If E(K) |= f v g, then in every model I of E(K), (xI , dI) ∈ fI implies
(xI , dI) ∈ gI , so (∃f.{d} u ¬∃g.{d})I = ∅ for any value d, and I cannot satisfy
x : ∃f.{d} u ¬∃g.{d}. For the converse, if I is a model of E(K) in which for
some v, i, (v, i) ∈ fI but (v, i) 6∈ gI , then I can be extended to I ′ such that
xI

′

= v and dI
′

= i, so xI
′

∈ (∃f.{d})I
′

, xI
′

∈ (¬∃g.{d})I
′

and xI
′

∈
(∃f.{d} u ¬∃g.{d})I

′

. I ′ therefore satisfies x : ∃f.{d} u ¬∃g.{d}, and it is still a
model of E(K) because neither x nor d is mentioned in E(K), so I ′ is a model of
E(K) ∪ {x : ∃f.{d} u ¬∃g.{d}}.

– E(K) |= a = b iff E(K) ∪ {a 6= b} is not satisfiable. If E(K) |= a = b, then in
every model I of E(K), aI = bI , so I cannot satisfy a 6= b. For the converse, if
E(K) ∪ {a 6= b} is not satisfiable, then in every model I of E(K), aI = bI , so
E(K) |= a = b.

– E(K) |= a 6= b iff E(K) ∪ {a = b} is not satisfiable. This is a trivial variant of the
previous case. ut

Theorems 1 and 2 imply:

Corollary 1. OWL DL entailment can be transformed into knowledge base unsatisfia-
bility in SHOIN (D).

4.3 Consequences

The overall translation from OWL DL entailment to SHOIN (D) can be performed
in polynomial time and results in a polynomial number of knowledge base satisfiability
problems each of which is polynomial in the size of the initial OWL DL entailment.
Therefore we have shown that OWL DL entailment is in the same complexity class as
knowledge base satisfiability in SHOIN (D).

Unfortunately, SHOIN (D) is a difficult description logic. Most problems in
SHOIN (D), including knowledge base satisfiability, are in NEXPTIME [17]. Fur-
ther, there are as yet no known optimized inference algorithms or implemented systems
for SHOIN (D).

The situation is not, however, completely bleak. There is an inexact translation from
SHOIN (D) to SHIN (D) that turns nominals into atomic concept names. I.e., for

14

OWL fragment F Translation F ′(F)

Individual(x1. . . xn) F ′(a : x1), . . . ,F
′(a : xn)

for a a fresh individual name
a : type(C) a : V(C)
a : value(R x) 〈a, b〉 : R, F ′(b : x)

for b a fresh individual name
a : value(U v) 〈a, v〉 : U

a : o a = o

Fig. 8. Translation from OWL Lite facts to SHIF+(D)

each nominal o, occurrences of o are replaced by a new concept Po, and an axiom
o : Po is added to the knowledge base; and for each axiom a 6= b, the axiom Pa v ¬Pb

is added to the knowledge base. This translation could be used to produce a partial, but
still very capable, reasoner for OWL DL. Moreover, as is shown in the next section, the
situation for OWL Lite is significantly different.

5 Transforming OWL Lite

OWL Lite is the subset of OWL DL that

1. eliminates the intersectionOf, unionOf, complementOf, and oneOf
constructors;

2. removes the value construct from the restriction constructors;
3. limits cardinalities to 0 and 1;
4. eliminates the enumeratedClass axiom; and
5. requires that description-forming constructors not occur in other description-

forming constructors.

The reason for defining the OWL Lite subset of OWL DL was to have an easier target
for implementation. This was thought to be mostly easier parsing and other syntactic
manipulations.

As OWL Lite does not have the analogue of nominals it is possible that inference
is easier in OWL Lite than in OWL DL. However, the transformation above from OWL
DL entailment into SHOIN (D) unsatisfiability uses nominals even for OWL Lite
constructs. It is thus worthwhile to devise an alternative translation that avoids nomi-
nals.

There are three places that nominals show up in our transformation:

1. translations into SHOIN+(D) of OWL DL constructs that are not in OWL Lite,
in particular the oneOf constructor;

2. translations into SHOIN+(D) axioms of OWL DL Individual facts; and
3. the transformation to SHOIN (D) unsatisfiability of SHOIN+(D) entailments

whose consequents are role inclusion axioms or role transitivity axioms.

