
Conjunctive Query Entailment for SHOQ

Birte Glimm?, Ian Horrocks, and Ulrike Sattler

[glimm,horrocks,sattler]@cs.man.ac.uk

The University of Manchester, UK

Abstract. An important reasoning task, in addition to the standard
DL reasoning services, is conjunctive query answering. In this paper,
we present a decision procedure for conjunctive query entailment in the
expressive Description Logic SHOQ. In particular, we present the first
query entailment decision procedure for a logic that allows for nominals.
We achieve this by adapting the query rewriting and rolling-up technique
that is also used in the query entailment procedure for SHIQ.

1 Introduction

Existing Description Logic (DL) reasoners1 provide automated reasoning sup-
port for checking concepts for satisfiability and subsumption, and also for an-
swering queries that retrieve instances of concepts and roles. There are, however,
still many open questions regarding the development of algorithms that decide
conjunctive query (CQ) entailment in expressive Description Logics. A decision
procedure for conjunctive query entailment in SHIQ is known only recently [1].
Previously proposed techniques for deciding CQ entailment in expressive DLs
mostly require that all roles that occur in the query are simple, i.e., neither tran-
sitive nor have transitive subroles. Furthermore, none of the existing conjunctive
query answering techniques [2–6] is able to handle nominals. In this paper, we
address this issue and present a decision procedure for CQ entailment in the very
expressive DL SHOQ, i.e., we allow for both features that were problematic for
previous algorithms: non-simple roles in the query and nominals.

We achieve this, by combining the ideas from the CQ entailment decision
procedure for SHIQ [1] with the technique for deciding entailment of SHOQ
CQs that have just one strongly connected query graph component [9]. We first
rewrite a query into a set of queries that have a kind of forest shape. We then
use the rolling-up or tuple-graph technique [4, 2] in order to build concepts that
capture the rewritten queries. We can then use the obtained concepts for reducing
the task of deciding query entailment to the task of testing the consistency of
extendeded knowledge bases.

? This work was supported by an EPSRC studentship.
1 For example, FaCT++ http://owl.man.ac.uk/factplusplus, KAON2 http://
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2 Preliminaries

We assume readers to be familiar with the syntax and semantics of the DL
SHOQ (for details see [7]). Since in the presence of nominals the ABox can be
internalised, we assume that a SHOQ knowledge base K is a tuple (T ,R) over
a signature S = (NC , NR), where T is a TBox, R is a role hierarchy, and NC

and NR are countable, infinite, and pairwise disjoint sets of concept names and
role names respectively. We assume that the set of concept names contains a
subset NI of nominal names and the set NR contains a subset NtR of transitive
role names. We use nom(K) for the set of nominals that occur in K and we say
that a role r is simple if there is no s ∈ NtR such that s v*Rr, where v*R is the
reflexive transitive closure of v over R.

Definition 1. Let S be a signature and NV a countably infinite set of variable
names disjoint from NC and NR. Let C be a SHOQ-concept over S, r ∈ NR

a role name, and x, y ∈ NV . An atom is an expression C(x) or r(x, y) and we
refer to these types of atoms as concept atoms and role atoms respectively. A
Boolean conjunctive query q is a non-empty set of atoms. We use Vars(q) to
denote the set of variables occurring in q and ](q) for the cardinality of q.

Let I = (∆I ,·I) be an interpretation. For a total function π : Vars(q) → ∆I ,
we write

– I |=π C(x) if π(x) ∈ CI ;
– I |=π r(x, y) if (π(x), π(y)) ∈ rI .

If I |=π at for all atoms at ∈ q, we write I |=π q. We say that I satisfies q and
write I |= q if there exists a mapping π such that I |=π q. We call such a π a
match for q in I. For a SHOQ knowledge base K, we say that K entails q and
write K |= q if I |= K implies I |= q.

