
Optimising Terminological Reasoning for Expressive Description
Logics

Dmitry Tsarkov, Ian Horrocks and Peter F. Patel-Schneider
School of Computer Science
University of Manchester, UK,

and
Bell Labs Research
Lucent Technologies, USA

March 5, 2007

Abstract. Tableau algorithms are currently the most widely-used and empirically the fastest
algorithms for reasoning in expressive Description Logics, including the important Descrip-
tion Logics SHIQ and SHOIQ. Achieving a high level of performance on terminological
reasoning in expressive Description Logics when using tableau-based algorithms requires the
incorporation of a wide variety of optimisations. The Description Logic system FaCT++ im-
plements a wide variety of such optimisations, some present in other reasoners and some novel
or refined in FaCT++.

Keywords: Description Logic, Reasoning Systems, Optimisations

1. Introduction

Description Logics (DLs) are a family of logic based knowledge repre-
sentation formalisms. Although they have a range of applications (e.g.,
configuration (McGuinness and Wright, 1998) and reasoning with database
schemas and queries (Calvanese et al., 1998b; Calvanese et al., 1998a)), they
are perhaps best known as the basis for widely used ontology languages
such as OIL (Fensel et al., 2001), DAML+OIL (Horrocks et al., 2002) and
OWL (Horrocks et al., 2003). As well as DLs providing the formal underpin-
nings for these ontology languages (by means of the declarative semantics
of DLs), DL systems are also used to provide computational services for
ontology tools and applications (Knublauch et al., 2004; Rector, 2003). Such
services typically include (at least) computing the subsumption hierarchy and
checking the consistency of named concepts in an ontology.

Most modern DL systems are based on tableau algorithms. Such algo-
rithms were first introduced in a seminal paper by Schmidt-Schauß and
Smolka (Schmidt-Schauß and Smolka, 1991), and subsequently extended to
deal with a wide range of different logics (Baader et al., 2003). Many sys-
tems now implement the SHIQ DL, for which a tableau algorithm was
first presented by Horrocks, Sattler, and Tobies (Horrocks et al., 1999),
or its extension SHOIQ, whose tableau algorithm was recently described
by Horrocks and Sattler (Horrocks and Sattler, 2005). These two DLs are

c© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

Optimisations.tex; 5/03/2007; 23:11; p.1



2 Tsarkov, Horrocks and Patel-Schneider

very expressive, and correspond closely to the OWL ontology language.
(Reasoning in OWL Lite can be reduced to reasoning in SHIQ and rea-
soning in OWL DL can be reduced to reasoning in SHOIQ (Horrocks
and Patel-Schneider, 2003).) In spite of the high worst case complexity of
the satisfiability/subsumption problem for this logic (ExpTime-complete for
SHIQ and NExpTime-complete for SHOIQ), highly optimised implemen-
tations of the tableau algorithms for SHIQ and SHOIQ have been shown
to work well in many realistic (ontology) applications (Horrocks, 1998; Pan,
2005; Stevens et al., 2002; Wolstencroft et al., 2005).

Optimisation is crucial to the viability of systems that employ tableau-
based algorithms for DL reasoning: in experiments using both artificial test
data and application ontologies, (relatively) unoptimised systems performed
very badly, often being (at least) several orders of magnitude slower than op-
timised systems; in many cases, hours of processing time (in some cases even
hundreds of hours) proved insufficient for unoptimised systems to solve prob-
lems that took only a few milliseconds for an optimised system (Massacci,
1999; Horrocks and Patel-Schneider, 1998).

The optimisation of tableau-based systems has been the subject of ex-
tensive study over the course of the last fifteen years (Baader et al., 1994;
Horrocks, 1998; Haarslev and Möller, 2001a; Haarslev and Möller, 2001b;
Haarslev et al., 2001b; Horrocks, 2003; Horrocks and Sattler, 2002; Tsarkov
and Horrocks, 2005b; Sirin et al., 2005a; Haarslev et al., 2005; Sirin et al.,
2006), and modern systems typically employ a wide range of optimisations,
including (at least) those described by Baader et al (Baader et al., 1994) and
Horrocks and Patel-Schneider (Horrocks and Patel-Schneider, 1999).

In this paper we describe the optimisation techniques employed in our
FaCT++ reasoner (Tsarkov and Horrocks, 2006). While focusing mainly on
novel techniques and significant refinements and extensions of previously
known techniques, we have also described the “standard” optimisations used
in most implemented systems, as well as some simple optimisations that
are widely employed but often not reported in the literature. In this way we
hope to provide both a self contained report on the novel techniques devel-
oped in the FaCT++ system and a reasonably comprehensive survey of the
optimisation techniques employed in state of the art DL reasoning systems.