The first of these, of course, is not a concern when considering OWL Lite.

15

Axiom A Transformation G(A)

a : C a : ¬C

〈a, b〉 : R b : B, a : ∀R.¬B

for B a fresh concept name
〈a, v〉 : U a : ∀U.v

Fig. 9. Extended Transformation from Entailment to Unsatisfiability

The second place where nominals show up is in the translation of OWL
Individual facts into SHOIN (D) axioms (Figure 6). In order to avoid intro-
ducing nominals, we can use the alternative translation F ′ from OWL Lite facts to
SHIF+(D) given in Figure 8. Note that, in this case, the translation V(C) does not
introduce any nominals as we are translating OWL Lite classes.

The new transformation does, however, introduce axioms of the form a : C, 〈a, b〉 :
R and 〈a, v〉 : U that we will need to deal with when transforming from entailment
to satisfiability. We can do this by extending the transformation G given in Figure 7
as shown in Figure 9. The extension deals with axioms of the form 〈a, v〉 : U using a
datatype derived from the negation of a data value (written v), and with axioms of the
form 〈a, b〉 : R using a simple transformation, described in more detail by Horrocks et
al. [12]. This transformation exploits the fact that a fresh concept name (i.e., a concept
name that is not already mentioned in the knowledge base) can be used to simulate a
nominal in some cases. In particular, if B is a fresh concept name, and we assert that
a is an instance of B, then any model I of a knowledge base K can be extended to a
model I ′ of K in which BI

′

= {aI
′

}, i.e., a model in which B ≡ {a}. When using
this technique, concepts such as B are called pseudo nominals.

The third and final place where nominals show up is in the transformation of entail-
ments whose consequents are object role inclusion axioms or role transitivity axioms.
Both these cases can also be dealt with using pseudo nominals. Object role inclusion
axioms can be dealt with using a pseudo nominal transformation similar to those given
in Figure 9. In this transformation, an axiom of the form r v s is transformed into
the axiom x : B u ∃r(∀s−.¬B), where B is is a fresh concept name. Similarly, tran-
sitivity axioms can be dealt with by transforming an axiom Trans(r) into an axiom
x : B u ∃r(∃r(∀r−.¬B)).

We will use G′ to denote the transformation described in Figures 7 and 9 with role
inclusion and transitivity transformations modified as described above.

Theorem 3. The translation from OWL Lite to SHIF+(D) preserves satisfiability.
That is, an OWL Lite axiom or fact is satisfied by an interpretation I if and only if the
translation is satisfied by I.8

Proof. A simple recursive argument based on the semantics of OWL Lite and
SHIF+(D) shows that the extension of OWL Lite classes, data ranges, and pieces
of Individual facts is maintained in the translation. Similarly, a simple semantics based

8 This again ignores the minor differences between OWL Lite interpretations and SHIF+(D)
interpretations.

16

argument shows that the translation of OWL Lite axioms and facts preserves satisfac-
tion.

Theorem 4. Let K and K′ be SHIF+(D) knowledge bases derived from OWL Lite
ontologies. Then K |= K′ iff the SHIF(D) knowledge base E(K)∪ {G ′(A)} is unsat-
isfiable for every axiom A in K′.

Proof. As a SHIF+(D) knowledge base is obviously a SHOIN+(D) knowledge
base, we only need to consider the new transformations introduced in G ′.

– E(K) |= a : C iff E(K)∪{a : ¬C} is not satisfiable. If E(K) |= a : C then in every
model I of E(K), aI ∈ CI and I cannot satisfy a : ¬C. For the converse, if I is a
model of E(K) in which aI 6∈ CI , then I also satisfies a : ¬C and E(K)∪{a : ¬C}
is satisfiable.

– E(K) |= 〈a, b〉 : R iff E(K) ∪ {b : B, a : ∀R.¬B} is not satisfiable, where B is a
concept name not mentioned in E(K). If E(K) |= 〈a, b〉 : R, then in every model I
of E(K), (aI , bI) ∈ RI , and if b : B is satisfied then a : ∀R.¬B is not satisfied.
For the converse, if I is a model of E(K) in which (aI , bI) 6∈ RI , then I can be
extended to I ′ such that BI

′

= {bI}, so for any (aI
′

, w) ∈ RI
′

, w ∈ (¬B)I
′

,
and thus aI

′

∈ (∀R.¬B)I
′

. I ′ therefore satisfies both b : B and a : ∀R.¬B, and
it is still a model of E(K) because B is not mentioned in E(K), so I ′ is a model of
E(K) ∪ {b : B, a : ∀R.¬B}.