Please note that we do not allow for constants (individual names) in the
query. In the presence of nominals this is clearly w.l.o.g. Since answering non-
Boolean conjunctive queries can be reduced to answering (possibly several)
Boolean queries, we consider only Boolean queries here.

In the following, we use K for a SHOQ knowledge base and q for a Boolean
conjunctive query over a common signature S.

As for the CQ entailment algorithm for SHIQ, we first show that we can
restrict our attention to the canonical models of K, which are models that have
a kind of forest shape.

Definition 2. A tree T is a prefix-closed subset of IN∗. For w,w′ ∈ T , we call w′

a successor of w if w′ = w · c for some c ∈ IN, where “·” denotes concatenation.
The empty word ε is the root.

A forest base for K is an interpretation J = (∆J ,·J ) that interprets transi-
tive roles in an unrestricted (i.e., not necessarily transitive) way and, addition-
ally, satisfies the following conditions:

T1 ∆J ⊆ nom(K)× IN∗ such that, for all o ∈ nom(K), the set {w | (o, w) ∈ ∆J }
is a tree;



T2 if ((o, w), (o′, w′)) ∈ rJ , then either w′ = ε or o = o′ and w′ is a successor
of w;

T3 for each o ∈ nom(K), oJ = (o, ε);

An interpretation I is canonical for K if there exists a forest base J for K such
that I is identical to J except that, for all non-simple roles r, we have

rI = rJ ∪
⋃

s v*Rr, s∈NtR

(sJ )+

In this case, we say that J is a forest base for I and that I is a canonical model
for K.

The following lemma motivates our focus on canonical models.

Lemma 1. K 6|= q iff there is some canonical model I of K such that I 6|= q.

Proof Sketch: The if direction is trivial. For the only if direction, the proof is
similar to the one for SHIQ. Let I be such that I |= K and I 6|= q. Intuitively,
we first unravel I into a model I ′ of K and then construct a forest base from
the unravelled model. Finally, we obtain a canonical model from the forest base
by transitively closing all roles r ∈ NtR. Since in the unravelling process we
only “break” cycles, the query is still not satisfied in the constructed canonical
model.

3 Reducing Query Answering to Concept Unsatisfiability

In this section, we introduce more intuitively than precisely the basic concepts
that have been used in the development of algorithms for CQ entailment. In the
following section, we show more formally how the ideas and techniques presented
here can be combined in order to obtain a decision procedure for SHOQ.

The initial ideas used in this paper were first introduced by Calvanese et
al. [4] for deciding conjunctive query containment and hence CQ entailment for
DLRreg . The authors show how a query q can be expressed as a concept Cq,
such that q is true w.r.t. a given knowledge base if adding > v ¬Cq makes the
KB inconsistent. In order to obtain the concept Cq, the query q is represented as
a directed, labelled graph. This graph, called a tuple graph or a query graph, is
traversed in a depth-first manner and, during the traversal, nodes and edges are
replaced with appropriate concept expressions, leading to the concept Cq after
completing the traversal.

The nodes in a query graph correspond to the terms in the query and are
labelled with the concepts that occur in the corresponding concept atoms. The
edges correspond to the role atoms in q and are labelled accordingly. For example,
let q1 = {C(x), s(x, y), D(y)} and q2 = {C(x), r(x, y), r(x, y′), s(y, z), s(y′, z), D(z)}.
The query graphs for q1 and q2 are depicted in Fig. 1 and Fig. 2 respectively. We
call q2 a cyclic query since its underlying undirected query graph is cyclic. Since
q1 is acyclic, we can build the concept that represents q1 as follows: start at x



and traverse the graph to y. Since y is a leaf node, remove y and its incoming
edge and conjoin ∃s.D to the label C of x, resulting in Cu∃s.D for Cq1 . A given
KB K entails q1 iff K ∪ {> v ¬Cq1} is inconsistent.
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Fig. 1: The (acyclic) query
graph for q1.
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Fig. 2: A query graph for the
cyclic query q?2.

