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Abstract. In an attempt to extend existing knowledge representation
systems to deal with the imperfect nature of real world information in-
volved in several applications, the AI community has devoted consider-
able attention to the representation and management of uncertainty, im-
precision and vague knowledge. Moreover, a lot of work has been carried
out on the development of reasoning engines that can interpret imprecise
knowledge. The need to deal with imperfect and imprecise information
is likely to be common in the context of the (Semantic) Web. In antic-
ipation of such requirements, this paper presents a proposal for fuzzy
extensions of SWRL, which is a rule extension to OWL DL.

1 Introduction

According to widely known proposals for a Semantic Web architecture, De-
scription Logics (DLs)-based ontologies will play a key role in the Semantic
Web [Pan04]. This has led to considerable efforts to developing a suitable on-
tology language, culminating in the design of the OWL Web Ontology Lan-
guage [BvHH+04b], which is now a W3C recommendation. Although OWL adds
considerable expressive power with respect to languages such as RDF, it does
have expressive limitations, particularly with respect to what can be said about
properties. E.g., there is no composition constructor, so it is impossible to cap-
ture relationships between a composite property and another (possibly com-
posite) property. One way to address this problem would be to extend OWL
with some form of “rules language” [HPS04]. One such proposed extension is
SWRL (Semantic Web Rule Language) [HPSB+04], which is a Horn clause rules
extension to OWL DL3 that overcomes many of these limitations.

Even though the combination of OWL and Horn rules results in the cre-
ation of a highly expressive language, there are still many occasions where

(∗) This is a revised and extended version of a paper with the same title that was pub-
lished in the International Conference on Artificial Neural Networks (ICANN 2005).
This work is supported by the FP6 Network of Excellence EU project Knowledge
Web (IST-2004-507842).

3 OWL DL is a key sub-language of OWL.



this language fails to accurately represent knowledge of our world. In partic-
ular these languages fail at representing vague and imprecise knowledge and
information [Kif05]. Such type of information is apparent in many applications
like multimedia processing and retrieval [SST+05,BvHH+04a], information fu-
sion [Mat05], and many more. Experience has shown that in many cases dealing
with such type of information would yield more efficient and realistic applications
[AL05,ZYZ+05]. Furthermore, in many applications, like ontology alignment and
modularization, the interconnection of disparate and distributed ontologies and
modules is hardly ever a true or false situation, but rather a matter of a confi-
dence or relatedness degree.

In order to capture imprecision in rules, we propose a fuzzy extension of
SWRL, called f-SWRL. In f-SWRL, fuzzy individual axioms can include a speci-
fication of the “degree” (a truth value between 0 and 1) of confidence with which
one can assert that an individual (resp. pair of individuals) is an instance of a
given class (resp. property); and atoms in f-SWRL rules can include a “weight”
(a truth value between 0 and 1) that represents the “importance” of the atom in
a rule. For example, the following fuzzy rule asserts that being healthy is more
important than being rich to determine if one is happy:

Rich(?p) ∗ 0.5 ∧ Healthy(?p) ∗ 0.9 → Happy(?p),

where Rich, Healthy and Happy are classes, and 0.5 and 0.9 are the weights for
the atoms Rich(?p) and Healthy(?p), respectively. Additionally, observe that the
classes Rich, Healthy and Happy are best represented by fuzzy concepts, since
the degree to which someone is Rich is both subjective and non-crisp.

In this paper, we will present the syntax and semantics of f-SWRL. We will
use standard Description Logics [BMNPS02] notations in the syntax of f-SWRL,
while the model-theoretic semantics of f-SWRL is based on the theory of fuzzy
sets [Zad65]. To the best of our knowledge, this is the first paper describing a
fuzzy extension of the SWRL language.

2 Preliminaries

2.1 SWRL

SWRL is proposed by the Joint US/EU ad hoc Agent Markup Language Com-
mittee.4 It extends OWL DL by introducing rule axioms, or simply rules, which
have the form:

antecedent → consequent,

where both antecedent and consequent are conjunctions of atoms written a1 ∧
. . . ∧ an. Atoms in rules can be of the form C(x), P (x,y), Q(x,z), sameAs(x,y),
differentFrom(x,y) or builtIn(pred,z1, . . . , zn), where C is an OWL DL descrip-
tion, P is an OWL DL individual-valued property, Q is an OWL DL data-valued
property, pred is a datatype predicate URIref, x,y are either individual-valued
4 See http://www.daml.org/committee/ for the members of the Joint Committee.
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variables or OWL individuals, and z, z1, . . . , zn are either data-valued variables
or an OWL data literals. An OWL data literal is either a typed literal or a plain
literal; see [BvHH+04b,PH05] for details. Variables are indicated using the stan-
dard convention of prefixing them with a question mark (e.g., ?x). For example,
the following rule asserts that one’s parents’ brothers are one’s uncles:

parent(?x, ?p) ∧ brother(?p, ?u) → uncle(?x, ?u), (1)

where parent, brother and uncle are all individual-valued properties.
In SWRL, URI references (URIrefs) are used to identify ontology elements

such as classes, individual-valued properties and data-valued properties. A URI
reference (or URIref) is a URI, together with an optional fragment identifier
at the end. Uniform Resource Identifiers (URIs) are short strings that identify
Web resources [Gro01]. The reader is referred to [HPSB+04] for full details of
the model-theoretic semantics and abstract syntax of SWRL.

2.2 Fuzzy Sets

While in classical set theory any element belongs or not to a set, in fuzzy set
theory [Zad65] this is a matter of degree. More formally, let X be a collection of
elements (the universe of discourse) with cardinality m, i.e X = {x1, x2, . . . , xm}.
A fuzzy subset A of X, is defined by a membership function µA(x), or simply
A(x), x ∈ X. This membership function assigns any x ∈ X to a value between 0
and 1 that represents the degree in which this element belongs to X. The support,
Supp(A), of A is the crisp set Supp(A) = {x ∈ X | A(x) 6= 0}.

Using the above idea, the most important operations defined on crisp sets
and relations (complement, union, intersection) are extended in order to cover
fuzzy sets and fuzzy relations. These operations are now being performed by
mathematical functions over the unit interval. More precisely, the complement
¬A of a fuzzy set A is given by (¬A)(x) = c(A(x)) for any x ∈ X. The in-
tersection of two fuzzy sets A and B is given by (A ∩ B)(x) = t[A(x), B(x)],
where t is a triangular norm (t-norm). The union of two fuzzy sets A and B is
given by (A ∪B)(x) = u[A(x), B(x)], where u is a triangular conorm (u-norm).
A binary fuzzy relation R over two countable crisp sets X and Y is a function
R : X × Y → [0, 1]. The composition of two fuzzy relation R1 : X × Y → [0, 1]
and R2 : Y ×Z → [0, 1] is given by [R1 ◦t R2]= supy∈Y t[R1(x, y), R2(y, z)]. Such
a type of composition is referred to as sup -t composition.

Another important operation in fuzzy logics is the fuzzy implication, which
gives a truth value to the predicate A ⇒ B. A fuzzy implication is a function ω
of the form ω : [0, 1]× [0, 1] → [0, 1]. In fuzzy logics, we are usually interested in
two kinds of fuzzy implications, i.e.,

– S-implication: ωu,c(a, b) = u(c(a), b),
– R-implication: ωt(a, b) = sup{x ∈ [0, 1] | t(a, x) ≤ b},

where a, b are the truth values for A and B, respectively. In this paper, we use
the R-implication when we define semantics of fuzzy rules (see Section 4.2).
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This is because under the R-implication, and by interpreting the intersection
(∩) to the same t-norm (t) as that used in the ωt operation, the truth value
of A ∩ (A ⇒ B) ⇒ B is always 1, regardless of the truth values of a and
b [Haj98,KY95], while it is not the case under the S-implication. The latter
observation about S-implications can easily be verified by selecting the min(a,b)
function for fuzzy intersection, the max(1-a,b) function for fuzzy implication and
two arbitrary values, say 0.4 and 0.5 for a and b. The reader is referred to [KY95]
for details of fuzzy logics and their applications.

3 A Motivating Use Case

In this section, we discuss a motivating use case from a casting company, which
has a knowledge base that consists of person-models. Advertisement companies
are using this knowledge base to look for models to be used in advertisements
or other activities. Each entry in the knowledge base contains a photo of the
model, personal information and some body and face characteristics. The casting
company has created a user interface for inserting the information of the models
as instances of a predefined ontology. It also provides a query engine to search
for models with specific characteristics. A user can query the knowledge base
providing high-level information about the models (such as the name, the height,
the type of the hair etc.).

Now we suppose that we have only information about the following two
models in the knowledge base:

– Mary has height 172cm and has weight 50kg.
– Susan has height 180cm and has weight 61kg.