Many of the techniques we will describe could be applied to a wide range
of DLs. We will, however, focus on SHOIQ, because

− the expressive power of SHOIQ subsumes that of most of the DLs
discussed in the literature or implemented in DL reasoners;

− SHOIQ is the logic implemented in our FaCT++ system, and other
state-of-the-art DL reasoners such as Pellet (Sirin et al., 2005b) and
Racer (Haarslev and Möller, 2003) implement DLs very close to
SHOIQ; and

Optimisations.tex; 5/03/2007; 23:11; p.2



Optimising Expressive DLs 3

− as the basis of the W3C OWL web ontology language, SHOIQ is now
very widely used in practice.

DLs usually distinguish between the terminological part of a knowledge
base (called the TBox), which describes the structure of the domain of dis-
course in terms of concepts and roles, and the assertional part (called the
ABox), which describes some particular situation in terms of instances of
concepts and roles. FaCT++ is primarily designed to support TBox reason-
ing, as this kind of reasoning is widely used, e.g., in ontology design and
maintenance tools such as Protégé (Protégé, 2003) and Swoop (Kalyanpur
et al., 2005). However, the expressive power of SHOIQ is such that it blurs
the usual distinction between TBox and ABox, and FaCT++ exploits this
to support ABox reasoning. This simple approach would, however, clearly
not scale to very large ABoxes, and for a discussion of implementation and
optimisation techniques designed to address the problems of reasoning with
large ABoxes, the reader is referred to work on optimising ABox reason-
ing in the Racer system (Haarslev and Möller, 2000; Haarslev and Möller,
2001a; Haarslev and Möller, 2004; Chen et al., 2005).

2. Preliminaries

We present here a brief introduction to DL syntax and semantics (in particular
the syntax and semantics of SHOIQ), and to tableau algorithms for DLs (in
particular for SHOIQ). We will not attempt to give a comprehensive de-
scription of the algorithms, or present any proofs; rather we will provide just
such details of the basic, unoptimised method as will be necessary in order
to understand the subsequent sections on optimisation techniques. The inter-
ested reader is referred to other work on tableau algorithms (such as (Baader
and Sattler, 2001)) for further details on tableau algorithms in general, and the
introduction of the SHOIQ tableau algorithm (Horrocks and Sattler, 2005)
for further details on the SHOIQ algorithm.

2.1. SHOIQ SYNTAX AND SEMANTICS

SHOIQ is a very expressive DL that, in addition to the standard Boolean
connectives, allows for transitive roles, a hierarchy of sub- and super-roles,
inverse (sometimes called converse) roles, qualified cardinality constraints,
and nominals (i.e., the ability to refer to individuals in concept expressions).
This last feature leads to a blurring of the usual DL distinction between TBox
(a set of axioms concerning classes and roles) and ABox (a set of axioms con-
cerning individuals); we will return to this point when discussing the syntax
and semantics of SHOIQ knowledge bases.

Optimisations.tex; 5/03/2007; 23:11; p.3



4 Tsarkov, Horrocks and Patel-Schneider

DEFINITION 1. Let R be a set of role names with transitive role names
R+ ⊆ R. The set of SHOIQ-roles (or roles for short) is R∪{R− | R ∈ R}.
A role inclusion axiom is of the form R v S, for two roles R and S. A role
hierarchy is a finite set of role inclusion axioms.

An interpretation I = (∆I , ·I) consists of a non-empty set ∆I , the domain
of I, and a function ·I which maps every role to a subset of ∆I × ∆I such
that, for P ∈ R and R ∈ R+,

〈x, y〉 ∈ P I iff 〈y, x〉 ∈ P−I , and
if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI then 〈x, z〉 ∈ RI .

An interpretation I satisfies a role hierarchy R if RI ⊆ SI for each R v
S ∈ R; such an interpretation is called a model of R.

We introduce some notation to make the following considerations easier.

1. The inverse relation on roles is symmetric, so to avoid considering roles
such as R−−, we define a function Inv which returns the inverse of a role.
For R ∈ R, Inv(R) := R− and Inv(R−) := R.

2. Since set inclusion is transitive and RI ⊆ SI implies Inv(R)I ⊆
Inv(S)I , for a role hierarchy R, we introduce v* R as the transitive-
reflexive closure of v on R ∪ {Inv(R) v Inv(S) | R v S ∈ R}.
We use R ≡R S as an abbreviation for R v* RS and S v* RR.

3. Obviously, a role R is transitive if and only if its inverse Inv(R) is tran-
sitive. However, in cyclic cases such as R ≡R S, S is transitive if R
or Inv(R) is a transitive role name. In order to avoid these case distinc-
tions, the function Trans returns true iff R is a transitive role—regardless
whether it is a role name, the inverse of a role name, or equivalent to a
transitive role name (or its inverse): Trans(S,R) := true if, for some R
with R ≡ S, R ∈ R+ or Inv(R) ∈ R+; Trans(S,R) := false otherwise.

4. A role R is called simple w.r.t.R iff Trans(S,R) = false for all S v* RR.

5. In the following, if R is clear from the context, then we may abuse our
notation and use v* and Trans(S) instead of v* R and Trans(S,R).