This reduction is not directly extendable to cyclic queries since, due to the
tree model property of most DLs, a concept cannot capture cyclic relationships.
We can, however, also not simply replace variables in a cycle with individual
names from the ABox, where arbitrary cyclic structures can be expressed, since
by identifying variables with each other some cyclic queries become acyclic. For
example, identifying y and y′ in q2 leads to an acyclic query.

Last year, we presented an algorithm for conjunctive query entailment in
SHOQ that is a decision procedure for queries for which the corresponding
query graph consists of one strongly connected component (i.e., we can reach
each node from each other node in the directed query graph) [9]. In the pres-
ence of nominals, a simple non-deterministic assignment of nominals to variables
that occur in a cycle is not sufficient even after identifying variables with each
other. For example, Fig. 3 represents a model for the KB containing the ax-
ioms {a} v ¬C u ¬D u ∃s.(C u ∃r.(D u ∃s.{a})) with s ∈ NtR. The query
{C(x), D(y), r(x, y), s(y, x)} would clearly be satisfied in each model of K, al-
though in the relevant matches neither x nor y can be mapped to the nominal
aI .
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Fig. 3: The dashed line indicates the relationship added due to s being transitive.
Therefore, there is a cycle not directly containing the nominal a.

In canonical models for a SHOQ KB, a directed cycle among non-nominals
can only occur due to a transitive role that provides a shortcut for “skipping”
the nominal. Hence, a nominal is always at least indirectly involved, e.g., a in
the current example. The proposed algorithm allows, therefore, the replacement
of the role atom s(y, x) with two role atoms s(y, v), s(v, x) for a new variable
v. We can then guess that v corresponds to the nominal a and express the



query as a concept in which we use the nominal a to close the cycle. In order to
decide CQ entailment, we build a set of queries by identifying variables with each
other and by replacing role atoms with non-simple roles as described above. We
then express all queries as concepts by identyfying variables in the cycles with
nominals in all possible ways where necessary to close the cycle when rolling-up
the query into a concept. We then check whether K entails the disjunction of
the obtained concepts.

In the decision procedure for CQ entailment in SHIQ [1], a given query is
also rewritten into a set of ground or tree-shaped CQs such that the disjunction of
these rewritten queries can be used to decide CQ entailment. The rewriting steps
for SHIQ also allow for eliminating shortcuts induced by transitive roles that
do not involve nominals (or ABox individual in the case of SHIQ). For example,
the query {t(x, y), t(y, z), t(x, z)} for t ∈ NtR is true iff the query {t(x, y), t(y, z)}
is true. In the rewriting process we do not directly delete the “shortcut” t(x, z),
but explicate it by replacing t(x, z) with two role atoms t(x, y), t(y, z), i.e., this
time we reuse the variable y instead of introducing a new variable.

We now show how we can combine these techniques in order to obtain a
decision procedure for general CQs in SHOQ.

4 Conjunctive Query Entailment for SHOQ

For deciding whether a given Boolean CQ is entailed by a SHOQ KB, we trans-
form the query in a four stage process into a set of SHOQR concepts, i.e.,
SHOQ with role conjunctions. We can then reduce the task of deciding CQ
entailment to the task of deciding KB consistency.

In the first step, called collapsing, we can identify variables with one another.
In the second step, we can replace role atoms of the form r(x, x′) for which r is
non-simple with up to ](q) role atoms. This allows for explication all shortcuts
in the query. In the third step, we decide which variables correspond to nominals
and filter out those queries that can still not be expressed as a SHOQR concept.
Those queries are trivially false since the structure specified by the query cannot
be enforced by a SHOQ concept and cannot be mapped to the canonical models
of the KB. Finally, we express the resulting queries as concepts and show how
we can use these concepts for deciding query entailment.