If an advertisement company requires a thin female model. Since thinness can
be regarded as a function of both the weight as well as the height of a person,
one can define thinness as follows.

– One is thin iff one is both tall and light.
– One is tall iff one’s height is larger than 175cm.
– One is light iff one’s weight is less than 60kg.

Under such definitions, it is obvious that there are no thin female models in
the knowledge base. Susan is over 175cm tall but is not under 60kg, while Mary
is under 60kg but not over 175cm. Although Mary fails to satisfy the height
requirement for only 3cm, which in fact is a rather small value, she satisfies the
weight condition; in fact, she is 10kg lighter than the required weight. In fact, the
advertisement company might classify her as a thin model if it regards weight a
more important factor than height in terms of thinness.

The above problems can be solved if we use a fuzzy knowledge representation,
instead of a crisp knowledge representation. In particular, we can define tall and
light in a fuzzy way, i.e., by using degrees of confidence. For instance, based
on the above data of the two models as well as the policy of the advertisement
company, we can have the following fuzzy assertions.
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Fig. 1. The fuzzy partition of Height and Weight

– Mary is tall with a degree no less than 0.65.
– Mary is light with a degree no less than 0.9.
– Susan is tall with a degree no less than 0.8.
– Susan is light with a degree no less than 0.6.

Note that the above membership degrees of the individuals Mary and Susan to
the fuzzy concepts “tall” and “light” have resulted by providing a fuzzy partition
[KY95] of the space of the possible values that ones height and weight can obtain.
For example, the fuzzy partitions in our example can be depicted in Fig. 1.

In addition to the fuzzy assertion, we can also deduce “one is thin” in a fuzzy
way. For instance, we can introduce the following fuzzy rule about thinness: One
is thin if one is tall (with importance factor 0.7) and light (with importance
factor 0.8).

After introducing the syntax and semantics of f-SWRL, we will revisit this
use case in Section 4.

4 f-SWRL

Fuzzy rules are of the form antecedent → consequent, where atoms in both the an-
tecedent and consequent can have weights (i.e., importance factors), i.e., numbers
between 0 and 1. More specifically, atoms can be of the forms C(x)∗w, P(x,y)∗w,
Q(x,z)∗w, sameAs(x,y)∗w, differentFrom(x,y)∗w or builtIn(pred,z1, . . . , zn), where
w ∈ [0, 1] is the weight of an atom, and omitting a weight is equivalent to spec-
ifying a value of 1. For instance, the following fuzzy rule axiom asserts that if a
man has his eyebrows raised enough and his mouth open then he is happy, and
that the condition that he has his eyebrows raised is a bit more important than
the condition that he has his mouth open.

EyebrowsRaised(?a) ∗ 0.9 ∧MouthOpen(?a) ∗ 0.8 → Happy(?a), (2)
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In this example, EyebrowsRaised,MouthOpen and Happy are class URIrefs, ?a
is a individual-valued variable, and 0.9 and 0.8 are the weights of the atoms
Eyebrows- Raised(?a) and MouthOpen(?a), respectively.

In this paper, we only consider atomic fuzzy rules, i.e., rules with only one
atom in the consequent. The weight of an atom in a consequent, therefore, can
be seen as indicating the weight that is given to the rule axiom in determining
the degree with which the consequent holds. Consider, for example, the following
two fuzzy rules:

parent(?x, ?p) ∧ Happy(?p) → Happy(?x) ∗ 0.8 (3)

brother(?x, ?b) ∧ Happy(?b) → Happy(?x) ∗ 0.4, (4)

which share Happy(?x) in the consequent. Since 0.8 > 0.4, more weight is given
to rule (3) than to rule (4) when determining the degree to which an individual
is Happy.

In what follows, we formally introduce the syntax and model-theoretic se-
mantics of fuzzy SWRL.

4.1 Syntax

In this section, we present the syntax of fuzzy SWRL. To make the presentation
simple and clear, we use DL syntax (see the following definition) instead of the
XML, RDF or abstract syntax of SWRL.

Definition 1. Let a,b be individual URIrefs, l a OWL data literal, C,D OWL
class descriptions, r, s OWL individual-valued property descriptions, r1, r2 individual-
valued property URIrefs, s, s1 data-valued property URIrefs, pred a datatype
predicate, m1,m2,m3, w, w1, . . . , wn ∈ [0, 1],

⇀
v ,

⇀
v 1, . . . ,

⇀
v n are (unary or bi-

nary) tuples of variables and/or individual URIrefs, a1(
⇀
v1), . . . , an(

⇀
vn) and c(

⇀
v )

are of the forms C(x), r(x, y), s(x, z), sameAs(x, y), differentFrom(x, y) or
builtIn(pred,z1, . . . , zn), where x, y are individual-valued variables or individual
URIrefs and z, z1, . . . , zn are data-valued variables or OWL data literals.