DEFINITION 2. Let NC be a set of concept names with a subset NI ⊆
NC of nominals. The set of SHOIQ-concepts (or concepts for short) is the
smallest set such that

1. every concept name C ∈ NC is a concept,

2. if C and D are concepts and R is a role, then (C uD), (C tD), (¬C),
(∀R.C), and (∃R.C) are also concepts (the last two are called universal
and existential restrictions, resp.), and

Optimisations.tex; 5/03/2007; 23:11; p.4



Optimising Expressive DLs 5

3. if C is a concept, R is a simple role1 and n ∈ Z+, then (6nR.C)
and (>nR.C) are also concepts (called atmost and atleast restrictions,
resp.).

Concepts that are not concept names are referred to as complex concepts.
The interpretation function ·I of an interpretation I = (∆I , ·I) maps,
additionally, every concept to a subset of ∆I such that

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI ,
¬CI = ∆I \ CI , ]oI = 1 for all o ∈ NI ,

(∃R.C)I = {x ∈ ∆I | RI(x,C) 6= ∅},
(∀R.C)I = {x ∈ ∆I | RI(x,¬C) = ∅},

(6nR.C)I = {x ∈ ∆I | ]RI(x,C) 6 n}, and
(>nR.C)I = {x ∈ ∆I | ]RI(x,C) > n},

where ]M is the cardinality of a set M and RI(x, C) is defined as {y |
〈x, y〉 ∈ RI and y ∈ CI}.

DEFINITION 3. A SHOIQ knowledge base (KB) is a pair 〈T ,A〉, where

− T (the TBox) is a set of general concept inclusion (GCI) axioms of the
form C v D, where C and D are (possibly complex) concepts, and

− A (the ABox) is a set of axioms of the form i : C and (i, j) : R, where
C is a (possibly complex) concept, R is a role, and {i, j} ⊆ NI are
nominals.

An interpretation I satisfies a GCI C v D if CI ⊆ DI; it satisfies an
axiom i : C if iI ⊆ CI; and it satisfies an axiom (i, j) : R if for some
〈x, y〉 ∈ RI , iI = {x} and jI = {y}. An interpretation I satisfies a TBox T
(resp. an ABox A) if it satisfies each axiom in T (resp. A), and it satisfies a
KB K = 〈T ,A〉 if it satisfies both T and A; such an interpretation is called
a model of T (resp. A, K).

Note that the use of nominals instead of individuals in ABox axioms leads
to the slightly non-standard semantics, but is otherwise insignificant.2

As mentioned above, nominals blur the distinction between TBox and
ABox. ABox axioms can be transformed into TBox axioms: it is easy to see
that an interpretation I satisfies an axiom i : C iff it satisfies i v C, and it
satisfies an axiom (i, j) : R iff it satisfies i v ∃R.j. It is, therefore, possible
(and convenient) to think of a SHOIQ KB as consisting only of a TBox.

1 Restricting number restrictions to simple roles is required in order to yield a decidable
logic (Horrocks et al., 1999).

2 In the standard DL semantics individuals are the named elements of the interpretation
domain.

Optimisations.tex; 5/03/2007; 23:11; p.5



6 Tsarkov, Horrocks and Patel-Schneider

DEFINITION 4. A TBox T is satisfiable w.r.t. a role hierarchy R if there
is a model I of T and R. A concept C is satisfiable w.r.t. a role hierarchy
R and a TBox T if there is a model I of R and T with CI 6= ∅. Such an
interpretation is called a model of C w.r.t. R and T . A concept D subsumes
a concept C w.r.t. R and T (written C vR,T D) if CI ⊆ DI holds in every
model I of R and T . Two concepts C,D are equivalent w.r.t. R and T
(written C ≡R,T D) if they are mutually subsuming w.r.t. R and T .

Note that, as usual, subsumption and satisfiability can be reduced to each
other: C vR,T D if (C u ¬D) is not satisfiable w.r.t. R and T ; and C is
not satisfiable w.r.t. R and T if C vR,T ⊥. Moreover, the satisfiability of a
concept w.r.t. a role hierarchy and TBox can be reduced to the satisfiability of
a TBox w.r.t. a role hierarchy: C is satisfiable w.r.t. R and T if T ∪ {o v C}
is satisfiable w.r.t. R, where o is a “fresh” nominal, i.e., one that does not
occur in T . When R is obvious from the context (or assumed to be empty)
we will talk about TBox satisfiability; when both R and T are obvious from
the context (or assumed to be empty) we will talk about concept satisfiabiliy
and subsumption (written C v D).

