
Description Logics in Ontology Applications

Ian Horrocks

School of Computer Science, University of Manchester
Oxford Road, Manchester M13 9PL, UK

horrocks@cs.man.ac.uk

Abstract. Description Logics (DLs) are a family of logic based knowl-
edge representation formalisms. Although they have a range of appli-
cations (e.g., configuration and information integration), they are per-
haps best known as the basis for widely used ontology languages such
as OWL (now a W3C recommendation). This decision was motivated
by a requirement that key inference problems be decidable, and that it
should be possible to provide reasoning services to support ontology de-
sign and deployment. Such reasoning services are typically provided by
highly optimised implementations of tableaux decision procedures; these
have proved to be effective in applications in spite of the high worst case
complexity of key inference problems. The increasing use of DL based
ontologies in areas such as e-Science and the Semantic Web is, however,
already stretching the capabilities of existing DL systems, and brings
with it a range of research challenges.

1 Introduction

Description Logics (DLs) are a family of class (concept) based knowledge repre-
sentation formalisms. They are characterised by the use of various constructors
to build complex concepts from simpler ones, an emphasis on the decidability of
key reasoning tasks, and by the provision of sound, complete and (empirically)
tractable reasoning services.

Although they have a range of applications (e.g., reasoning with database
schemas and queries [1–3]), DLs are perhaps best known as the basis for on-
tology languages such as OIL, DAML+OIL and OWL [4]. The decision to base
these languages on DLs was motivated by a requirement not only that key infer-
ence problems (such as class satisfiability and subsumption) be decidable, but
that “practical” decision procedures and “efficient” implemented systems also
be available.

That DLs were able to meet the above requirements was the result of exten-
sive research within the DL community over the course of the preceding 20 years
or more. This research mapped out a complex landscape of languages, exploring
a range of different language constructors, studying the effects of various com-
binations of these constructors on decidability and worst case complexity, and
devising decision procedures, the latter often being tableaux based algorithms.
At the same time, work on implementation and optimisation techniques demon-
strated that, in spite of the high worst case complexity of key inference problems

(usually at least ExpTime), highly optimised DL systems were capable of pro-
viding practical reasoning support in the typical cases encountered in realistic
applications.

With the added impetus provided by the OWL standardisation effort, DL
systems are now being used to provide computational services for a rapidly
expanding range of ontology tools and applications [5–10]. The increasing use
of DL based ontologies in areas such as e-Science and the Semantic Web is,
however, already stretching the capabilities of existing DL systems, and brings
with it a range of research challenges.

2 Ontologies and Ontology Reasoning

In Computer Science, an ontology is usually taken to mean a conceptual model
(of some domain), typically realised as a hierarchical vocabulary of terms, to-
gether with formal specifications of the meaning of each term. These specifica-
tions are often given with reference to other (simpler) terms in the ontology. For
example, in a medical terminology ontology, the meaning of the term Gastritis
might be specified as an InflammatoryProcess whose outcome is InflammationOf-
Stomach, where InflammatoryProcess, outcome and InflammationOfStomach are
all terms from the ontology. Such vocabularies may be used, e.g., to facilitate
data sharing and reuse (often by annotating data using terms from a shared
ontology), to structure data, or simply to explicate and investigate knowledge of
a domain.

Ontologies play a major role in the Semantic Web (where they are used to
annotate web resources) [11, 12], and are widely used in, e.g., knowledge manage-
ment systems, e-Science, and bio-informatics and medical terminologies [13–16].
They are also of increasing importance in the Grid, where they may be used,
e.g., to support the discovery, execution and monitoring of Grid services [17–19].

Given the formal and compositional nature of ontologies, it is natural to use
logics as the basis for ontology languages—this allows for the precise definition
of the meaning of compositional operators (such as “and” and “or”), and of re-
lationships between terms (such as “subclass” and “instance”). The effective use
of logic based ontology languages in applications will, however, critically depend
on the provision of efficient reasoning support. On the one hand, such support
is required by ontology engineers in order to help them to design and maintain
sound, well-balanced ontologies [20]. On the other hand, such support is required
by applications in order to exploit the formal specification of meaning captured
in ontologies: querying ontologies and ontology structured data, is equivalent to
computing logical entailments [21].