– E(K) |= 〈a, v〉 : U iff E(K) ∪ {a : ∀U.v} is not satisfiable, where v is a datatype
such that (v)D = ∆I

D \ {vD}. If E(K) |= 〈a, v〉 : U , then in every model I of
E(K), (aI , vD) ∈ UI and a : ∀U.v is not satisfied. For the converse, if I is a
model of E(K) in which (aI , vD) 6∈ UI , then for any (aI , i) ∈ UI , i ∈ (v)D and
aI ∈ (∀U.v)I . I therefore satisfies a : ∀U.v, and so it is a model of E(K) ∪ {a :
∀U.v}.

– E(K) |= r v s iff E(K) ∪ {x : B u ∃r(∀s−.¬B)} is not satisfiable, where B is a
concept name not mentioned in E(K). If E(K) |= r v s, then (v, w) ∈ rI implies
(v, w) ∈ sI and (w, v) ∈ (s−)I , so xI ∈ (∃r(∀s−.¬B))I implies xI ∈ (¬B)I

and x : B u ∃r(∀s−.¬B) is not satisfied. For the converse, if I is a model of
E(K) in which for some v, w, (v, w) ∈ rI but (v, w) 6∈ sI (and so (w, v) 6∈
(s−)I), then I can be extended to I ′ such that xI

′

= v and BI
′

= {v}, so
xI

′

∈ BI
′

, w ∈ (∀s−.¬B)I
′

and xI
′

∈ (∃r(∀s−.¬B))I
′

. I ′ therefore satisfies
x : B u ∃r(∀s−.¬B), and it is still a model of E(K) because neither x nor B is
mentioned in E(K), so I ′ is a model of E(K) ∪ {x : B u ∃r(∀s−.¬B)}.

– E(K) |= Trans(r) iff E(K)∪{x : Bu∃r(∃r(∀r−.¬B))} is not satisfiable, where B

is a concept name not mentioned in E(K). If E(K) |= Trans(r), then in every model
I of E(K), {(xI , w), (w, z)} ⊆ rI implies (xI , z) ∈ rI and (z, xI) ∈ (r−)I , so
xI ∈ (∃r(∃r(∀r−.¬B)))I implies xI ∈ (¬B)I and x : B u ∃r(∃r(∀r−.¬B)) is
not satisfied. For the converse, if I is a model of E(K) in which for some v, w, z,
{(v, w), (w, z)} ⊆ rI but (v, z) 6∈ rI (and so (z, v) 6∈ (r−)I), then I can be
extended to I ′ such that xI

′

= v and BI
′

= {v}, so xI
′

∈ BI
′

, z ∈ (∀r−.¬B)I
′

and xI
′

∈ (∃r(∃r(∀r−.¬B)))I
′

. I ′ therefore satisfies x : B u ∃r(∃r(∀r−.¬B)),
and it is still a model of E(K) because neither x nor B is mentioned in E(K), so I ′

is a model of E(K) ∪ {x : B u ∃r(∃r(∀r−.¬B))}. ut

17

Theorems 3 and 4 imply:

Corollary 2. OWL Lite entailment can be transformed into knowledge base unsatisfia-
bility in SHIF(D).

A simple examination shows that the transformations can be computed in polynomial
time and result in only a linear increase in size.

As knowledge base satisfiability in SHIF(D) is in EXPTIME [17], this means
that entailment in OWL Lite can be computed in exponential time. Further, OWL Lite
entailment can be computed by the RACER description logic system [8], a heavily-
optimised description logic reasoner, resulting in an effective reasoner for OWL Lite
entailment.

6 Conclusion

Reasoning with ontology languages will be important in the Semantic Web if applica-
tions are to exploit the semantics of ontology based metadata annotations.

We have shown that ontology entailment in the OWL DL and OWL Lite ontol-
ogy languages can be reduced to knowledge base satisfiability in, respectively, the
SHOIN (D) and SHIF(D) description logics. This is so even though some con-
structs in these languages go beyond the standard description logic constructs.

