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Abstract

Although the OWL Web Ontology Language adds considerable expressive
power to the Semantic Web it does have expressive limitations, particularly with
respect to what can be said about properties. We present SWRL (the Semantic Web
Rules Language), a Horn clause rules extension to OWL that overcomes many of
these limitations. SWRL extends OWL in a syntactically and semantically coher-
ent manner: the basic syntax for SWRL rules is an extension of the abstract syntax
for OWL DL and OWL Lite; SWRL rules are given formal meaning via an exten-
sion of the OWL DL model-theoretic semantics; SWRL rules are given an XML
syntax based on the OWL XML presentation syntax; and a mapping from SWRL
rules to RDF graphs is given based on the OWL RDF/XML exchange syntax. We
discuss the expressive power of SWRL, showing that the ontology consistency
problem is undecidable, provide several examples of SWRL usage, and discuss a
prototype implementation of reasoning support for SWRL.

1 Introduction
The OWL Web Ontology Language [47] adds considerable expressive power to the
Semantic Web. However, for a variety of reasons (see http://lists.w3.org/
Archives/Public/www-webont-wg/ and [20]), including retaining the decid-
ability of key inference problems in OWL DL and OWL Lite, OWL has expressive
limitations. These restrictions can be onerous in some application domains, for exam-
ple in describing web services, where it may be necessary to relate inputs and outputs
of composite processes to the inputs and outputs of their component processes [51],
or in medical informatics, where it may be necessary to transfer characteristics across
partitive properties [39].

Many of the limitations of OWL stem from the fact that, while the language in-
cludes a relatively rich set of class constructors, the language provided for talking about
properties is much weaker. In particular, there is no composition constructor, so it is
impossible to capture relationships between a composite property and another (possibly
composite) property. The standard example here is the obvious relationship between
the composition of the “parent” and “brother” properties and the “uncle” property.

One way to address this problem would be to extend OWL with a more powerful
language for describing properties. For example, a decidable extension of the descrip-
tion logics underlying OWL DL to include the use of composition in subproperty ax-
ioms has already been investigated [22, 23]. In order to maintain decidability, however,
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the usage of the constructor is limited to axioms of the form P ◦ Q v P , i.e., axioms
asserting that the composition of two properties is a subproperty of one of the com-
posed properties. This means that complex relationships between composed properties
cannot be captured—in fact even the relatively simple “uncle” example cannot not be
captured (because “uncle” is not one of “parent” or “brother”).

An alternative way to overcome some of the expressive restrictions of OWL would
be to extend it with some form of “rules language”. In fact adding rules to description
logic based knowledge representation languages is far from being a new idea. Several
early description logic systems, e.g., Classic [38, 8], included a rule language compo-
nent. In these systems, however, rules were given a weaker semantic treatment than
axioms asserting sub- and super-class relationships; they were only applied to indi-
viduals, and did not affect class based inferences such as the computation of the class
hierarchy. More recently, the CARIN system integrated rules with a description logic
in such a way that sound and complete reasoning was still possible [28]. This could
only be achieved, however, by using a rather weak description logic (much weaker
than OWL), and by placing severe syntactic restrictions on the occurrence of descrip-
tion logic terms in the (heads of) rules. Similarly, the DLP language proposed in [14]
is based on the intersection of a description logic with horn clause rules; the result is
obviously a decidable language, but one that is necessarily less expressive than either
the description logic or rules language from which it is formed.

In this paper we show how a simple form of Horn-style rules can be added to the
OWL language in a syntactically and semantically coherent manner, the basic idea
being to add such rules as a new kind of axiom in OWL DL. We show (in Section 3)
how the OWL abstract syntax in the OWL Semantics and Abstract Syntax document
[37] can be extended to provide a formal syntax for these rules, and (in Section 4) how
the direct OWL model-theoretic semantics for OWL DL can be extended to provide a
formal meaning for OWL ontologies including rules written in this abstract syntax. We
will also show (in Section 5) how OWL’s XML presentation syntax can be modified to
deal with the proposed rules.

The extended language was originally called ORL (the OWL Rules Language), but
is now much better known as SWRL (the Semantic Web Rules Language), a name
that was coined when the Joint US/EU ad hoc Agent Markup Language Committee1

developed a W3C members submission based on ORL.2 Although SWRL includes
some additional features (mainly related to datatypes and predicates) and has some
minor syntactic differences, we will refer to the language described here as SWRL.

SWRL is considerably more powerful than either OWL DL or Horn rules alone. We
will show (in Section 6) that the key inference problems (e.g., ontology consistency)
for SWRL are undecidable, and (in Section 7) provide examples that utilise the power
of the combined languages.

In Section 8 we show how OWL’s RDF syntax can be extended to deal with rules,
and in Sections 9 and 10 we discuss how reasoning support for SWRL might be pro-
vided. Finally (in Section 11), we summarise the main features of the SWRL proposal
and suggest some directions for future work.

1http://www.daml.org/committee/
2http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
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2 Overview
The basic idea of the proposal is to extend OWL DL with a form of rules while main-
taining maximum backwards compatibility with OWL’s existing syntax and semantics.
To this end, we add a new kind of axiom to OWL DL, namely Horn clause rules, ex-
tending the OWL abstract syntax and the direct model-theoretic semantics for OWL
DL [37] to provide a formal semantics and syntax for OWL ontologies including such
rules.

The proposed rules are of the form of an implication between an antecedent (body)
and consequent (head). The informal meaning of a rule can be read as: whenever (and
however) the conditions specified in the antecedent hold, then the conditions specified
in the consequent must also hold.

Both the antecedent (body) and consequent (head) of a rule consist of zero or more
atoms. Atoms can be of the form C(x), P(x,y), sameAs(x,y) or differentFrom(x,y),
where C is an OWL DL description, P is an OWL property, and x,y are either variables,
OWL individuals or OWL data values. Atoms are satisfied in extended interpretations
(to take care of variables) in the usual model-theoretic way, i.e., the extended interpre-
tation maps the variables to domain elements in a way that satisfies the description,
property, sameAs, or differentFrom, just as in the regular OWL model theory.

Multiple atoms in an antecedent are treated as a conjunction. An empty antecedent
is thus treated as trivially true (i.e. satisfied by every interpretation), so the consequent
must also be satisfied by every interpretation.

Multiple atoms in a consequent are treated as separate consequences, i.e., they must
all be satisfied. In keeping with the usual treatment in rules, an empty consequent is
treated as trivially false (i.e., not satisfied by any extended interpretation). Such rules
are satisfied if and only if the antecedent is not satisfied by any extended interpreta-
tion. Note that rules with multiple atoms in the consequent could easily be rewritten
(by applying standard rules of distributivity) into multiple rules each with an atomic
consequent.

It is easy to see that OWL DL becomes undecidable when extended in this way as
rules can be used to simulate role value maps [46] and make it easy to encode known
undecidable problems as a SWRL ontology consistency problem (see Section 6).