3 Ontology Languages and Description Logics

The OWL recommendation actually consists of three languages of increasing
expressive power: OWL Lite, OWL DL and OWL Full. Like OWL’s predecessor
DAML+OIL, OWL Lite and OWL DL are basically very expressive description

logics with an RDF syntax. OWL Full provides a more complete integration
with RDF, but its formal properties are less well understood, and key inference
problems would certainly be much harder to compute.1 For these reasons, OWL
Full will not be considered here.

More precisely, OWL DL is based on the SHOIQ DL [23]; it restricts the
form of number restrictions to be unqualified (see [24]), and adds a simple form
of Datatypes (often called concrete domains in DLs [25]). Following the usual DL
naming conventions, the resulting logic is called SHOIN (D), with the different
letters in the name standing for (sets of) constructors available in the language: S
stands for the basic ALC DL (equivalent to the propositional modal logic K(m))
extended with transitive roles [22], H stands for role hierarchies (equivalently,
inclusion axioms between roles), O stands for nominals (classes whose extension
is a single individual) [26], N stands for unqualified number restrictions and
(D) stands for datatypes) [27]. OWL Lite is equivalent to the slightly simpler
SHIF(D) DL (i.e., SHOIQ without nominals, and with only functional number
restrictions).

These equivalences allow OWL to exploit the considerable existing body of
description logic research, e.g.:

– to define the semantics of the language and to understand its formal prop-
erties, in particular the decidability and complexity of key inference prob-
lems [28];

– as a source of sound and complete algorithms and optimised implementation
techniques for deciding key inference problems [29, 22, 27];

– to use implemented DL systems in order to provide (partial) reasoning sup-
port [30–32].

3.1 SHOIN Syntax and Semantics

The syntax and semantics of SHOIN are briefly introduced here (we will ignore
datatypes, as adding a datatype component would complicate the presentation
and has little affect on reasoning [33]).

Definition 1. Let R be a set of role names with both transitive and normal role
names R+ ∪RP = R, where RP ∩R+ = ∅. The set of SHOIN -roles (or roles
for short) is R ∪ {R− | R ∈ R}. A role inclusion axiom is of the form R v S,
for two roles R and S. A role hierarchy is a finite set of role inclusion axioms.

An interpretation I = (∆I , ·I) consists of a non-empty set ∆I , called the
domain of I, and a function ·I which maps every role to a subset of ∆I × ∆I

such that, for P ∈ R and R ∈ R+,

〈x, y〉 ∈ P I iff 〈y, x〉 ∈ P−I ,
and if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI , then 〈x, z〉 ∈ RI .

1 Inference in OWL Full is clearly undecidable as OWL Full does not include restric-
tions on the use of transitive properties which are required in order to maintain
decidability [22].

An interpretation I satisfies a role hierarchy R iff RI ⊆ SI for each R v S ∈ R;
such an interpretation is called a model of R.

Definition 2. Let NC be a set of concept names with a subset NI ⊆ NC of
nominals. The set of SHOIN -concepts (or concepts for short) is the smallest
set such that

1. every concept name C ∈ NC is a concept,
2. if C and D are concepts and R is a role, then (C u D), (C t D), (¬C),

(∀R.C), and (∃R.C) are also concepts (the last two are called universal and
existential restrictions, resp.), and

3. if R is a simple role2 and n ∈ N, then 6nR and >nR are also concepts
(called atmost and atleast number restrictions).

The interpretation function ·I of an interpretation I = (∆I , ·I) maps, addition-
ally, every concept to a subset of ∆I such that

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI , ¬CI = ∆I \ CI ,
]oI = 1 for all o ∈ NI ,

(∃R.C)I = {x ∈ ∆I | There is a y ∈ ∆I with 〈x, y〉 ∈ RI and y ∈ CI},
(∀R.C)I = {x ∈ ∆I | For all y ∈ ∆I , if 〈x, y〉 ∈ RI , then y ∈ CI},

6nRI = {x ∈ ∆I |]{y | 〈x, y〉 ∈ RI} 6 n},
>nRI = {x ∈ ∆I |]{y | 〈x, y〉 ∈ RI} > n},

where, for a set M , we denote the cardinality of M by]M .
For C and D (possibly complex) concepts, C v̇ D is called a general concept

inclusion (GCI), and a finite set of GCIs is called a TBox.
An interpretation I satisfies a GCI C v̇ D if CI ⊆ DI , and I satisfies a

TBox T if I satisfies each GCI in T ; such an interpretation is called a model
of T .