2.2. A TABLEAU ALGORITHM FOR SHOIQ

The basic idea behind the tableau algorithm for SHOIQ TBox satisfiability
is to take as input a TBox T and role hierarchy R, and to try to prove the
satisfiability of T w.r.t. R by demonstrating the existence of a model I of
T w.r.t. R. This is done by syntactically decomposing T so as to derive
constraints on the structure of such a model. For example, if a nominal o
occurs in T , then any model of T must, by definition, contain some indi-
vidual x such that oI = {x}, and if o v ∃R.D is an axiom in T , then the
model must also contain an individual y such that 〈x, y〉 ∈ RI and y is an
element of DI ; if D is non-atomic, then continuing with the decomposition
of D would lead to additional constraints. The process fails if the constraints
include a clash (an obvious contradiction), e.g., if some individual z must be
an element of both C and ¬C for some concept C. The algorithm is designed
so that it is guaranteed to terminate, and guaranteed to construct a model if
one exists; such an algorithm is clearly a decision procedure for SHOIQ
TBox satisfiability.

In practice, the algorithm works on a labelled graph, called a completion
graph, that has a close correspondence to a model; this is because SHOIQ
models may be infinite (although finitely representable), and because it is
convenient not to explicate edges that may be implied by transitivity (of
roles).

For ease of presentation we will, as usual, assume all concepts to be in
negation normal form (NNF). A concept can be transformed into an equiv-
alent one in NNF by pushing negation inwards, making use of de Morgan’s

Optimisations.tex; 5/03/2007; 23:11; p.6



Optimising Expressive DLs 7

laws and the duality between existential and universal restrictions, and be-
tween atmost and atleast number restrictions (Horrocks et al., 2000). For a
concept C, we use ¬̇C to denote the NNF of ¬C, and we use sub(C) to
denote the set of all subconcepts of C (including C). We will also abuse our
notation by saying that a TBox T is in NNF if all the concepts occurring in
T are in NNF. For a TBox T in NNF and a role hierarchy R, we define the
set of “relevant sub-concepts” cl(T ,R) as follows:

cl(T ,R) :=
⋃

CvD∈T
(cl(C,R) ∪ cl(D,R)) where

cl(E,R) := sub(E) ∪ {¬̇C | C ∈ sub(E)} ∪
{∀S.C | ∀R.C ∈ sub(E) or ¬̇∀R.C ∈ sub(E),

and S occurs in T or R} ∪
{(6mR.C) | (6nR.C) ∈ sub(E) or

¬̇(6nR.C) ∈ sub(E), and m ≤ n}

When R is clear from the context, we use cl(T ) instead of cl(T ,R).

DEFINITION 5. Let R be a role hierarchy and T a SHOIQ TBox in
NNF. A completion graph for T with respect to R is a directed graph G =
(V,E, L, 6 .=) where each node x ∈ V is labelled with a set L(x) ⊆ cl(T )∪NI

and each edge 〈x, y〉 ∈ E is labelled with a set of roles L(〈x, y〉) containing
(possibly inverse) roles occurring in T or R. Additionally, we keep track of
inequalities between nodes of the graph with a symmetric binary relation 6 .=
between the nodes of G.

If 〈x, y〉 ∈ E, then y is called a successor of x and x is called a prede-
cessor of y. Ancestor is the transitive closure of predecessor, and descendant
is the transitive closure of successor. A node y is called an R-successor of
a node x if, for some R′ with R′ v* R, R′ ∈ L(〈x, y〉); x is called an R-
predecessor of y if y is an R-successor of x. A node y is called a neighbour
(R-neighbour) of a node x if y is a successor (R-successor) of x or if x is a
successor (R−-successor) of y.

For a role S and a node x in G, we define the set of x’s S-neighbours with
C in their label, SG(x,C), as follows:

SG(x,C) := {y | y is an S-neighbour of x and C ∈ L(y)}.

G is said to contain a clash if

1. for some A ∈ NC and node x of G, {A,¬A} ⊆ L(x),

2. for some node x of G, (6nS.C) ∈ L(x) and there are n + 1 S-
neighbours y0, . . . , yn of x with C ∈ L(yi) for each 0 ≤ i ≤ n and
yi 6

.= yj for each 0 ≤ i < j ≤ n, or

Optimisations.tex; 5/03/2007; 23:11; p.7



8 Tsarkov, Horrocks and Patel-Schneider

3. for some o ∈ NI , there are two nodes x, y of G with x 6 .= y and o ∈
L(x) ∩ L(y).

If o1, . . . , o` are all the nominals occurring in T , then the tableau algo-
rithm for checking satisfiability of a concept D starts with the completion
graph G = ({r0, r1 . . . , r`}, ∅,L, ∅) where L(r0) = {D} and L(ri) = {oi}
for 1 ≤ i ≤ `. G is then expanded by repeatedly applying the expansion rules
given in Figures 1 and 2, stopping if a clash occurs.

The expansion rules use some auxiliary terms and operations, which we
will now define:

Nominal Nodes and Blockable Nodes We distinguish two types of nodes in
G: nominal nodes and blockable nodes. A node x is a nominal node if L(x)
contains a nominal. A node that is not a nominal node is a blockable node. A
nominal o ∈ NI is said to be new in G if no node in G has o in its label.