3 Abstract Syntax
The syntax for SWRL in this section abstracts from any exchange syntax for OWL and
thus facilitates access to and evaluation of the language. This syntax extends the ab-
stract syntax of OWL described in the OWL Semantics and Abstract Syntax document
[37].

Like the OWL abstract syntax, we will specify the abstract syntax for rules by
means of a version of Extended BNF, very similar to the Extended BNF notation used
for XML [52]. In this notation, terminals are quoted; non-terminals are not quoted.
Alternatives are either separated by vertical bars ( | ) or are given in different produc-
tions. Components that can occur at most once are enclosed in square brackets ([. . . ]);
components that can occur any number of times (including zero) are enclosed in braces
({. . .}). Whitespace is ignored in the productions given here.

Names in the abstract syntax are RDF URI references [27]. These names may be
abbreviated into qualified names, using one of the following namespace names:
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rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

xsd http://www.w3.org/2001/XMLSchema#

owl http://www.w3.org/2002/07/owl#

The meaning of each construct in the abstract syntax for rules is informally de-
scribed when it is introduced. The formal meaning of these constructs is given in
Section 4 via an extension of the OWL DL model-theoretic semantics [37].

3.1 Rules
From the OWL Semantics and Abstract Syntax document [37], an OWL ontology in
the abstract syntax contains a sequence of annotations, axioms, and facts. Axioms may
be of various kinds, for example, subClass axioms and equivalentClass axioms. This
proposal extends axioms to also allow rule axioms, by adding the production:

axiom ::= rule
Thus a SWRL ontology could contain a mixture of rules and other OWL DL constructs,
including ontology annotations, axioms about classes and properties, and facts about
OWL individuals, as well as the rules themselves.

A rule axiom consists of an antecedent (body) and a consequent (head), each of
which consists of a (possibly empty) set of atoms. Just as for class and property ax-
ioms, rule axioms can also have annotations. These annotations can be used for several
purposes, including giving a label to the rule by using the rdfs:label annotation prop-
erty.

rule ::= ’Implies(’{annotation} antecedent consequent’)’
antecedent ::= ’Antecedent(’{atom}’)’
consequent ::= ’Consequent(’{atom}’)’

Informally, a rule may be read as meaning that if the antecedent holds (is “true”),
then the consequent must also hold. An empty antecedent is treated as trivially holding
(true), and an empty consequent is treated as trivially not holding (false). Non-empty
antecedents and consequents hold iff all of their constituent atoms hold. As mentioned
above, rules with multiple consequents could easily be rewritten (using standard rules
of distributivity) into multiple rules each with a single atomic consequent.

Atoms in rules can be of the form C(x), P(x,y), Q(x,z), sameAs(x,y) or different-
From(x,y), where C is an OWL DL description, P is an OWL DL individual-valued
Property, Q is an OWL DL data-valued Property, x,y are either variables or OWL in-
dividuals, and z is either a variable or an OWL data value. In the context of OWL Lite,
descriptions in atoms of the form C(x) may be restricted to class names.

atom ::= description ’(’ i-object ’)’
| individualvaluedPropertyID ’(’ i-object i-object ’)’
| datavaluedPropertyID ’(’ i-object d-object ’)’
| sameAs ’(’ i-object i-object ’)’
| differentFrom ’(’ i-object i-object ’)’

Informally, an atom C(x) holds if x is an instance of the class description C, an
atom P(x,y) (resp. Q(x,z)) holds if x is related to y (z) by property P (Q), an atom
sameAs(x,y) holds if x is interpreted as the same object as y, and an atom different-
From(x,y) holds if x and y are interpreted as different objects.
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Atoms may refer to individuals, data literals, individual variables or data variables.
Variables are treated as universally quantified, with their scope limited to a given rule.
As usual, only variables that occur in the antecedent of a rule may occur in the conse-
quent (a condition usually referred to as “safety”).

i-object ::= i-variable | individualID
d-object ::= d-variable | dataLiteral

i-variable ::= ’I-variable(’ URIreference ’)’
d-variable ::= ’D-variable(’ URIreference ’)’

3.2 Human Readable Syntax
While the abstract Extended BNF syntax is consistent with the OWL specification,
and is useful for defining XML and RDF serialisations, it is rather verbose and not
particularly easy to read. In the following we will, therefore, often use a relatively
informal “human readable” form similar to that used in many published works on rules.

In this syntax, a rule has the form:

antecedent → consequent,

where both antecedent and consequent are conjunctions of atoms written a1∧ . . .∧an.
Variables are indicated using the standard convention of prefixing them with a question
mark (e.g., ?x). Using this syntax, a rule asserting that the composition of parent and
brother properties implies the uncle property would be written:

parent(?a, ?b) ∧ brother(?b, ?c) → uncle(?a, ?c). (1)

If John has Mary as a parent and Mary has Bill has a brother, then this rule requires
that John has Bill as an uncle. Using the abstract syntax described in Section 3.1, this
rule would have been written as:

Implies(Antecedent(parent(I-variable(a) I-variable(b))
brother(I-variable(b) I-variable(c)))

Consequent(uncle(I-variable(a) I-variable(c)))).

4 Direct Model-Theoretic
Semantics

The model-theoretic semantics for SWRL is a straightforward extension of the seman-
tics for OWL DL given in [37]. The basic idea is that we define bindings—extensions
of OWL interpretations that also map variables to elements of the domain in the usual
manner. A rule is satisfied by an interpretation iff every binding that satisfies the an-
tecedent also satisfies the consequent. The semantic conditions relating to axioms and
ontologies are unchanged, so an interpretation satisfies an ontology iff it satisfies every
axiom (including rules) and fact in the ontology.

4.1 Interpreting Rules
From the OWL Semantics and Abstract Syntax document [37] we recall that an abstract
OWL interpretation is a tuple of the form

I = 〈R,EC,ER, L, S, LV 〉,
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where R is a set of resources, LV ⊆ R is a set of literal values, EC is a mapping from
classes and datatypes to subsets of R and LV respectively, ER is a mapping from
properties to binary relations on R, L is a mapping from typed literals to elements of
LV , and S is a mapping from individual names to elements of EC(owl : Thing).

Given an abstract OWL interpretation I, a binding B(I) is an abstract OWL inter-
pretation that extends I such that S maps i-variables to elements of EC(owl : Thing)
and L maps d-variables to elements of LV respectively. An atom is satisfied by a bind-
ing B(I) under the conditions given in Table 1, where C is an OWL DL description,
P is an OWL DL individual-valued Property, Q is an OWL DL data-valued Property,
x, y are variables or OWL individuals, and z is a variable or an OWL data value.