A concept C is called satisfiable with respect to a role hierarchy R and a
TBox T if there is a model I of R and T with CI 6= ∅. Such an interpretation is
called a model of C w.r.t. R and T . A concept D subsumes a concept C w.r.t.
R and T (written C vR,T D) if CI ⊆ DI holds in every model I of R and T .
Two concepts C,D are equivalent w.r.t. R and T (written C ≡R,T D) iff they
are mutually subsuming w.r.t. R and T . (When R and T are obvious from the
context, we will often write C v D and C ≡ D.) For an interpretation I, an
individual x ∈ ∆I is called an instance of a concept C iff x ∈ CI .

Note that, as usual, subsumption and satisfiability can be reduced to each
other, and reasoning w.r.t. general TBoxes and role hierarchies can be reduced
to reasoning w.r.t. role hierarchies only [22, 27].

2 A role is simple if it is neither transitive nor has any transitive subroles. Restricting
number restrictions to simple roles is required in order to yield a decidable logic [22].

3.2 Practical Reasoning Services

Most modern DL systems use tableaux algorithms to test concept satisfiability.
These algorithms work by trying to construct (a tree representation of) a model
of the concept, starting from an individual instance. Tableaux expansion rules
decompose concept expressions, add new individuals (e.g., as required by ∃R.C
terms),3 and merge existing individuals (e.g., as required by 6nR.C terms). Non-
determinism (e.g., resulting from the expansion of disjunctions) is dealt with by
searching the various possible models. For an unsatisfiable concept, all possible
expansions will lead to the discovery of an obvious contradiction known as a
clash (e.g., an individual that must be an instance of both A and ¬A for some
concept A); for a satisfiable concept, a complete and clash-free model will be
constructed [34].

Tableaux algorithms have many advantages. It is relatively easy to design
provably sound, complete and terminating algorithms, and the basic technique
can be extended to deal with a wide range of class and role constructors. More-
over, although many algorithms have a higher worst case complexity than that of
the underlying problem, they are usually quite efficient at solving the relatively
easy problems that are typical of realistic applications.

Even in realistic applications, however, problems can occur that are much
too hard to be solved by naive implementations of theoretical algorithms. Mod-
ern DL systems, therefore, include a wide range of optimisation techniques, the
use of which has been shown to improve typical case performance by several or-
ders of magnitude [29, 35, 36, 32, 37, 38]. Key techniques include lazy unfolding,
absorption and dependency directed backtracking.

Lazy Unfolding In an ontology, or DL Tbox, large and complex concepts are
seldom described monolithically, but are built up from a hierarchy of named
concepts whose descriptions are less complex. The tableaux algorithm can take
advantage of this structure by trying to find contradictions between concept
names before adding expressions derived from Tbox axioms. This strategy is
known as lazy unfolding [29, 36].

The benefits of lazy unfolding can be maximised by lexically normalising and
naming all concept expressions and, recursively, their sub-expressions. An ex-
pression C is normalised by rewriting it in a standard form (e.g., disjunctions are
rewritten as negated conjunctions); it is named by substituting it with a new con-
cept name A, and adding an axiom A ≡ C to the Tbox. The normalisation step
allows lexically equivalent expressions to be recognised and identically named,
and can even detect syntactically “obvious” satisfiability and unsatisfiability.

Absorption Not all axioms are amenable to lazy unfolding. In particular, so
called general concept inclusions (GCIs), axioms of the form C v D where C
is non-atomic, must be dealt with by explicitly making every individual in the
3 Cycle detection techniques known as blocking may be required in order to guarantee

termination.

model an instance of Dt¬C. Large numbers of GCIs result in a very high degree
of non-determinism and catastrophic performance degradation [36].

Absorption is another rewriting technique that tries to reduce the number
of GCIs in the Tbox by absorbing them into axioms of the form A v C, where
A is a concept name. The basic idea is that an axiom of the form A u D v D′

can be rewritten as A v D′ t ¬D and absorbed into an existing A v C axiom
to give A v C u (D′ t ¬D) [39]. Although the disjunction is still present, lazy
unfolding ensures that it is only applied to individuals that are already known
to be instances of A.

Dependency Directed Backtracking Inherent unsatisfiability concealed in
sub-expressions can lead to large amounts of unproductive backtracking search
known as thrashing. For example, expanding the expression (C1tD1)u. . .u(Cnt
Dn)u ∃R.(AuB)u ∀R.¬A could lead to the fruitless exploration of 2n possible
expansions of (C1 t D1) u . . . u (Cn t Dn) before the inherent unsatisfiability
of ∃R.(A u B) u ∀R.¬A is discovered. This problem is addressed by adapting a
form of dependency directed backtracking called backjumping, which has been
used in solving constraint satisfiability problems [40].