An f-SWRL ontology can have the following kinds of axioms:

– class axioms: C v D (class inclusion axioms);
– property axioms: r v r1 ( individual-valued property inclusion axioms), Func(r1)

(functional individual-valued property axioms), Trans(r2) (transitive prop-
erty axioms), s v s1 (data-valued property inclusion axioms), Func(s1)
(functional data-valued property axioms);

– individual axioms: (a : C) ≥ m1 (fuzzy class assertions), (〈a,b〉 : r) ≥ m2

(fuzzy individual-valued property assertions), (〈a,l〉 : r) ≥ m3 (fuzzy data-
valued property assertions), a = b (individual equality axioms) and a 6= b
(individual inequality axioms);

– rule axioms: a1(
⇀
v1) ∗w1 ∧ · · · ∧ an(

⇀
vn) ∗wn → c(

⇀
v ) ∗w (fuzzy rule axioms).

Omitting a degree or a weight is equivalent to specifying the value of 1. �

According to the above definition, f-SWRL extends SWRL with fuzzy class
assertions, fuzzy property assertions and fuzzy rule axioms.
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4.2 Model-theoretic Semantics

In this section, we give a model-theoretic semantics for fuzzy SWRL. Although
many f-SWRL axioms share the same syntax as their counterparts in SWRL,
such as concept inclusion axioms, they have different semantics because we use
fuzzy interpretations in the model-theoretic semantics of f-SWRL.

Before we provide a model-theoretic semantics for f-SWRL, we introduce the
notions of datatype predicates and datatype predicate maps.

Definition 2. (Datatype Predicate) A datatype predicate (or simply pred-
icate) p is characterised by an arity a(p), or a minimum arity amin(p) if p can
have multiple arities, and a predicate extension (or simply extension) E(p). �

For example, =int is a datatype predicate with arity a(=int) = 2 and ex-
tension E(=int) = {〈i1, i2〉 ∈ V (integer)2 | i1 = i2}, where V (integer) is the
set of all integers. Datatypes can be regarded as special predicates with arity 1
and predicate extensions equal to their value spaces; e.g., the datatype integer
can be seen as a predicate with arity a(integer) = 1 and predicate extension
E(integer) = V (integer).5

Definition 3. (Predicate Map) We consider a predicate map Mp that is a
partial mapping from predicate URI references to predicates. �

Intuitively, datatype predicates (resp. datatype predicate URIrefs) in Mp are
called built-in datatype predicates (resp. datatype predicate URIrefs) w.r.t. Mp.
Note that allowing the datatype predicate map to vary allows different imple-
mentations of f-SWRL to implement different datatype predicates.

Definition 4. Given a datatype predicate map Mp, a fuzzy interpretation is a
triple I = 〈∆I ,∆D, ·I〉, where the abstract domain ∆I is a non-empty set, the
datatype domain contains at least all the data values in the extensions of built-in
datatype predicates in Mp, and ·I is a fuzzy interpretation function, which maps

1. individual URIref and individual-valued variables to elements of ∆I ,
2. a class description C to a membership function CI : ∆I → [0, 1],
3. an individual-valued property URIref r to a membership function rI : ∆I ×

∆I → [0, 1],
4. an data-valued property URIref q to a membership function qI : ∆I×∆D →

[0, 1],
5. a built-in datatype predicate URIref pred to its extension predI = E(Mp(pred)) ∈

(∆D)n, where n = a(Mp(pred)), so that

builtInI(pred, z1, . . . , zn) =
{

1 if 〈zI1 , . . . , zIn〉 ∈ predI

0 otherwise,

5 See [Pan04] for detailed discussion on the relationship between datatypes and
datatype predicates.
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DL Syntax Semantics

A AI : ∆I → [0, 1]

> >
I
(a) = 1

⊥ ⊥I(a) = 0

C1 u C2 (C uD)I(a) = t(CI(a), DI(a))
C1 t C2 (C tD)I(a) = u(CI(a), DI(a))
¬C (¬C)I(a) = c(CI(a))