Atom Condition on Interpretation
C(x) S(x) ∈ EC(C)
P (x, y) 〈S(x), S(y)〉 ∈ ER(P )
Q(x, z) 〈S(x), L(z)〉 ∈ ER(Q)
sameAs(x, y) S(x) = S(y)
differentFrom(x, y) S(x) 6= S(y)

Table 1: Interpretation Conditions

A binding B(I) satisfies an antecedent A iff A is empty or B(I) satisfies every
atom in A. A binding B(I) satisfies a consequent C iff C is not empty and B(I)
satisfies every atom in C. A rule is satisfied by an interpretation I iff for every binding
B such that B(I) satisfies the antecedent, B(I) also satisfies the consequent.

The semantic conditions relating to axioms and ontologies are unchanged. In par-
ticular, an interpretation satisfies an ontology iff it satisfies every axiom (including
rules) and fact in the ontology; an ontology is consistent iff it is satisfied by at least one
interpretation; an ontology O2 is entailed by an ontology O1 iff every interpretation
that satisfies O1 also satisfies O2.

4.2 Example
Consider, for example, the “uncle” rule (1) from Section 3.2. Assuming that parent,
brother and uncle are individualvaluedPropertyIDs, then given an interpretation I =
〈R,EC,ER, L, S, LV 〉, a binding B(I) extends S to map the variables ?a, ?b, and ?c
to elements of EC(owl : Thing); we will use a, b, and c respectively to denote these
elements. The antecedent of the rule is satisfied by B(I) iff (a, b) ∈ ER(parent) and
(b, c) ∈ ER(brother). The consequent of the rule is satisfied by B(I) iff (a, c) ∈
ER(uncle). Thus the rule is satisfied by I iff for every binding B(I) such that (a, b) ∈
ER(parent) and (b, c) ∈ ER(brother), then it is also the case that (a, c) ∈ ER(uncle),
i.e.:

∀a, b, c ∈ EC(owl : Thing).
((a, b) ∈ ER(parent) ∧ (b, c) ∈ ER(brother)) → (a, c) ∈ ER(uncle)

5 XML Concrete Syntax
Many possible XML encodings could be imagined, but the most obvious solution is
to extend the existing OWL Web Ontology Language XML Presentation Syntax [17],
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which can be straightforwardly modified to deal with SWRL.3 This has several advan-
tages:

• arbitrary OWL classes (e.g., descriptions) can be used as predicates in rules;

• rules and ontology axioms can be freely mixed;

• the existing XSLT stylesheet4 can easily be extended to provide a mapping to
RDF graphs that extends the OWL RDF/XML exchange syntax (see Section 8).

In the first place, the ontology root element is extended so that ontologies can
include rule axioms and variable declarations as well as OWL axioms, import state-
ments etc. We then simply need to add the relevant syntax for variables and rules.
In this paper we use the unspecified owlr namespace prefix for the newly intro-
duced syntax (the owlx namespace prefix, which should be treated as being bound to
http://www.w3.org/2003/05/owl-xml, is used for the existing OWL XML
syntax). In practice, the owlr prefix would have to be bound to some appropriate
namespace name (e.g., the OWL namespace name, the OWL XML namespace name,
or some new namespace name).

Variable declarations are statements about variables, indicating that the given URI
is to be used as a variable, and (optionally) adding any annotations. For example:

<owlr:Variable owlr:name="x1" />,

states that the URI x1 (in the current namespace) is to be treated as a variable.
Rule axioms are similar to OWL SubClassOf axioms, except they have owlr:Rule

as their element name. Like SubClassOf and other axioms they may include anno-
tations. Rule axioms have an antecedent (owlr:antecedent) component and a conse-
quent (owlr:consequent) component. The antecedent and consequent of a rule are
both lists of atoms and are read as the conjunction of the component atoms. Atoms can
be formed from unary predicates (classes), binary predicates (properties), equalities or
inequalities.

Class atoms consist of a description and either an individual name or a variable
name, where the description in a class atom may be a class name, or may be a complex
description using boolean combinations, restrictions, etc. For example,5

<owlr:classAtom>
<owlx:Class owlx:name="Person" />
<owlr:Variable owlr:name="x1" />

</owlr:classAtom>

is a class atom using a class name (#Person), and

<owlr:classAtom>
<owlx:IntersectionOf>
<owlx:Class owlx:name="Person" />
<owlx:ObjectRestriction

owlx:property="hasParent">
<owlx:someValuesFrom

3The syntax used in the W3C Member Submission was changed slightly in order to make it more com-
patible with RuleML (see http://www.ruleml.org/).

4http://www.w3.org/TR/owl-xmlsyntax/owlxml2rdf.xsl
5Note that we use the owlx namespace prefix for the names used in examples.
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owlx:class="Physician" />
</owlx:ObjectRestriction>

</owlx:IntersectionOf>
<owlr:Variable owlr:name="x2" />

</owlr:classAtom>

is a class atom using a complex description representing Persons having at least one
parent who is a Physician.

Property atoms consist of a property name and two elements that can be individual
names, variable names or data values (as OWL does not support complex property
descriptions, a property atom takes only a property name). Note that in the case where
the second element is an individual name the property must be an individual-valued
Property, and in the case where the second element is a data value the property must
be a data-valued Property. For example:

<owlr:individualPropertyAtom
owlx:property="hasParent">

<owlr:Variable owlr:name="x1" />
<owlx:Individual owlx:name="John" />

</owlr:individualPropertyAtom>

is a property atom using an individual-valued Property (the second element is an indi-
vidual), and

<owlr:datavaluedPropertyAtom owlr:property="grade">
<owlr:Variable owlr:name="x1" />
<owlx:DataValue

rdf:datatype="&xsd;integer">4</owlx:DataValue>
</owlr:datavaluedPropertyAtom>

is a property atom using a data-valued Property (the second element is a data value, in
this case an integer).

Finally, same (different) individual atoms assert equality (inequality) between sets
of individual and variable names. Note that (in)equalities can be asserted between
arbitrary combinations of variable names and individual names. For example:

<owlr:sameIndividualAtom>
<owlr:Variable owlr:name="x1" />
<owlr:Variable owlr:name="x2" />
<owlx:Individual owlx:name="Clinton" />
<owlx:Individual owlx:name="Bill Clinton" />

</owlr:sameIndividualAtom>

asserts that the variables x1, x2 and the individual names Clinton and Bill Clinton all
refer to the same individual.