From these mappings, we have determined that the complexity of ontology entail-
ment in OWL DL and OWL Lite is in NEXPTIME and EXPTIME respectively (the same
as for knowledge base satisfiability in SHOIN (D) and SHIF(D) respectively). The
mapping of OWL Lite to SHIF(D) also means that already-known practical reasoning
algorithms for SHIF(D) can be used to determine ontology entailment in OWL Lite;
in particular, the highly optimised RACER system [8], which can determine knowledge
base satisfaction in SHIF(D), can be used to provide efficient reasoning services for
OWL Lite.

The mapping from OWL DL to SHOIN (D) can also be used to provide complete
reasoning services for a large part of OWL DL, or partial reasoning services for all of
OWL DL. Studies directed towards the development of complete, practical algorithms
and systems for all of OWL DL are obviously a high priority within the description
logic and Semantic Web research communities. If such algorithms cannot be found, it
may be worthwhile to consider revising the specification of OWL DL to eliminate (or
at least weaken) one of the constructors whose interaction causes the difficulty, i.e.,
inverse properties, cardinality constraints or oneOf.

18

Bibliography

[1] Dave Beckett. RDF/XML syntax specification (revised). W3C Recommendation,
2004. Available at http://www.w3.org/TR/rdf-syntax-grammar/.

[2] Tim Berners-Lee. Weaving the Web. Harpur, San Francisco, 1999.
[3] Paul V. Biron and Ashok Malhotra. XML schema part 2: Datatypes. W3C

Recommendation, 2001. Available at http://www.w3.org/TR/2003/WD-
xmlschema-2-20010502/.

[4] Mike Dean, Guus Schreiber, Sean Bechhofer, Frank van Harmelen, Jim Hendler,
Ian Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea
Stein. OWL web ontology language reference. W3C Recommendation, 2004. Avail-
able at http://www.w3.org/TR/owl-ref/.

[5] S. Decker, D. Fensel, F. van Harmelen, I. Horrocks, S. Melnik, M. Klein, and
J. Broekstra. Knowledge representation on the web. In Proc. of the 2000 Description
Logic Workshop (DL 2000), pages 89–98, 2000.

[6] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt. The
complexity of concept languages. Information and Computation, 134:1–58, 1997.

[7] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-Schneider.
OIL: An ontology infrastructure for the semantic web. IEEE Intelligent Systems,
16(2):38–45, 2001.

[8] Volker Haarslev and Ralf Möller. RACER system description. In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes
in Artificial Intelligence, pages 701–705. Springer, 2001.

[9] Patrick Hayes. RDF semantics. W3C Recommendation, 2004. Available at http:
//www.w3.org/TR/rdf-mt/.

[10] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ description logic.
In B. Nebel, editor, Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2001), pages 199–204. Morgan Kaufmann, 2001.

[11] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for ex-
pressive description logics. In Harald Ganzinger, David McAllester, and Andrei
Voronkov, editors, Proc. of the 6th Int. Conf. on Logic for Programming and Au-
tomated Reasoning (LPAR’99), number 1705 in Lecture Notes in Artificial Intelli-
gence, pages 161–180. Springer, 1999.

[12] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. How to decide query con-
tainment under constraints using a description logic. In Proceedings of the 7th
International Conference on Logic for Programming and Automated Reasoning
(LPAR’2000), Lecture Notes in Artificial Intelligence. Springer-Verlag, 2000.

[13] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. Reviewing the
design of DAML+OIL: An ontology language for the semantic web. In Proc. of the
18th Nat. Conf. on Artificial Intelligence (AAAI 2002), 2002.

[14] Graham Klyne and Jeremy J. Carroll. Resource description framework (RDF):
Concepts and abstract syntax. W3C Recommendation, 2004. Available at http:
//www.w3.org/TR/rdf-concepts/.

[15] Ora Lassila and Ralph R. Swick. Resource description framework (RDF) model
and syntax specification. W3C Recommendation, 1999. Available at http://
www.w3.org/TR/1999/REC-rdf-syntax-19990222.

[16] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL web ontology
language semantics and abstract syntax. W3C Recommendation, 2004. Available at
http://www.w3.org/TR/owl-semantics/.

[17] Stephan Tobies. Complexity Results and Practical Algorithms for Logics in
Knowledge Representation. PhD thesis, LuFG Theoretical Computer Science,
RWTH-Aachen, Germany, 2001.

20