Definition 3. A collapsing of q is obtained by identifying variables in q. We
use co(q) to denote the set of all queries that are a collapsing of q plus q itself.
A transitivity rewriting of q is obtained by fixing a set V ⊆ NV of variables
not occurring in q such that ](V ) 6 ](q) and by choosing, for each role atom
r(x, x′) ∈ q such that there is a role s ∈ NtR and s v*Rr to either

1. do nothing, or
2. replace r(x, x′) with ` 6 ](q) role atoms s(x1, x2), . . . , s(x`−1, x`), where x1 =

x, x` = x′, and x2, . . . , x` ∈ Vars(q) ∪ V .

We use trK(q) to denote the set of all queries that are a transitivity rewriting of
a query qco ∈ co(q).



We assume that trK(q) contains no isomorphic queries, i.e., differences in
(newly introduced) variable names only are neglected.

We now show how we can filter out those queries that are trivially false since
they have a structure that cannot occur in canonical models. For this, we use
forest structures that are similar to canonical models. We first decide which
variables of the query correspond to nominals. Between those variables, the role
atoms of the query can induce arbitrary relational structures. All other variables
are mapped to trees such that for a role atom r(x, y) either the image of y is a
successors of the image of x in the tree or y corresponds to a nominal and r(x, y)
corresponds to a link to some nominal.

Definition 4. A query q is tree-shaped if there exists a total and bijective func-
tion f from Vars(q) to a tree T such that r(x, x′) ∈ q implies that f(x′) is a
successor of f(x).

Let Vo ⊆ Vars(q) be a subset of variables from q. A query forest for q w.r.t.
Vo is a set F ⊆ Vo × IN∗ such that, for all vo ∈ Vo, the set {w | (vo, w) ∈ F} is
a tree.

A query q is forest-shaped w.r.t. Vo if either Vo = ∅ and q is tree-shaped or
there is a query forest F w.r.t. Vo and a total function f : Vars(q) → F such that

– if vo ∈ Vo, then f(vo) = (vo, ε),
– if r(v, v′) ∈ q and v, v′ /∈ Vo, then there is some vo ∈ Vo such that f(v) =

(vo, w), f(v′) = (vo, w
′) and w′ is a successor of w,

– if r(vo, v) ∈ q, vo ∈ Vo and v /∈ Vo, then f(v) = (vo, c) for c ∈ IN.

We use frK(q) to denote the set of all tuples (qtr, Vo) such that qtr ∈ trK(q) and
qtr is forest-shaped w.r.t. Vo.

Similarly to forest-shaped queries, we define forest-shaped matches on canon-
ical models.

Definition 5. Let I = (∆I ,·I) be a canonical model for K such that I |=π q for
a match π. We call π a forest match if, for all r(v, v′) ∈ q, one of the following
holds:

1. π(v′) = (a, ε) for some a ∈ nom(K) or
2. if π(v′) = (a,w′) for w′ 6= ε, then π(v) = (a,w), w′ is a proper prefix of w,

and there is no v′′ ∈ Vars(q) such that π(v′′) = (a,w′′) and w is a proper
prefix of w′′ and w′′ is a proper prefix of w′.

The following lemma shows that we can indeed omit queries that are not
forest-shaped w.r.t. some subset of variables Vo.

Lemma 2. Let I = (∆I ,·I) be a model for K.

1. If I is canonical and I |= q, then there is a tuple (qtr, Vo) ∈ frK(q) and
a forest match π such that I |=π qtr and, for each vo ∈ Vo, there is some
(a, ε) ∈ ∆I such that π(vo) = (a, ε).

2. If (qtr, Vo) ∈ frK(q) and I |= qtr, then I |= q.



The proof is very similar to the proofs for SHIQ [1]. Intuitively, we use the
canonical model I to guide the rewriting process in the proof of Claim 1 and
Claim 2 follows from the fact that we only use non-simple roles in the transitivity
rewritings.

We now build a query that consists of only concept atoms for each (qtr, Vo) ∈
frK(q) by replacing the variables from Vo with nominals from nom(K) and ap-
plying the rolling-up technique.