5.1 Example
The example rule from Section 3.2 can be written in the XML concrete syntax for rules
as

<owlx:Rule>
<owlr:antecedent>
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<owlr:individualPropertyAtom
owlr:property="parent">

<owlr:Variable owlr:name="a" />
<owlr:Variable owlr:name="b" />

</owlr:individualPropertyAtom>
<owlr:individualPropertyAtom

owlr:property="brother">
<owlr:Variable owlr:name="b" />
<owlr:Variable owlr:name="c" />

</owlr:individualPropertyAtom>
</owlr:antecedent>
<owlr:consequent>
<owlr:individualPropertyAtom

owlr:property="uncle">
<owlr:Variable owlr:name="a" />
<owlr:Variable owlr:name="c" />

</owlr:individualPropertyAtom>
</owlr:consequent>

</owlr:Rule>

6 The Power of Rules
In OWL, the only relationship that can be asserted between properties is subsump-
tion between atomic property names, e.g., asserting that hasFather is a subPropertyOf
hasParent. In Section 3.2 we have already seen how a rule can be used to assert more
complex relationships between properties. While this increased expressive power is
clearly very useful, it is easy to show that it leads to the undecidability of key inference
problems, in particular ontology consistency.

For extensions of languages such as OWL DL, the undecidability of the consistency
problem is often proved by showing that the extension makes it possible to encode a
known undecidable domino problem [4] as an ontology consistency problem. In partic-
ular, it is well known that such languages only need the ability to represent an infinite
2-dimensional grid in order for consistency to become undecidable [2, 24]. With the
addition of rules, such an encoding is trivial. For example, given two properties x-succ
and y-succ, the rule:

x-succ(?a, ?b) ∧ y-succ(?b, ?c) ∧ y-succ(?a, ?d) ∧ x-succ(?d, ?e)
→ sameAs(?c, ?e),

along with the assertion that every grid node is related to exactly one other node by
each of x-succ and y-succ, allows such a grid to be represented. This would be pos-
sible even without the use of the sameAs atom in the consequent—it would only be
necessary to establish appropriate relationships with a “diagonal” property:

x-succ(?a, ?b) ∧ y-succ(?b, ?c) → diagonal(?a, ?c)
y-succ(?a, ?d) ∧ x-succ(?d, ?e) → diagonal(?a, ?e),

and additionally assert that every grid node is related to exactly one other node by
diagonal.
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The proposed form of OWL rules seem to go beyond basic Horn clauses in allow-
ing:

• conjunctive consequents;

• class descriptions as well as class names as predicates in class atoms; and

• equalities and inequalities.

On closer examination, however, it becomes clear that most of this is simply “syntactic
sugar”, and does not add to the power of the language.

In the case of conjunctive consequents, it is easy to see that these could be elimi-
nated by rewriting using standard rules of distributivity. For example, the rule

A → C1 ∧ C2

is equivalent to ¬A ∨ (C1 ∧C2) and, via distributivity, to (¬A ∨C1) ∧ (¬A ∨C2), so
can be rewritten as a semantically equivalent pair of rules

A → C1

A → C2.

In the case of class descriptions, it is easy to see that a description d can be elimi-
nated from a rule simply by adding an OWL axiom that introduces a new class name
and asserts that it is equivalent to d, e.g.,

EquivalentClasses(D d).

The description can then be replaced with the name, here replacing the description d
with class name D.

In the case of equality atoms, the sameAs property could easily be substituted with
a “user defined” owl property called, for example, Eq. Such a property can be given
the appropriate meaning using a rule of the form

Thing(?x) → Eq(?x, ?x) (2)

and by asserting that it is functional. It is easy to see that the interpretation of Eq
corresponds to equality of elements in EC(owl : Thing), i.e.,

∀x, y ∈ EC(owl : Thing).〈x, y〉 ∈ ER(Eq) ⇐⇒ x = y,

and that Eq could therefore be used instead of sameAs without changing the meaning
of the ontology.
Proof : For the if direction, assume that for some interpretation I there exists an ele-
ment x of EC(owl : Thing) such that 〈x, x〉 6∈ ER(Eq). Then a binding B(I) could
extend I so that S maps ?x to x, and rule 2 would not be satisfied by B(I). For the
only if direction, assume that for some interpretation I there exist elements x, y of
EC(owl : Thing) such that 〈x, y〉 ∈ ER(Eq) and x 6= y. From the if direction we also
have that 〈x, x〉 ∈ ER(Eq), so Eq would not be functional.

The case of inequalities is slightly more complex. An owl property called, for
example, Neq, can be introduced and used to capture some of the meaning of the dif-
ferentFrom property by adding a rule of the form

Eq(?x, ?y) ∧ Neq(?x, ?y) → Nothing(?x). (3)

10



It is easy to see that the interpretation of Neq is disjoint from the interpretation of Eq,
i.e.,

∀x, y ∈ EC(owl : Thing).〈x, y〉 ∈ ER(Neq) =⇒ x 6= y,

and that this leads to the implicit rule

Neq(?x, ?y) → differentFrom(?x, ?y).

Proof : Assume that for some interpretation I there exist elements x, y of
EC(owl : Thing) such that 〈x, y〉 ∈ ER(Neq) and 〈x, y〉 6∈ ER(differentFrom). If
〈x, y〉 6∈ ER(differentFrom), then x = y and 〈x, y〉 ∈ ER(Eq). A binding B(I)
could, therefore, extend I so that S maps ?x to x and ?y to y, and rule 3 would imply
that x ∈ EC(owl : Nothing), violating the semantic conditions on I.

Rule 3 shows that we could eliminate differentFrom when it occurs in the conse-
quent of a rule simply by substituting Neq. Neq does not, however, fully capture the
meaning of inequality, because there could be pairs of elements in EC(owl : Thing)
that are in the extension of neither Eq nor Neq, i.e., differentFrom does not imply Neq.
As a result, we cannot use Neq to eliminate occurrences of differentFrom in the an-
tecedent of a rule: in order to do so would require Neq to be equivalent to the negation
of Eq.

7 Examples of SWRL
We give two further examples of SWRL that serve to illustrate some of its utility, and
show how the power of SWRL goes beyond that of either OWL DL or Horn rules alone.

7.1 Transferring Characteristics
The first example is due to Guus Schreiber, and is based on ontologies used in an image
annotation demo [16].

Artist(?x) ∧ Style(?y) ∧ artistStyle(?x, ?y) ∧ creator(?x, ?z)
→ style/period(?z, ?y)

The rule expresses the fact that, given knowledge about the Style of certain Artists (e.g.,
van Gogh is an Impressionist painter), we can derive the style/period of an art object
from the value of the creator of the art object, where Style is a term from the Art and
Architecture Thesaurus (AAT),6 Artist is a class from the Union List of Artist Names
(ULAN),7 artistStyle is a property relating ULAN Artists to AAT Styles, and both
creator and style/period are properties from the Visual Resources Association catalogue
(VRA),8 with creator being a subproperty of the Dublin Core element dc:creator.9

This rule would be expressed in the XML concrete syntax as follows (assuming
appropriate entity declarations):

<owlr:Rule>
<owlr:antecedent>

6http://www.getty.edu/research/tools/vocabulary/aat/
7http://www.getty.edu/research/conducting research/vocabularies/ulan/
8http://www.vraweb.org/
9http://dublincore.org/
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<owlr:classAtom>
<owlx:Class owlx:name="&ulan;Artist" />
<owlr:Variable owlr:name="x" />