Blocking A node x is label blocked if it has ancestors x′, y and y′ such
that

1. x is a successor of x′ and y is a successor of y′,

2. y, x and all nodes on the path from y to x are blockable,

3. L(x) = L(y) and L(x′) = L(y′), and

4. L(〈x′, x〉) = L(〈y′, y〉).
In this case, we say that y blocks x. A node is blocked if either it is label
blocked or it is blockable and its predecessor is blocked.

Note that blocking helps to ensure termination by preventing the tableau
algorithm from attempting to generate infinite branches. When the sequence
of nodes and edges in a branch of the completion graph starts to repeat itself,
a block is established, and no further generating rules (see below) are applied
to the blocked nodes. In contrast, non-generating rules are still applicable to
blocked nodes: in the presence of inverse roles, information from these nodes
can be propagated back to predecessor nodes, possibly leading to clashes or
the unblocking of previously blocked nodes (Horrocks and Sattler, 1999).

Generating and Shrinking Rules and Safe Neighbours The >-, ∃-, and
o?-rules are called generating rules, and the 6-, 6o- and o-rules are called
shrinking rules. An R-neighbour y of a node x is safe if (i) x is blockable or
if (ii) x is a nominal node and y is not blocked.

Note that generating rules generate only safe nodes: the o?-rule generates
nominal nodes, which can’t be blocked. If a blockable successor y of a node
x is generated by the >- or ∃-rule, then x is the only predecessor of y. If x
is a blockable node, then its successor y is safe, and if x is a nominal node,
then it cannot block y, and y is again safe.

Optimisations.tex; 5/03/2007; 23:11; p.8



Optimising Expressive DLs 9

Pruning When a node y is merged into a node x, we “prune” the completion
graph by removing y and, recursively, all blockable successors of y. More
precisely, pruning a node y (written Prune(y)) in G = (V,E, L, 6 .=) yields a
graph that is obtained from G as follows:

1. for all successors z of y, remove 〈y, z〉 from E and, if z is blockable,
Prune(z);

2. remove y from V .

Merging merging a node y into a node x (written Merge(y, x)) in G =
(V,E, L, 6 .=) yields a graph that is obtained from G as follows:

1. for all nodes z such that 〈z, y〉 ∈ E

a) if {〈x, z〉, 〈z, x〉} ∩ E = ∅, then add 〈z, x〉 to E and set L(〈z, x〉) =
L(〈z, y〉),

b) if 〈z, x〉 ∈ E, then set L(〈z, x〉) = L(〈z, x〉) ∪ L(〈z, y〉),
c) if 〈x, z〉 ∈ E, then set L(〈x, z〉) = L(〈x, z〉) ∪ {Inv(S) | S ∈

L(〈z, y〉)}, and

d) remove 〈z, y〉 from E;

2. for all nominal nodes z such that 〈y, z〉 ∈ E

a) if {〈x, z〉, 〈z, x〉} ∩ E = ∅, then add 〈x, z〉 to E and set L(〈x, z〉) =
L(〈y, z〉),

b) if 〈x, z〉 ∈ E, then set L(〈x, z〉) = L(〈x, z〉) ∪ L(〈y, z〉),
c) if 〈z, x〉 ∈ E, then set L(〈z, x〉) = L(〈z, x〉) ∪ {Inv(S) | S ∈

L(〈y, z〉)}, and

d) remove 〈y, z〉 from E;

3. set L(x) = L(x) ∪ L(y);

4. add x 6 .= z for all z such that y 6 .= z; and

5. Prune(y).

Rule applications are prioritised as follows (Horrocks and Sattler, 2005):
the o-rule is applied with highest priority; the 6o- and the o?-rule are applied
next, and they are applied first to nominal nodes with lower levels; finally, all
other rules are applied with a lower priority. The level of a nominal node is
defined inductively as follows:

− each (nominal) node x with an oi ∈ L(x), 1 ≤ i ≤ `, is of level 0, and

Optimisations.tex; 5/03/2007; 23:11; p.9



10 Tsarkov, Horrocks and Patel-Schneider

u-rule: if 1. C1 u C2 ∈ L(x), and
2. {C1, C2} 6⊆ L(x)

then set L(x) = L(x) ∪ {C1, C2}

t-rule: if 1. C1 t C2 ∈ L(x) and
2. {C1, C2} ∩ L(x) = ∅

then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has no safe S-neighbour y with C ∈ L(y),

then create a new node y with L(〈x, y〉) = {S}
and L(y) = {C}

∀-rule: if 1. ∀S.C ∈ L(x), and
2. there is an S-neighbour y of x with C /∈ L(y)

then set L(y) = L(y) ∪ {C}

∀+-rule: if 1. ∀S.C ∈ L(x), and
2. there is some R with Trans(R) and R v* S,
3. there is an R-neighbour y of x with ∀R.C /∈ L(y)

then set L(y) = L(y) ∪ {∀R.C}

?-rule: if 1. (6nS.C) ∈ L(x), and
2. there is an S-neighbour y of x with {C, ¬̇C} ∩ L(y) = ∅

then set L(y) = L(y) ∪ {E} for some E ∈ {C, ¬̇C}

>-rule: if 1. (>nS.C) ∈ L(x), x is not blocked, and
2. there are not n safe S-neighbours y1, . . . , yn of x with