{o1}t {o2} ({o1} t {o2})I(a) = 1 if a ∈{ oI
1, o

I
2}

({o1} t {o2})I(a) = 0 otherwise

∃r.C (∃r.C)I(a) = supb∈∆I t(rI(a, b), CI(b))
∀r.C (∀r.C)I(a) = infb∈∆I ωt(r

I(a, b), CI(b))
∃r.{o} (∃(r.{o})I(a) = supb∈∆I t(rI(a, b), {o}I(b))
> mr (> mr)I(a) = 1 if | Supp[rI(a, b)] |≥ m}

(> mr)I(a) = 0 otherwise
6 mr (6 mr)I(a) = 1 if | Supp[rI(a, b)] |≤ m}

(> mr)I(a) = 0 otherwise

∃s.d (∃s.d)I(a) = supy∈∆D
t(sI(a, y), y ∈ dI)

∀s.d (∀s.d)I(a) = infy∈∆D ωt(s
I(a, y), y ∈ dI)

> ms (> ms)I(a) = 1 if | Supp[sI(a, y)] |≥ m}
(> ms)I(a) = 0 otherwise

6 ms (6 ms)I(a) = 1 if | Supp[sI(a, y)] |≤ m}
(> ms)I(a) = 0 otherwise

Table 1. Syntax and Semantics of Fuzzy Class Descriptions

6. the built-in property sameAs to a membership function

sameAsI(x, y) =
{

1 if xI = yI

0 otherwise,

7. the built-in property differentFrom to a membership function

differentFromI(x, y) =
{

1 if xI 6= yI

0 otherwise.

The fuzzy interpretation function can be extended to give semantics for fuzzy
concept descriptions listed in Table 1 (where | · | denotes cardinality).

A fuzzy interpretation I satisfies a class inclusion axiom C v D, written
I |= C v D, if ∀o ∈ ∆I , CI(o) ≤ DI(o).

A fuzzy interpretation I satisfies an individual-valued property inclusion ax-
iom r v r1, written I |= r v r1, if ∀o, q ∈ ∆I , rI(o, q) ≤ rI1 (o, q). I satisfies a
functional individual-valued property axiom Func(r1), written I |= Func(r1),
if ∀o, q ∈ ∆I , | Supp[rI1 (o, q)] |≤ 1. I satisfies a transitive property axiom
Trans(r2), written I |= Trans(r2), if ∀o, q ∈ ∆I , rI2 (o, q) = supp∈∆I t[rI2 (o, p), rI2 (p, q)],
where t is a triangular norm. A fuzzy interpretation I satisfies a data-valued
property inclusion axiom s v s1, written I |= s v s1, if ∀〈o, l〉 ∈ ∆I ×
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∆D, sI(o, l) ≤ sI1 (o, l). I satisfies a functional data-valued property axiom Func(s1),
written I |= Func(s1), if ∀〈o, l〉 ∈ ∆I ×∆D, | Supp[sI1 (o, l)] |≤ 1.

A fuzzy interpretation I satisfies a fuzzy class assertion (a : C) ≥ m, written
I |= (a : C) ≥ m, if CI(a) ≥ m. I satisfies a fuzzy individual-valued property
assertion (〈a,b〉 : r) ≥ m2, written I |= (〈a,b〉 : r) ≥ m2, if rI(a,b) ≥ m2.
I satisfies a fuzzy data-valued property assertion (〈a, l〉 : s) ≥ m3, written
I |= (〈a, l〉 : s) ≥ m3, if sI(a, l) ≥ m3. I satisfies an individual equality axiom
a = b, written I |= a = b, if aI = bI . I satisfies an individual inequality axiom
a 6= b, written I |= a 6= b, if aI 6= bI .

A fuzzy interpretation I satisfies a fuzzy rule axiom a1(
⇀
v1)∗w1∧· · ·∧an(

⇀
vn)