</owlr:classAtom>
<owlr:classAtom>
<owlx:Class owlx:name="&aat;Style" />
<owlr:Variable owlr:name="y" />

</owlr:classAtom>
<owlr:individualPropertyAtom

owlr:property="&aatulan;artistStyle">
<owlr:Variable owlr:name="x" />
<owlr:Variable owlr:name="y" />

</owlr:individualPropertyAtom>
<owlr:individualPropertyAtom

owlr:property="&vra;creator">
<owlr:Variable owlr:name="x" />
<owlr:Variable owlr:name="z" />

</owlr:individualPropertyAtom>
</owlr:antecedent>
<owlr:consequent>
<owlr:individualPropertyAtom

owlr:property="&vra;style/period">
<owlr:Variable owlr:name="z" />
<owlr:Variable owlr:name="y" />

</owlr:individualPropertyAtom>
</owlr:consequent>

</owlr:Rule>

The example is interesting because it shows how rules can be used to “trans-
fer characteristics” from one class of individuals to another via properties other than
subClassOf—in this case, the Style characteristics of an Artist (if any) are transferred
(via the creator property) to the objects that he/she creates. This idiom is much used in
ontologies describing complex physical systems, such as medical terminologies, where
partonomies may be as important as subsumption hierarchies, and where characteris-
tics often need to be transfered across various partitive properties [34, 41, 44]. For
example, the location of a trauma should be transfered across the partOf property, so
that traumas located in a partOf an anatomical structure are also located in the structure
itself [39]. This could be expressed using a rule such as

Trauma(?x) ∧ Location(?y) ∧ isLocatedIn(?x, ?y) ∧ isPartOf(?y, ?z)
→ isLocatedIn(?x, ?z)

A similar technique could be used to transfer properties to composite processes from
their component processes when describing web services.

Terminology languages designed specifically for medical terminology such as Grail
[40] and SNOMED-RT [48] often allow this kind of idiom to be expressed, but it cannot
be expressed in OWL (not even in OWL full). Thus this kind of rule shows one way in
which SWRL goes beyond the expressive power of OWL DL.
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7.2 Inferring the Existence of New Individuals
The second example is due to Mike Dean, and illustrates a scenario in which we want
to express the fact that for every Airport there is a map Point that has the same location
(latitude and longitude) as the Airport and that is an object of “layer” (a map Draw-
ingLayer).10 Moreover, this map point has the Airport as an underlyingObject and has
the Airport name as its Label. Note how the expressive power of SWRL allows “ex-
istentials” to be expressed in the head of a rule—it is asserted that, for every Airport,
there must exist such a map point (using an OWL someValuesFrom restriction in a
class atom). In this way SWRL goes beyond the expressive power of Horn rules.

The first part of this example is background knowledge about Airports and maps
expressed in OWL DL. (A few liberties have been taken with the OWL DL ab-
stract syntax here in the interests of better readability.) In particular, it is stated that
map:location and map:object are individual-valued Properties with inverse proper-
ties map:isLocationOf and map:isObjectOf respectively; that latitude and longitude
are data-valued Properties; that map:Location is a class whose instances have ex-
actly one latitude and exactly one longitude, both being of type xsd:double; that layer
is an instance of map:DrawingLayer; that map is an instance of map:Map whose
map:name is "Airports" and whose map:layer is layer; and that airport:GEC
is an instance of airport-ont:Airport whose name is "Spokane Intl" and whose
location is latitude 47.6197 and longitude 117.5336.

ObjectProperty(map:location)
ObjectProperty(map:isLocationOf

inverseOf(map:location))
ObjectProperty(map:object)
ObjectProperty(map:isObjectOf

inverseOf(map:location))

DatatypeProperty(latitude)
DatatypeProperty(longitude)
Class(map:Location primitive

intersectionOf(
restriction(latitude allValuesFrom(xsd:double))
restriction(latitude minCardinality(1))
restriction(longitude allValuesFrom(xsd:double))
restriction(longitude minCardinality(1))))

Individual(layer type(map:DrawingLayer))

Individual(map type(map:Map)
value(map:name "Airports")
value(map:layer layer))

Individual(airport:GEC type(airport-ont:Airport)
value(name "Spokane Intl")
value(location Individual(value(latitude 47.6197)

value(longitude 117.5336))))

10http://www.daml.org/2003/06/ruletests/translation-3.n3
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The first rule in the example requires that if a map:Location is the sameLocation
as another location, then it has the same values for latitude and longitude.

map:Location(?maploc) ∧ sameLocation(?loc, ?maploc)∧
latitude(?loc, ?lat) ∧ longitude(?loc, ?lon)

→ latitude(?maploc, ?lat) ∧ latitude(?maploc, ?lon)

The second rule requires that wherever an airport-ont:Airport is located, there is
some map:Location that is the sameLocation as the Airport’s location, and that is
the location of a map:Point that is an object of the map:DrawingLayer “layer”. Note
that the head of the rule is an atom of the form C(?loc), where the class C is an OWL
restriction.

airport-ont:Airport(?airport) ∧ location(?airport, ?loc)∧
latitude(?loc, ?lat) ∧ longitude(?loc, ?lon)
→ restriction(sameLocation

someValuesFrom(
intersectionOf(map : Location
restriction(isLocationOf
someValuesFrom(
intersectionOf(map : Point
restriction(map : isObjectOf
someValuesFrom(OneOf(layer)))))))))(?loc)

The third rule requires that the map:Point whose map:location is the
map:Location of an airport-ont:Airport has the airport as a map:underlyingObject
and has a map:label which is the name of the airport.

airport-ont:Airport(?airport) ∧map:location(?airport, ?loc) ∧
sameLocation(?loc, ?maploc) ∧map:Location(?point, ?maploc) ∧

airport-ont:name(?airport, ?name)
→ map:underlyingObject(?point, ?airport) ∧

map:label(?point, ?name)

8 Mapping to RDF Graphs
It is widely assumed that the Semantic Web will be based on a hierarchy of (increas-
ingly expressive) languages, with RDF/XML providing the syntactic and semantic
foundation (see, e.g., [5]). In accordance with this design philosophy, the charter of
the W3C Web Ontology Working Group (the developers of the OWL language) explic-
itly stated that “The language will use the XML syntax and datatypes wherever possible,
and will be designed for maximum compatibility with XML and RDF language conven-
tions.”. In pursuance of this goal, the working group devoted a great deal of effort to
developing an RDF based syntax for OWL that was also consistent with the semantics
of RDF [20]. It is, therefore, worth considering how this design might be extended to
encompass rules.

One rather serious problem is that, unlike OWL, rules have variables, so treating
them as a semantic extension of RDF is very difficult. It is, however, still possible
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to provide an RDF syntax for rules—it is just that the semantics of the resultant RDF
graphs may not be an extension of the RDF Semantics [15].