C ∈ L(yi) and yi 6
.= yj for 1 ≤ i < j ≤ n

then create n new nodes y1, . . . , yn with L(〈x, yi〉) = {S},
L(yi) = {C}, and yi 6

.= yj for 1 ≤ i < j ≤ n

6-rule: if 1. (6nS.C) ∈ L(z), and
2. ]SG(z, C) > n and there are two S-neighbours

x, y of z with C ∈ L(x) ∩ L(y), and not x 6 .= y

then 1. if x is a nominal node, then Merge(y, x)
2. else if y is a nominal node or an ancestor of x,

then Merge(x, y), else Merge(y, x)
v-rule: if 1. C1 v C2 ∈ T , and

2. {¬̇C1, C2} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {C} for some C ∈ {¬̇C1, C2}

Figure 1. Basic tableau expansion rules for SHOIQ

Optimisations.tex; 5/03/2007; 23:11; p.10



Optimising Expressive DLs 11

− a nominal node x is of level i if x is not of some level j < i and x has a
neighbour that is of level i− 1.

The combination of the 6o- and the o?-rules, and the priority with which
they are applied, is necessary in order to ensure termination. Without the
o?-rule, non-termination could result from repeated generation and merging
of predecessors of a nominal node, and without the 6o-rule, non-termination
could result from the repeated generation and pruning of a path leading to a
nominal node.

Two kinds of rule will be of particular interest in the following discussion:
non-deterministic rules, such as the t-rule and v-rule, and generating rules,
such as the ∃-rule and >-rule. In practice, non-deterministic rules are dealt
with by using backtracking search to investigate the completion graphs re-
sulting from each possible expansion (see Section 4.1). Applying such rules
is, therefore, likely to be more “costly”, as they either increase the size of the
graph or increase the size of the search space. It is worth noting that, although
the o?-rule adds a new source of nondeterminism, it will only be applicable
in case nominals, number restrictions and inverse roles are used in a way that
seems rather unnatural, and that has not been observed (so far) in realistic
KBs (Horrocks and Sattler, 2005).

3. Preprocessing and simplifications

The first group of optimisations in FaCT++ is performed directly on the syn-
tax of the input. These optimisations serve to preprocess and simplify the
input into a form more amenable to later processing. As well as simplifica-
tions such as tautology elimination and obvious clash detection, preprocess-
ing optimisations (like absorption, Section 3.2.5) can also lead to significant
speedup of the subsequent reasoning process.

Note that satisfiability checking for expressive DLs requires, in the worst
case, time that is at least exponential in the size of the input, whereas
most preprocessing optimisations have polynomial, or even linear worst case
complexity.

3.1. LEXICAL NORMALISATION AND SIMPLIFICATION

Descriptions of DL tableau algorithms, such as the one given in Section 2,
typically assume that the input is in negation normal form (NNF); this sim-
plifies the (description of the) algorithm, but it means that the first (and
most common) kind of clash, i.e., {C,¬C} ⊆ L(x) for some node x in
the completion graph, will only be detected when C is a named concept. For
example, when testing the satisfiability of the concept (A uB) u ¬(A uB),

Optimisations.tex; 5/03/2007; 23:11; p.11



12 Tsarkov, Horrocks and Patel-Schneider

o-rule: if for some o ∈ NI there are 2 nodes x, y with o ∈ L(x) ∩ L(y)
and not x 6 .= y

then Merge(x, y)

o?-rule: if 1. (6nS.C) ∈ L(x), x is a nominal node, and there is a blockable
S-neighbour y of x such that C ∈ L(y) and
x is a successor of y, and

2. there is no (6mS.C) ∈ L(x) such that m 6 n,
and there exist m nominal S-neighbours z1, . . . , zm of x
with C ∈ L(zi) and zi 6

.= zj for all 1 ≤ i < j ≤ m.
then 1. guess m with 1 6 m 6 n and set L(x) = L(x) ∪ {(6mS.C)}

2. create m new nodes z1, . . . , zm with L(〈x, zi〉) = {S},
L(zi) = {C, oi} with oi ∈ NI new in G,
and zi 6

.= zj for 1 ≤ i < j ≤ m.

6o-rule: if 1. (6mS.C) ∈ L(x), x is a nominal node, and there is a blockable
S-neighbour y of x such that C ∈ L(y),

2. there exist m nominal S-neighbours z1, . . . , zm of x
with C ∈ L(zi) and zi 6

.= zj for all 1 ≤ i < j ≤ m, and
3. there is a nominal S-neighbour z of x with C ∈ L(z), and not y 6 .= z

then Merge(y, z)

Figure 2. Expansion rules dealing with nominals

the transformation into NNF would give (A u B) u (¬A t ¬B); in practice
this means that, in spite of the “obvious” contradiction, backtracking search
will be performed in order to determine that the concept is unsatisfiable (see
Section 4.1).