Backjumping works by labelling concepts with a dependency set indicating
the non-deterministic expansion choices on which they depend. When a clash is
discovered, the dependency sets of the clashing concepts can be used to identify
the most recent non-deterministic expansion where an alternative choice might
alleviate the cause of the clash. The algorithm can then jump back over inter-
vening non-deterministic expansions without exploring any alternative choices.
Similar techniques have been used in first order theorem provers, e.g., the “proof
condensation” technique employed in the HARP theorem prover [41].

4 Research Challenges for Ontology Reasoning

The development of the OWL language, and the successful use of reasoning
systems in tools such as the Protégé editor [42], has demonstrated the utility of
logic and automated reasoning in the ontology domain. The increasing use of DL
based ontologies in areas such as e-Science and the Semantic Web is, however,
already stretching the capabilities of existing DL systems, and brings with it a
range of challenges for future research.

Scalability Practical ontologies may be very large—tens or even hundreds of
thousands of classes. Dealing with large-scale ontologies already presents a chal-
lenge to the current generation of DL reasoners, in spite of the fact that many
existing large-scale ontologies are relatively simple. In the 40,000 concept Gene
Ontology (GO), for example, much of the semantics is currently encoded in class
names such as “heparin-metabolism”; enriching GO with more complex defini-
tions, e.g., by explicitly modelling the fact that heparin-metabolism is a kind of
“metabolism” that “acts-on” the carbohydrate “heparin”, would make the se-
mantics more accessible, and would greatly increase the value of GO by enabling

new kinds of query such as “what biological processes act on glycosaminoglycan”
(heparin is a kind of glycosaminoglycan) [43]. However, adding more complex
class definitions can cause the performance of existing reasoners to degrade to
the point where it is no longer acceptable to users. Similar problems have been
encountered with large medical terminology ontologies, such as the GALEN on-
tology [44].

Moreover, as well as using a conceptual model of the domain, many appli-
cations will also need to deal with very large volumes of instance data—the
Gene Ontology, for example, is used to annotate millions of individuals, and
practitioners want to answer queries that refer both to the ontology and to the
relationships between these individuals, e.g., “what DNA binding products inter-
act with insulin receptors”. Answering this query requires a reasoner not only to
identify individuals that are (perhaps only implicitly) instances of DNA binding
products and of insulin receptors, but also to identify which pairs of individuals
are (perhaps only implicitly) instances of the interactsWith role. For existing
ontology languages it is possible to use DL reasoning to answer such queries,
but dealing with the large volume of GO annotated gene product data is far
beyond the capabilities of existing DL systems [45].

Several different approaches to this problem are already under investigation.
One of these involves the use of a hybrid DL-DB architecture in which instance
data is stored in a database, and query answering exploits the relatively simple
relational structure encountered in typical data sets in order minimise the use
of DL reasoning and maximise the use of database operations [46]. Another
technique that is under investigation is to use reasoning techniques based on
the encoding of SHIQ ontologies in Datalog [47]. On the one hand, theoretical
investigations of this technique have revealed that data complexity (i.e., the
complexity of answering queries against a fixed ontology and set of instance
data) is significantly lower than the complexity of class consistency reasoning
(i.e., NP-complete for SHIQ, and even polynomial-time for a slight restriction
of SHIQ) [48]; on the other hand, the technique would allow relatively efficient
Datalog engines to be used to store and reason with large volumes of instance
data.

Expressive Power OWL is a relatively rich ontology language, but many ap-
plications require even greater expressive power than that which is provided
by the existing OWL standard. For example, in ontologies describing complex
physically structured domains such as biology [43] and medicine [44], it is often
important to describe aggregation relationships between structures and their
component parts, and to assert that certain properties of the component parts
transfer to the structure as a whole (a femur with a fractured shaft is a frac-
tured femur) [49]. The importance of this kind of knowledge can be gauged from
the fact that various “work-arounds” have been described for use with ontology
languages that cannot express it directly [50].