A mapping to RDF/XML is most easily created as an extension to the XSLT trans-
formation for the OWL XML Presentation syntax.11 This would introduce RDF classes
for SWRL atoms and variables, and RDF properties to link atoms to their predicates
(classes and properties) and arguments (variables, individuals or data values).12 The
example rule given in Section 7.1 (that equates the style/period of art objects with the
style of the artist that created them) would be mapped into RDF as follows:

<owlr:Variable rdf:ID="x"/>
<owlr:Variable rdf:ID="y"/>
<owlr:Variable rdf:ID="z"/>
<owlr:Rule>
<owlr:antecedent rdf:parseType="Collection">
<owlr:classAtom>
<owlr:classPredicate

rdf:resource="&ulan;Artist"/>
<owlr:argument1 rdf:resource="#x" />

</owlr:classAtom>
<owlr:classAtom>
<owlr:classPredicate

rdf:resource="&aat;Style"/>
<owlr:argument1 rdf:resource="#y" />

</owlr:classAtom>
<owlr:individualPropertyAtom>
<owlr:propertyPredicate

rdf:resource="&aatulan;artistStyle"/>
<owlr:argument1 rdf:resource="#x" />
<owlr:argument2 rdf:resource="#y" />

</owlr:individualPropertyAtom>
<owlr:individualPropertyAtom>
<owlr:propertyPredicate

rdf:resource="&vra;creator"/>
<owlr:argument1 rdf:resource="#x" />
<owlr:argument2 rdf:resource="#z" />

</owlr:individualPropertyAtom>
</owlr:antecedent>
<owlr:consequent rdf:parseType="Collection">
<owlr:individualPropertyAtom>
<owlr:propertyPredicate

rdf:resource="&vra;style/period"/>
<owlr:argument1 rdf:resource="#z" />
<owlr:argument2 rdf:resource="#y" />

</owlr:individualPropertyAtom>
</owlr:consequent>

</owlr:Rule>

where &ulan;, &aat;, &aatulan; and &vra; are assumed to expand into the appropriate

11http://www.w3.org/TR/owl-xmlsyntax/owlxml2rdf.xsl
12The result is similar to the RDF syntax for representing disjunction and quantifiers proposed in [30].
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namespace names. Note that complex OWL classes (such as OWL restrictions) as well
as class names can be used as the object of SWRL’s classPredicate property.

9 Reasoning Support for SWRL
Although SWRL provides a fairly minimal rule extension to OWL, the consistency
problem for SWRL ontologies is still undecidable (as we have seen in Section 6). This
raises the question of how reasoning support for SWRL might be provided.

It seems likely, at least in the first instance, that many implementations will provide
only partial support for SWRL. For this reason, users may want to restrict the form or
expressiveness of the rules and/or axioms they employ either to fit within a tractable
or decidable fragment of SWRL, or so that their SWRL ontologies can be handled by
existing or interim implementations.

One possible restriction in the form of the rules is to limit antecedent and conse-
quent classAtoms to be named classes, with OWL axioms being used to assert addi-
tional constraints on the instances of these classes (in the same document or in external
OWL documents). Adhering to this format should make it easier to translate rules to or
from existing (or future) rule systems, including Prolog, production rules (descended
from OPS5), event-condition-action rules and SQL (where views, queries, and facts
can all be seen as rules); it may also make it easier to extend existing rule based rea-
soners for OWL (such as Euler13 or FOWL14) to handle SWRL ontologies. Further,
such a restriction would maximise backwards compatibility with OWL-speaking sys-
tems that do not support SWRL. It should be pointed out, however, that there may be
some incompatibility between the first order semantics of SWRL and the Herbrand
model semantics of many rule based reasoners.

By further restricting the form of rules and DL axioms used in SWRL ontologies it
would be possible to stay within DLP, a subset of the language that has been shown to
be expressible in either OWL DL or declarative logic programs (LP) alone [14]. This
would allow either OWL DL reasoners or LP reasoners to be used with such ontologies,
although there may again be some incompatibility between the semantics of SWRL and
those of LP reasoners.

Another obvious strategy would be to restrict the form of rules and DL axioms
so that a “hybrid” system could be used to reason about the resulting ontology. This
approach has been used, e.g., in the CLASSIC [38] and CARIN systems [28], where
sound and complete reasoning is made possible mainly by focusing on query answer-
ing, by restricting the DL axioms to languages that are much weaker than OWL, by
restricting the use of DL terms in rules, and/or by giving a different semantic treatment
to rules.

Finally, an alternative way to provide reasoning support for SWRL would be to
extend the translation of OWL into TPTP15 implemented in the Hoolet system,16 and
use a first order prover such as Vampire to reason with the resulting first order theory
[42, 54]. This technique would have several advantages: no restrictions on the form of
SWRL rules or axioms would be required; the use of a first order prover would ensure
that all inferences were sound with respect to SWRL’s first order semantics; and the
use of the TPTP syntax would make it possible to use any one of a range of state of the

13http://www.agfa.com/w3c/euler/
14http://fowl.sourceforge.net
15A standard syntax used by many first order theorem provers—see http://www.tptp.org
16http://www.w3.org/2003/08/owl-systems/test-results-out
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art first order provers. A prototype based on this approach is described in the following
section.

10 A Prototype SWRL Reasoner
It is well known that OWL DL corresponds to the SHOIND−

n Description Logic
(DL), and that, like most other DLs, SHOIND−

n is a fragment of classical first-order
predicate logic (FOL) [10, 19, 1]. This suggests the idea of using standard methods of
automated reasoning for FOL as a mechanism for reasoning with OWL DL.

This might be done by trying to create from scratch new architectures for reasoning
in FOL, which would be specialised for dealing efficiently with typical DL reasoning
tasks. A much less expensive option is to use existing implementations of FOL provers,
with the possibility of making adjustments that exploit the structure of DL reasoning
tasks. An additional attraction of using a FO prover in this way is the fact that the trans-
lation from DL to FOL can be extended to handle SWRL, providing an implementation
of a SWRL reasoner.

Here we describe our initial prototype implementation of just such a SWRL rea-
soner, known as Hoolet. It should be noted that this initial implementation is rather
simplistic, and is only intended as a preliminary feasibility study. We will, however,
discuss the issue of possible optimisations.