For this reason, practical algorithms do not transform the input into NNF,
but include a ¬-rule that performs a single (negation) normalisation step (e.g.,
applying the ¬-rule to ¬(A uB) ∈ L(x) would cause ¬A t ¬B to be added
to L(x)), and the completion graph is said to contain a clash if it contains
a node x with {C,¬C} ⊆ L(x) for an arbitrary concept C. Moreover, in
order to facilitate the detection of such clashes, the input is normalised and
simplified so that logically equivalent concepts are more often syntactically
equivalent. This is achieved by (recursively) applying a set of rewrite rules
to concept expressions, and by ordering conjuncts w.r.t. some total order-
ing (Horrocks, 2003). For example, we re-write t- and ∃-concepts as negated
u- and ∀-concepts, respectively; we merge conjunctions wherever possible;
we order conjuncts; and we use logical equivalences and semantics preserv-
ing transformations in order to simplify concepts. These equivalences and
transformations can be split into three groups: constant elimination, syntactic
equivalences and semantic transformations.

Optimisations.tex; 5/03/2007; 23:11; p.12



Optimising Expressive DLs 13

The constant elimination group includes the following equivalences:
(C u >) ≡ C, (C u ⊥) ≡ ⊥, ∀R.> ≡ >.
The syntactic equivalence group includes the following equivalences:
(C u C) ≡ C, ¬¬C ≡ C, C u ¬C ≡ ⊥, ≥ 1R.C ≡ ∃R.C

The semantic transformation group exploits semantic information already
gathered during the preprocessing phase to simplify concept expressions. For
example, if the TBox contains an axiom A v B for named concepts A and
B, then the concept expression A u B can be simplified to A. The same is
true for arbitrary concept expressions.

In FaCT++, rewrite rules are separated into two classes: “cheap” ones and
“expensive” ones. Cheap ones (i.e., Cu⊥ → ⊥) are easily applied and almost
always give a positive effect. They are, therefore, applied to every concept
expression appearing in the TBox.

Expensive rules require more effort to recognise when they are applicable
(i.e., A u B → A when A v B), and may not give a positive effect at all.
Indeed, a well designed TBox is likely to include few such constructions,
so applying such rule to the whole (possibly huge) TBox will be a waste of
time. However, there are special cases in which it is crucial to have concept
expression be as simple as possible. Such cases include axioms in Tg, ab-
sorbed concept expressions and role ranges and domains (all of which will
be explained below). In these cases, all simplification rules (including the
expensive ones) are applied.

3.2. DEALING WITH AXIOMS

If dealt with naively, TBox axioms can lead to a serious degradation in reason-
ing performance, as each such axiom would cause a disjunction to be added to
every node of the completion graph, leading to potentially enormous amounts
on nondeterministic expansion and backtracking search.

For example, given a TBox T , if > v A ∈ T , with A = ((C1 t D1) u
. . . u (Cn tDn)), and testing the satisfiability of T leads to the construction
of a completion graph containing k nodes, then there are 2kn different ways
to apply the u- and t-rules to the resulting k copies of A. This explosion in
the size of the search space can easily lead to a catastrophic degradation in
performance, even when optimisations such as backjumping (see Section 4.3)
and caching (see Section 4.7) are employed (Horrocks, 1997).

Fortunately, optimisations known as lazy unfolding and absorption have
proved to be very effective in reducing the size of the search space.

Optimisations.tex; 5/03/2007; 23:11; p.13



14 Tsarkov, Horrocks and Patel-Schneider

3.2.1. Lazy Unfolding
TBox axioms are often (restricted to be) of the form A v C or A ≡ C for
some concept name A (where A ≡ C is an abbreviation for the pair of GCIs,
A v C and ¬A v ¬C). Such axioms are often called definitional, as they
can be thought of as defining the meaning of A. A TBox

T = {A1 ≡ C1, . . . , A` ≡ C`, A`+1 v C`+1, . . . , A`+m v C`+m}

is said to be unfoldable, if it satisfies the following conditions.

− All axioms in T are definitional.

− Axioms in T are unique. That is, for each concept name A, T contains
at most one axiom of the form A ≡ C (i.e., Ai 6= Aj for 1 6 i <
j 6 `), and if it contains an axiom of the form A ≡ C, then it does
not contain any axiom of the form A v C. (Note that an arbitrary set of
axioms {A v C1, . . . , A v Cn} can be combined into a single axiom
A v C1 u . . .uCn.) We will call a named concept A non-primitive if T
contains an axiom A ≡ C, which is called a non-primitive definition. In
the other case we will call A a primitive concept, and an axiom A v C
a primitive definition.

− T is acyclic. That is, there is no axiom Ai ≡ Ci ∈ T such that Ai occurs
in Ci. A concept name A occurs in a concept expression C if either A
occurs syntactically in C, or there is a concept name A′ such that A′

occurs syntactically in C, and there is an axiom A′ ≡ C ′ ∈ T such that
A occurs in C ′.