∗wn → c(
⇀
v ) ∗ w, written I |= a1(

⇀
v1) ∗ w1 ∧ · · · ∧ an(

⇀
vn) ∗ wn → c(

⇀
v ) ∗ w,

if t(t(aI1 (
⇀
v1

I
), w1), . . . , t(aIn(

⇀
vn

I
), wn)) ≤ t(cI(

⇀
v
I
), w), where t is a triangular

norm. �

There are some remarks on the above definition. Firstly, we use R-implication
for fuzzy rule axioms. Recall from Section 2.2 that in R-implication, ωt(a, b) =
sup{x ∈ [0, 1] | t(a, x) ≤ b}. A fuzzy interpretation I satisfies a rule axiom
antecedent → consequent, if ωt(dantecedent, dconsequent) = 1. It is easy to show
that ωt(dantecedent, dconsequent) = 1 if and only if dantecedent ≤ dconsequent. Indeed,
if dantecedent ≤ dconsequent, we have t(dantecedent, 1) ≤ dconsequent. Hence, we have
ωt(dantecedent, dconsequent) = 1. On the other hand, if ωt(dantecedent, dconsequent) = 1,
then t(dantecedent, 1) ≤ dconsequent. Due to the boundary condition of t-norms (i.e.,
t(a, 1) = a), we have dantecedent ≤ dconsequent. Now let us take the rule (2) as an
example to illustrate the above semantics on fuzzy rule axioms. Assuming that
EyebrowsRaised, MouthOpen and Happy are class URIrefs, then given a fuzzy
interpretation I = 〈∆I , ·I〉, the rule (2) is satisfied by I iff for all a ∈ ∆I , we
have

t(t(EyebrowsRaisedI(a), 0.9), t(MouthOpenI(a), 0.8)) ≤ t(HappyI(a), 1).

Secondly, there is more than one choice of semantics of fuzzy class descrip-
tions. The one we presented in Table 1 is simply a relatively straight forward
one out of many possible choices. For example, we decide to use R-implication
in value restriction (∀r.C) and datatype value restriction (∀s.d) because we use
R-implication in fuzzy rule axioms.

Thirdly, we have the following equivalence between the f-SWRL individual
axiom and rule axiom: The fuzzy assertion (Tom : Happy) ≥ 0.8 is equivalent to
the rule axiom >(Tom) ∗ 0.8 → Happy(Tom). According to the above semantics,
we have:

t(>I(Tom), 0.8) ≤ HappyI(Tom)

From a semantics point of view an individual always belong to a degree of 1 to
the top concept, so we have:

t(1, 0.8) ≤ HappyI(Tom)
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Due to the boundary condition of t-norms, we have

HappyI(Tom) ≥ 0.8.

This suggests that fuzzy assertion can be represented by fuzzy rule axioms.
Last but not least, suppose we have the following chaining of rules: B1 →

H1 and H1 → H2. If a fuzzy interpretation I satisfy these fuzzy rule axioms,
tB1(I) ≤ tH1(I) and tB2(I) ≤ tH2(I). It follows that tB1(I) ≤ tH2(I); thus, I also
satisfies the rule B1 → H2. Note that we abuse the notation here and use, for
example, tB1(I) to represent the t-norm of B1 given the fuzzy interpretation I.

Example 1. Now we revised the use case we presented in Section 3. The f-SWRL
knowledge base about models consists of the following fuzzy axioms:

– Mary is Tall with a degree no less than 0.65: (Mary : Tall) ≥ 0.65.
– Mary is Light with a degree no less than 0.9: (Mary : Light) ≥ 0.9.
– Susan is Tall with a degree no less than 0.8: (Susan : Tall) ≥ 0.8.
– Susan is Light with a degree no less than 0.6: (Susan : Light) ≥ 0.6.
– One is Thin if one is Tall (with importance factor 0.7) and Light (with im-

portance factor 0.8):

Tall(?p) ∗ 0.7 ∧ Light(?p) ∗ 0.8 → Thin(?p).

According to Definition 4, if we use the min t-norm, we have ThinI(MaryI) ≥
0.65 and ThinI(SusanI) ≥ 0.6. ♦

5 Discussion

Several ways of extending Description Logics using the theory of fuzzy logic
have been proposed in the literature [Yen91,TM98,Str01,Str05,SST+05]. Fur-
thermore, in [Str04] an approach to extend Description Logic Programs (DLPs)
with uncertainty was provided, where DLP is extended with negation as failure,
which is not supported by SWRL. In [Voj01] an approach to fuzzy logic pro-
grams similar to ours was provided. It used Herbrand models, instead of model
theoretic ones, and it did not include weights to rule atoms. To the best of our
knowledge, there exists no publication on fuzzy extensions of SWRL. We believe
that the combination of Semantics Web ontology and rules languages provides a
powerful and flexible knowledge representation formalism, and that f-SWRL is
of great interest to the ontology community as well as to communities in which
ontologies with vague information can be applied, such as multimedia and the
Semantic Web.

Our future work includes logical properties and computational aspect of f-
SWRL. Another interesting direction is to extend f-SWRL to support datatype
groups [Pan04], which allows the use of customised datatypes and datatype
predicates in ontologies.
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