There have been earlier investigations of the use of FOL provers to reason with
description logics. Paramasivam and Plaisted, for example, have investigated the use
of FOL reasoning for DL classification [36], while Ganzinger and de Nivelle have
developed decision procedures for the guarded fragment, a fragment of FOL that in-
cludes many description logics [11]. The most widely known work in this area was by
Hustadt and Schmidt [26], who used the SPASS FOL prover to reason with proposi-
tional modal logics, and, via well known correspondences [45], with description logics.
Their technique involved the use of a relatively complex functional translation which
produces a subset of FOL for which SPASS can be tuned so as to guarantee complete
reasoning. The results of this experiment were quite encouraging, with performance
of the SPASS based system being comparable, in many cases, with that of state of the
art DL reasoners. The tests, however, mainly concentrated on checking the satisfiabil-
ity of (large) single modal logic formulae (equivalently, OWL class descriptions/DL
concepts), rather than the more interesting task (in an ontology reasoning context) of
checking the satisfiability of formulae w.r.t. a large theory (equivalently, an OWL on-
tology/DL knowledge base).

In all of the above techniques, the DL is translated into (the guarded fragment of)
FOL in such a way that the prover can be used as a decision procedure for the logic—
i.e., reasoning is sound, complete and terminating. Such techniques have, however, yet
to be extended to the more expressive DLs that underpin Web ontology languages such
as DAML+OIL and OWL DL [18], and it is not even clear if such an extension would
be possible.

An alternative approach, and the one we describe here, is to use a simple “direct”
translation based on the standard first order semantics of DLs (see, e.g., [1]). Using
this approach, an ontology/knowledge base (a set of DL axioms), is translated into a FO
theory (a set of FO axioms). A DL reasoning task w.r.t. the knowledge base (KB) is then
transformed into a FO task that uses the theory. Unlike methods such as Hustadt and
Schmidt’s functional translation, this does not result in a decision procedure for the DL.
The direct translation approach can, however, be used to provide reasoning services

17



(albeit without any guarantee of completeness) for the expressive DLs underlying Web
ontology languages, DLs for which no effective decision procedure is currently known.
Moreover, the translation approach can easily deal with language extensions such as
SWRL as described here.

In recent years, a number of highly efficient FO provers have been imple-
mented [32, 50, 43]. These provers compete annually on a set of tasks, and the re-
sults are published [9]. One of the most successful general-purpose provers has been
Vampire [43], and we have chosen this prover to use in our prototype.

Vampire is a general-purpose FOL prover developed by Andrei Voronkov and
Alexandre Riazanov. Given a set of first-order formulas, Vampire transforms it into an
equisatisfiable set of clauses, and then tries to demonstrate inconsistency of the clause
set by saturating it with ordered resolution and superposition (see [3, 33]). If the satura-
tion process terminates without finding a refutation of the input clause set, it indicates
that the clause set, and therefore the original formula set, is satisfiable, provided that
the variant of the calculus used is refutationally complete and that a fair strategy17 has
been used for saturation.

The main input format of Vampire is the TPTP syntax [49] (although a parser for
a subset of KIF [12] has been added recently). Using the TPTP syntax in our prototype
means that it would be possible to substitute Vampire with any one of a range of state
of the art first order provers.

10.1 Translation issues
Translating OWL Ontologies into FOL Axioms We will only discuss the transla-
tion from DL to FOL as the correspondence between OWL DL and SHOIND−

n is
well known [19]. The translation φ maps DL concepts C and role names R into unary
and binary predicates φC(x) and φR(x, y) respectively. Complex concepts and axioms
are mapped into FO formulae and axioms in the standard way [7, 1]. For example,
subsumption and equivalence axioms are translated into, respectively, FO implication
and equivalence (with the free variables universally quantified).

As an example, let’s see a translation of a couple of concept and role axioms:

DL FOL
R v S ∀x∀y(φR(x, y) → φS(x, y))
C ≡ D u ∃R.(E t ∀x(φC(x) ≡ φD(x) ∧ ∃y(φR(x, y) ∧ (φE(y) ∨

∀S−.F ) ∀x(φS(x, y) ∧ φF (x)))))
A v > 3 R.B ∀x(φA(x) → ∃y1∃y2∃y3(φR(x, y1) ∧ φB(y1) ∧

φR(x, y2) ∧ φB(y2) ∧ φR(x, y3) ∧ φB(y3) ∧
(y1 6= y2) ∧ (y2 6= y3) ∧ (y1 6= y3))

Transitive(T ) ∀x∀y∀z(φT (x, y) ∧ φT (y, z) → φT (x, z))

Simple DLs (like ALC) can be translated into the FOL class L2 (the FOL fragment
with no function symbols and only 2 variables), which is known to be decidable [31].
The above translations of the role inclusion axiom and concept equality axiom are,
for example, in L2. When number restrictions are added to these DLs, they can be
translated into C2—equivalent to L2 with additional “counting quantifiers”—which is
also known to be decidable [13].

The FOL translation of more expressive description logics, e.g., with transitive
roles (SHIQ, OWL Lite and OWL DL) and/or complex role axioms (RIQ [22]),

17I.e., all generated clauses are eventually processed
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may lead to the introduction of three or more variables.18 The above transitivity ax-
iom for role T is an example of this case. FOL with three variables is known to be
undecidable [7].

OWL DL also provides for XML schema datatypes [6], equivalent to a very simple
form of concrete domains [21]. The minimum requirement for OWL DL reasoners is
that they support xsd:integer and xsd:string datatypes, where support means
providing a theory of (in)equality for integer and string values [37].

Our translation encodes the required datatype theory by mapping datatypes into
predicates and data values into new constants. Lexically equivalent data values are
mapped to the same constant, with integers first being canonicalised in the obvious
way, and axioms are added that assert inequality between all the string and integer data
constants introduced. If a data value DV and a datatype DT are mapped to DV and
DT respectively, and DV is of type DT, then an axiom DT (DV ) is also added. As
the xsd:integer and xsd:string interpretation domains are disjoint, we add an
axiom to that effect. Finally, we add an axiom asserting the disjointness of the datatype
domain (the set of data values) and the abstract domain (the set of individuals).

In accordance with the OWL DL semantics, other “unsupported” data types are
treated opaquely, i.e., data values are mapped to the same constant if they are lexically
identical, but no other assumptions are made (we do not assume inequality if the lexical
forms are not identical) [37].

Translating SWRL Rules into FOL Axioms Using the translation approach, we
can easily extend the first-order translation to SWRL rules and thus provide a simple
implementation of a SWRL reasoner.

As we have seen, rules in SWRL are of the form:

B1, . . . , Bm → H1, . . . ,Hn

where each of the Bi or Hj are rule atoms. Possible rule atoms are shown in Table 2,
where C is an OWL class description, R an OWL property and i and j are either OWL
individual names or SWRL variables.

Table 2: Rule Atoms
Atom Type
C(i) Class Atom
R(i,j) Property Atom
i==j Equality Atom
i!=j Inequality Atom

In our prototype we have only considered a simplification of SWRL where C must
be a class name (rather than arbitrary class descriptions), and R must be an object prop-
erty. The first of these restrictions does not affect the expressiveness of the language, as
new class names can be introduced into the ontology to represent any complex descrip-
tions required in rules. The restriction to object properties simplifies our implemen-
tation, but the translation we describe could easily be extended to handle data valued
properties.