It may not be possible to satisfy all expressive requirements while staying
within a decidable fragment of first order logic. Recent research has, therefore,

studied the use in ontology reasoning of semi-decision procedures such as reso-
lution based theorem provers for full first order logic [51]. There have also been
studies of languages that combine a DL with some other logical formalism, of-
ten Datalog style rules, with the connection between the two formalisms being
restricted so as to maintain decidability [52, 47, 53]

Extended Reasoning Services Finally, in addition to solving problems of
class consistency/subsumption and instance checking, explaining how such in-
ferences are derived may be important, e.g., to help an ontology designer to
rectify problems identified by reasoning support, or to explain to a user why an
application behaved in an unexpected manner.

Work on developing practical explanation systems is at a relatively early
stage, with different approaches still being developed and evaluated. One such
technique involves exploiting standard reasoning services to identify a small set of
axioms that still support the inference in question, the hope being that presenting
a much smaller (than the complete ontology) set of axioms to the user will
help them to understand the “cause” of the inference [54]. Another (possibly
complementary) technique involves explaining the steps by which the inference
was derived, e.g., using a sequence of simple natural deduction style inferences
[55, 56].

As well as explanation, so-called “non-standard inferences” could also be
important in supporting ontology design; these include matching, approximation,
and difference computations. Non-standard inferences are the subject of ongoing
research [57–60]; it is still not clear if they can be extended to deal with logics
as expressive as those that underpin modern ontology languages, or if they will
scale to large applications ontologies.

5 Summary

Description Logics are a family of class based knowledge representation for-
malisms characterised by the use of various constructors to build complex classes
from simpler ones, and by an emphasis on the provision of sound, complete and
(empirically) tractable reasoning services. They have been used in a wide range
of applications, but perhaps most notably (at least in recent times) in providing
a formal basis and reasoning services for (web) ontology languages such as OWL.

The effective use of logic based ontology languages in applications will, how-
ever, critically depend on the provision of efficient reasoning services to support
both ontology design and deployment. The increasing use of DL based ontologies
in areas such as e-Science and the Semantic Web is, however, already stretching
the capabilities of existing DL systems, and brings with it a range of challenges
for future research. The extended ontology languages needed in some applications
may demand the use of more expressive DLs, and even for existing languages,
providing efficient reasoning services is extremely challenging.

Some applications may even call for ontology languages based on larger frag-
ments of FOL. The development of such languages, and reasoning services to

support them, extends these challenges to the whole logic based Knowledge
Representation community.

Acknowledgements

I would like to acknowledge the contribution of those who provided me with
inspiration and guidance, and the many collaborators with whom I have been
privileged to work. These include Franz Baader, Sean Bechhofer, Dieter Fensel,
Carole Goble, Frank van Harmelen, Carsten Lutz, Alan Rector, Ulrike Sattler,
Peter F. Patel-Schneider, Stephan Tobies and Andrei Voronkov.

References

1. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Description
logic framework for information integration. In: Proc. of the 6th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR’98). (1998) 2–13

2. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query contain-
ment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS’98). (1998) 149–158

3. Horrocks, I., Tessaris, S., Sattler, U., Tobies, S.: How to decide query containment
under constraints using a description logic. In: Proc. of the 7th Int. Workshop on
Knowledge Representation meets Databases (KRDB 2000), CEUR (http://ceur-
ws.org/) (2000)

4. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics 1 (2003) 7–26

5. Knublauch, H., Fergerson, R., Noy, N., Musen, M.: The protégé OWL plugin: An
open development environment for semantic web applications. In McIlraith, S.A.,
Plexousakis, D., van Harmelen, F., eds.: Proc. of the 2004 International Semantic
Web Conference (ISWC 2004). Number 3298 in Lecture Notes in Computer Science,
Springer (2004) 229–243

6. Liebig, T., Noppens, O.: Ontotrack: Combining browsing and editing with reason-
ing and explaining for OWL Lite ontologies. In McIlraith, S.A., Plexousakis, D.,
van Harmelen, F., eds.: Proc. of the 2004 International Semantic Web Conference
(ISWC 2004). Number 3298 in Lecture Notes in Computer Science, Springer (2004)
244–258

7. Rector, A.L., Nowlan, W.A., Glowinski, A.: Goals for concept representation in the
galen project. In: Proc. of the 17th Annual Symposium on Computer Applications
in Medical Care (SCAMC’93), Washington DC, USA (1993) 414–418

8. Visser, U., Stuckenschmidt, H., Schuster, G., Vögele, T.: Ontologies for geographic
information processing. Computers in Geosciences (to appear)

9. Oberle, D., Sabou, M., Richards, D.: An ontology for semantic middleware: ex-
tending daml-s beyond web-services. In: Proceedings of ODBASE 2003. (2003)

10. Wroe, C., Goble, C.A., Roberts, A., Greenwood, M.: A suite of DAML+OIL
ontologies to describe bioinformatics web services and data. Int. J. of Cooperative
Information Systems (2003) Special Issue on Bioinformatics.

11. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic Web. Scientific American
284 (2001) 34–43

12. The DAML Services Coalition: DAML-S: Web service description for the semantic
web. In: Proc. of the 2003 International Semantic Web Conference (ISWC 2003).
Number 2870 in Lecture Notes in Computer Science, Springer (2003)

13. Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. Knowl-
edge Engineering Review 13 (1998)

14. Stevens, R., Goble, C., Horrocks, I., Bechhofer, S.: Building a bioinformatics on-
tology using OIL. IEEE Transactions on Information Technology in Biomedicine
6 (2002) 135–141

15. Rector, A., Horrocks, I.: Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In: Proceedings
of the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI’97),
AAAI Press, Menlo Park, California (1997)

16. Spackman, K.: Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with SNOMED-RT. J. of the Amer. Med.
Informatics Ass. (2000) Fall Symposium Special Issue.

17. Emmen, A.: The grid needs ontologies—onto-what? (2002)
http://www.hoise.com/primeur/03/articles/monthly/AE-PR-02-03-7.html.

18. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., Vander-
bilt, P.: Grid service specification (draft). GWD-I draft , GGF Open Grid Services
Infrastructure Working Group (2002) http://www.globalgridforum.org/.

19. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid:
An open grid services architecture for distributed systems integration (2002)
http://www.globus.org/research/papers/ogsa.pdf.

20. Wolstencroft, K., McEntire, R., Stevens, R., Tabernero, L., Brass, A.: Constructing
Ontology-Driven Protein Family Databases. Bioinformatics 21 (2005) 1685–1692

21. Horrocks, I., Tessaris, S.: Querying the semantic web: a formal approach. In Hor-
rocks, I., Hendler, J., eds.: Proc. of the 2002 International Semantic Web Confer-
ence (ISWC 2002). Number 2342 in Lecture Notes in Computer Science, Springer-
Verlag (2002) 177–191

22. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description
logics. In Ganzinger, H., McAllester, D., Voronkov, A., eds.: Proc. of the 6th Int.
Conf. on Logic for Programming and Automated Reasoning (LPAR’99). Number
1705 in Lecture Notes in Artificial Intelligence, Springer (1999) 161–180

23. Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: Proc. of
the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005). (2005) To appear.

24. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.:
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2003)

25. Baader, F., Hanschke, P.: A schema for integrating concrete domains into con-
cept languages. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI’91). (1991) 452–457

26. Blackburn, P., Seligman, J.: Hybrid languages. J. of Logic, Language and Infor-
mation 4 (1995) 251–272

27. Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(D) description logic.
In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001). (2001)
199–204

28. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept
languages. Information and Computation 134 (1997) 1–58

29. Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.J.: An empirical
analysis of optimization techniques for terminological representation systems or:

Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on
Knowledge Base Management 4 (1994) 109–132

30. Horrocks, I.: The FaCT system. In de Swart, H., ed.: Proc. of the 2nd Int. Conf.
on Analytic Tableaux and Related Methods (TABLEAUX’98). Volume 1397 of
Lecture Notes in Artificial Intelligence., Springer (1998) 307–312

31. Patel-Schneider, P.F.: DLP system description. In: Proc. of the 1998 Description
Logic Workshop (DL’98), CEUR Electronic Workshop Proceedings, http://ceur-
ws.org/Vol-11/ (1998) 87–89

32. Haarslev, V., Möller, R.: RACER system description. In: Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2001). Volume 2083 of Lecture Notes in
Artificial Intelligence., Springer (2001) 701–705

33. Pan, J.Z.: Description Logics: Reasoning Support for the Semantic Web. PhD
thesis, University of Manchester (2004)

34. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive de-
scription logics. J. of the Interest Group in Pure and Applied Logic 8 (2000)
239–264

35. Bresciani, P., Franconi, E., Tessaris, S.: Implementing and testing expressive de-
scription logics: Preliminary report. In: Proc. of the 1995 Description Logic Work-
shop (DL’95). (1995) 131–139

36. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98). (1998) 636–647

37. Patel-Schneider, P.F.: DLP. In: Proc. of the 1999 Description Logic Work-
shop (DL’99), CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-
22/ (1999) 9–13

38. Horrocks, I., Patel-Schneider, P.F.: Optimizing description logic subsumption. J.
of Logic and Computation 9 (1999) 267–293

39. Horrocks, I., Tobies, S.: Reasoning with axioms: Theory and practice. In: Proc.
of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2000). (2000) 285–296

40. Baker, A.B.: Intelligent Backtracking on Constraint Satisfaction Problems: Exper-
imental and Theoretical Results. PhD thesis, University of Oregon (1995)

41. Oppacher, F., Suen, E.: HARP: A tableau-based theorem prover. J. of Automated
Reasoning 4 (1988) 69–100

42. Protégé: http://protege.stanford.edu/ (2003)
43. Wroe, C., Stevens, R., Goble, C.A., Ashburner, M.: A methodology to migrate the

Gene Ontology to a description logic environment using DAML+OIL. In: Proc. of
the 8th Pacific Symposium on Biocomputing (PSB). (2003)

44. Rogers, J.E., Roberts, A., Solomon, W.D., van der Haring, E., Wroe, C.J., Zanstra,
P.E., Rector, A.L.: GALEN ten years on: Tasks and supporting tools. In: Proc. of
MEDINFO2001. (2001) 256–260

45. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The instance store: DL reasoning with
large numbers of individuals. In: Proc. of the 2004 Description Logic Workshop
(DL 2004). (2004) 31–40

46. Bechhofer, S., Horrocks, I., Turi, D.: The OWL instance store: System description.
In: Proc. of the 20th Int. Conf. on Automated Deduction (CADE-20). Lecture
Notes in Artificial Intelligence, Springer (2005) To appear.

47. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive
datalog programs. In: Proc. of the 9th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2004). (2004) 152–162

48. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. In:
Proc. of the 2004 International Semantic Web Conference (ISWC 2004). (2004)
549–563

49. Rector, A.: Analysis of propagation along transitive roles: Formalisation of
the galen experience with medical ontologies. In: Proc. of DL 2002, CEUR
(http://ceur-ws.org/) (2002)

50. Schulz, S., Hahn, U.: Parts, locations, and holes - formal reasoning about anatom-
ical structures. In: Proc. of AIME 2001. Volume 2101 of Lecture Notes in Artificial
Intelligence., Springer (2001)

51. Tsarkov, D., Riazanov, A., Bechhofer, S., Horrocks, I.: Using Vampire to reason
with OWL. In McIlraith, S.A., Plexousakis, D., van Harmelen, F., eds.: Proc. of
the 2004 International Semantic Web Conference (ISWC 2004). Number 3298 in
Lecture Notes in Computer Science, Springer (2004) 471–485

52. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the semantic web. In: Proc. of the 9th
Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2004),
Morgan Kaufmann, Los Altos (2004) 141–151

53. Rosati, R.: On the decidability and complexity of integrating ontologies and rules.
J. of Web Semantics 3 (2005) 61–73

54. Schlobach, S., Cornet, R.: Explanation of terminological reason-ing: A preliminary
report. In: Proc. of the 2003 Description Logic Workshop (DL 2003). (2003)

55. McGuinness, D.L.: Explaining Reasoning in Description Logics. PhD thesis, Rut-
gers, The State University of New Jersey (1996)

56. Borgida, A., Franconi, E., Horrocks, I.: Explaining ALC subsumption. In: Proc.
of the 14th Eur. Conf. on Artificial Intelligence (ECAI 2000). (2000)

57. Baader, F., Küsters, R., Borgida, A., McGuinness, D.L.: Matching in description
logics. J. of Logic and Computation 9 (1999) 411–447

58. Brandt, S., Turhan, A.Y.: Using non-standard inferences in description logics —
what does it buy me? In: Proc. of KI-2001 Workshop on Applications of Description
Logics (KIDLWS’01). Volume 44 of CEUR (http://ceur-ws.org/). (2001)

59. Küsters, R.: Non-Standard Inferences in Description Logics. Volume 2100 of Lec-
ture Notes in Artificial Intelligence. Springer Verlag (2001)

60. Brandt, S., Küsters, R., Turhan, A.Y.: Approximation and difference in description
logics. In: Proc. of the 8th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR 2002). (2002) 203–214