Definition 6. Let (qtr, Vo) ∈ frK(q). A grounding for qtr w.r.t. Vo is a total
function τ : Vo → nom(K). For a mapping f : Vars(q) → F to a query forest F
for qtr w.r.t. Vo, we build con((qtr, Vo, τ)) as follows:

1. For each r(v, vo) ∈ qtr with vo ∈ Vo, replace r(v, vo) with (∃r.{τ(vo)})(v).
2. For each vo ∈ Vo add a concept atom ({τ(vo)})(vo) to qtr.
3. We now inductively assign to each v ∈ Vars(qtr) a concept con(v) as follows:

– if there is no role atom r(v, v′) ∈ qtr, then con(v) :=
d

C(v)∈qtr
C,

– if there are role atoms r(v, v1), . . . , r(v, vk) ∈ qtr, then

con(v) :=
d

C(v)∈qtr
C u

d
16i6k ∃

( d
r(v,vi)∈qtr

r
)
.con(vi).

4. Finally, con((qtr, Vo, τ)) = {(con(v))(v) | v ∈ Vars(qtr) and there is no role
atom r(v′, v) ∈ qtr}.

We use conK(q) for the set {con((qtr, Vo, τ)) | (qtr, Vo) ∈ frK(q) and τ a ground-
ing w.r.t. Vo}.

Please note that con((qtr, Vo, τ)) has the form {C1(x1), . . . , Cn(xn)} with
xi 6= xj for 1 ≤ i < j ≤ n and Ci SHOQR-concepts.

Lemma 3. Let I be a model of K.

1. If I is canonical and I |= q, then there is some con((qtr, Vo, τ)) ∈ conK(q)
such that I |= con((qtr, Vo, τ)).

2. If I |= con((qtr, Vo, τ)) for some con((qtr, Vo, τ)) ∈ conK(q), then I |= q.

Intuitively, the use of nominals in the constructed concepts still enforces the
same structures that are required by the query.

Putting everything together, we get the following theorem, which shows that
the queries in conK(q) are indeed enough to decide whether K |= q.

Theorem 1. Let {q1, . . . , q`} = conK(q), then K |= q iff K |= q1 ∨ . . . ∨ q`.

Please note that a disjunct qi contains possibly several concept atoms of
the form Ci

1(x1), . . . , Ci
n(xn), i.e., n unconnected components. By transforming

the disjunction into conjunctive normal form (cf. [2, 7.3.2]), we can reduce the
problem of deciding whether K |= q1 ∨ . . . ∨ q` to deciding the problem whether
K |= at1 ∨ . . . ∨ at`, where each ati is a concept atom from qi, for at most
exponentially many times in the size of the longest qi. We now show how we can
decide entailment of unions of conjunctive queries that consist of one concept
atom only, which is enough to decide CQ entailment for SHOQ.



Definition 7. An extended TBox w.r.t. K and q is a TBox that contains, for
each qi ∈ conK(q), an axiom > v ¬C for some atom C(x) ∈ qi. An extended
knowledge base w.r.t. K and q is a knowledge base K′ = (T ∪ Tq,R) such that
Tq is an extended TBox w.r.t. K and q.

Theorem 2. K |= q iff each extended knowledge K′ w.r.t. K and q is inconsis-
tent.

Please note that the extended knowledge base is in SHOQ with role con-
junctions (under universal quantifiers). It is, however, not hard to see how the
Tableaux algorithm for SHOQ [10] can be extended to handle this.

5 Conclusions

In the previous section, we have presented a decision procedure for CQ entail-
ment in SHOQ. This is, to the best of our knowledge, the first CQ entailment
decision procedure that can handle nominals. In addition, we allow for non-
simple roles in the query as well, which is a feature that is known to be tricky.
Since the set of rewritten queries can potentially be large, the algorithm is more
suitable for showing decidability of the problem rather than building the foun-
dation of implementable algorithms. Our future work will include efforts to show
that answering arbitrary conjunctive queries for SHOIQ is decidable.
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