The translation of rules exactly follows the semantics of the rules as given in Sec-
tion 4. Each rule is translated as an implication, and any free variables in the rule are

18In some cases, the effects of transitive roles can be axiomatised in C2 [53].
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assumed to be universally quantified. Thus a rule:

B1, . . . , Bm → H1, . . . ,Hn

is translated to an axiom:

∀x1, x2, . . . , xk.T (B1) ∧ . . . ∧ T (Bm) → T (H1) ∧ . . . ∧ T (Hn)

where x1, x2, . . . , xk are all the variables occurring in the Bi and Hj .
Translation of atoms is trivial and is shown in Table 3. Combining this translation

with the translation from OWL to FOL described above provides us with a prototype
implementation of a SWRL reasoner. Given an ontology and a collection of rules
relating to that ontology, we translate the ontology to FOL, and then add the FOL
axioms generated by translating the rules. The resulting theory is passed to a FO prover
(Vampire in our case), where it can be used for reasoning tasks such as satisfiability
checking and instance checking.

Table 3: Rule Atom Translation
Atom Translation
C(i) C(i)
R(i,j) R(i, j)
i==j i=j
i!=j i 6= j

10.2 Examples
As an example, we will consider a variant on the “uncle” example given in Section 3.2:

hasParent(?x,?y), hasSibling(?y, ?z), Male(?z)
⇒ hasUncle(?x,?z)

If our ontology additionally includes the axiom and facts (expressed here using stan-
dard DL syntax):

Uncle ≡ ∃hasUncle−.>
〈Robert,Paul〉 : hasParent
〈Paul,Ian〉 : hasSibling

then the reasoner can infer not only hasUncle(Robert,Ian), but also that Ian is
an instance of the Uncle class.

Another interesting aspect of the language is illustrated by the following rule:

Beer(?x) ⇒ Happy(Sean)

This expresses the fact that for any instances of the class Beer, Sean must be an
instance of Happy. This effectively allows us to express an existential quantification
over the class Beer: if we can prove the existence of an instance of this class, then
Sean will be Happy. Note that we do not actually have to provide a name for such an
instance. For example, if our ontology includes the fact:

Sean : ∃drinks.Beer

then the reasoner can infer that Sean must be Happy as we now know that there exists
some instance of Beer—even though this instance is unnamed.
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10.3 Performance and Optimisation
Our prototype works well with small examples, such as those given in Sections 7
and 10.2, and we have used it successfully with SWRL ontologies containing up to
100 axioms, rules and facts. However, while it is useful to have a prototype that can be
used for illustrative and test purposes, the effectiveness of such a naive approach must
be open to question with larger SWRL ontologies.

In [55] it was shown that, when using the same translation approach to reason with
OWL DL ontologies, performance could be greatly improved by using a so-called “rel-
evant only” translation. The key idea is that when ontologies are translated, Vampire
receives all of the axioms that occur in the ontology, whereas usually only a small frac-
tion of them are actually relevant to a given subsumption or inconsistency problem.
Vampire is not optimised to deal efficiently with large numbers of irrelevant axioms,
and so it does not perform well under these circumstances.

An obvious way to correct this situation is to remove all irrelevant information from
the FO task given to Vampire. An axiom is said to be irrelevant to a consistency test of
C if it can easily be shown (i.e., via a syntactic analysis) that removing it from the on-
tology would not affect the interpretation of C; other axioms are called relevant. Note
that not every “relevant axiom” really will affect the computation of the consistency
of C, but we cannot (easily) rule out the possibility that it may affect the computation.
An FO-translation is called relevant-only if it contains only FO-translations of axioms
relevant (in the above sense) to the given satisfiability test.

The definition of relevance given in [55] can be extended to SWRL by treating
rules in the same way as general concept inclusion axioms (GCIs). A concept or role
expression depends on every concept or role that occurs in it, and a concept or role C
depends on a concept or role D if D occurs in the definition of C. In addition, a concept
C depends on every GCI and rule in the ontology.19 Relevance is the transitive closure
of depends. The process of selecting information relevant to a concept expression E
looks very much the same as unfolding (see [1]), and assumes that the KB is separated
into a set of unfoldable axioms and a set of GCIs [25] and rules. Every concept name
CN and role name RN appearing in E is relevant to E. The process is then repeated
recursively for unfoldable axioms with CN on the left hand side (whether inclusion
or equality axioms). Also, if role R is relevant to E, then so are all roles R′ s.t. R v
R′, along with their inverses (if the target DL allows inverse roles). An algorithm
for computing relevant information is quite straightforward and is described in detail
in [54].

Computing relevance leads to a small overhead when translating a SWRL ontology
into FOL, but it should greatly increase the performance of the FO prover. Preliminary
experiments with an extension of Hoolet to include an implementation of the relevant
only translation suggest that this is indeed the case [29].

11 Discussion
In this paper we have presented SWRL, a proposed extension to OWL to include a
simple form of Horn-style rules. We have provided formal syntax and semantics for
SWRL, shown how OWL’s XML and RDF syntax can be extended to deal with SWRL,

19It should be possible to treat (some) rules as unfoldable axioms, add thus eliminate the need to include
all rules in the relevant only translation, but this is still the subject of ongoing work.
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illustrated the features of SWRL with several examples, and discussed how reasoning
support for SWRL might be provided.

The main strengths of the proposal are its simplicity and its tight integration with
the existing OWL language. As we have seen, SWRL extends OWL with the most ba-
sic kind of Horn rule (sweetened with a little “syntactic sugar”): predicates are limited
to being OWL classes and properties (and so have a maximum arity of 2), there are no
disjunctions or negations (of atoms), no built in predicates (such as arithmetic predi-
cates), and no nonmonotonic features such as negation as failure or defaults. Moreover,
rules are given a standard first order semantics. This facilitates the tight integration with
OWL, with SWRL being defined as a syntactic and semantic extension of OWL DL.

While we believe that SWRL defines a natural and useful level in the hierarchy of
Semantic Web languages, it is clear that some applications would benefit from further
extensions in expressive power. In particular, the ability to express arithmetic relation-
ships between data values is important in many applications (e.g., to assert that persons
whose income at least equals their expenditure are happy, while those whose expendi-
ture exceeds their income are unhappy). It is not clear, however, if this would best be
achieved by extending SWRL to include rules with built in arithmetic predicates, or by
extending OWL Datatypes to include nary predicates [35].

Finally, we have shown how a first order theorem prover can be used to provide
reasoning services for SWRL, and how some simple optimisations can be used to im-
prove performance. Our results were sufficiently encouraging to suggest that, with
further tuning and optimisation, such a strategy would be useful in (some) realistic ap-
plications. Future work will include such tuning and optimisation, as well as empirical
investigations to determine the practical value of the resulting system.
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