The idea of lazy unfolding was initially introduced in (Baader et al., 1994)
for unfoldable TBoxes and refined for general TBoxes in (Horrocks, 1998).
Instead of being dealt with using the v-rule, such a set of axioms can be lazily
unfolded during the tableau expansion. That is, for an axiom A1 v C1 ∈ T ,
if Ai is added to L(x) for some node x, then Ci is also added to L(x), and for
an axiom Aj ≡ Cj ∈ T , if Aj (resp. ¬Aj) is added to L(x) for some node x,
then Cj (resp. ¬Cj) is also added to L(x).

It is obvious that an arbitrary TBox T can be divided into an unfoldable
part Tu and a general part Tg such that Tu ∪ Tg = T and Tu ∩ Tg = ∅.
The unfoldable part Tu can then be dealt with using lazy unfolding while
the general part Tg is dealt with using the v-rule. In fact it has been shown
that the definition of an unfoldable TBox can be extended somewhat while
still allowing the use of the above lazy unfolding technique. In particular, the
concept expressions occurring on the left hand side of primitive- and non-
primitive definitions can also be negated named concepts, and the acyclicity
condition can be relaxed by distinguishing positive and negative occurrences
of named concepts in a stratified theory (Horrocks and Tobies, 2000b; Lutz,
1999).

Optimisations.tex; 5/03/2007; 23:11; p.14



Optimising Expressive DLs 15

vu-rule: if 1. C1 ∈ L(x), C1 v C2 ∈ Tu, and
2. {C2} ∩ L(x) = ∅

then set L(x) = L(x) ∪ {C2}

vg-rule: if 1. C1 v C2 ∈ Tg , and
2. {¬̇C1, C2} ∩ L(x) = ∅

then set L(x) = L(x) ∪ {C} for some C ∈ {¬̇C1, C2}

Figure 3. Tableau expansion rules for unfoldable and general axioms

Lazy unfolding can be viewed as a modification of the tableau expansion
rules, replacing the v-rule with two rules, one for unfoldable axioms and one
for general axioms. These two rules, thevu-rule and thevg-rule are given in
Figure 3.

In FaCT++, a form of lazy unfolding is also used to deal more efficiently
with so called range and domain constraints. These often arise in TBoxes
derived from ontologies, where it is common to state, e.g., that the role
“drives” has domain “adult” and range ”vehicle”, where adult and vehicle are
concepts, and where the intuitive meaning is that only adults can drive, and
that only vehicles can be driven. This can easily be expressed as SHOIQ
axioms of the form > v ∀R−.C (to state that the domain of R is C, e.g.,
> v ∀drives−.adult), and > v ∀R.C (to state that the range of R is C, e.g.,
> v ∀drives.vehicle).

Such axioms are not unfoldable, and will therefore be dealt with by the
v-rule. For an axiom > v ∀R.C, this would lead to ¬> t ∀R.C being
added to the label of each node. This can clearly be simplified to ∀R.C, so
there is no need for non-deterministic expansion. Even so, when there are
very large numbers of range and domain axioms (which is the case in some
TBoxes derived from ontologies, where it is common practice to specify the
range and domain of every role), this may lead to a significant degradation of
performance simply due to the large size of node labels (and using complex
data structures for node labels is also problematical due to the saving and
restoring that is needed during backtracking search). Extending the tableau
algorithm to lazily unfold range and domain axioms not only deals with this
problem, but also provides additional opportunities for applying the important
absorption optimisation (see Section 3.2.5).

An arbitrary TBox T can now be divided into three parts: an unfoldable
part Tu, a range and domain part Tr, and a general part Tg, such that T =
Tu ∪ Tr ∪ Tg, and Tu, Tr and Tg are pairwise disjoint. The unfoldable part Tu

is as before, the range and domain part Tr consists of all the axioms of the
form > v ∀R.C that would formerly have been in Tg (note that R can be an

Optimisations.tex; 5/03/2007; 23:11; p.15



16 Tsarkov, Horrocks and Patel-Schneider

R-rule: if 1. > v ∀S.C ∈ Tr, and
2. there is an S-neighbour y of x with C 6∈ L(y)

then L(y) −→ L(y) ∪ {C}

Figure 4. Tableau expansion rule for domain and range axioms

inverse role), and Tg consists of the remaining general axioms. A new tableau
expansion rule, the R-rule, is added in order to deal with Tr; this rule is given
in Figure 4.

3.2.2. Taxonomic Encoding and Synonym Replacement
If Tu contains a definition of the form A ≡ C, then replacing occurrences of
C with A may allow further simplifications to be performed. For example,
given the definition A ≡ ∀R.C, the concept ¬A t ∀R.C can be rewritten
as ¬A t A and then simplified to give >. The usefulness of this technique
can be further enhanced by introducing new names for any unnamed concept
expressions occurring in the TBox, a technique known as taxonomic encoding
(Horrocks, 2003); in practice, this is often implemented by using pointers and
structure sharing rather than by introducing new definitions.

If the TBox includes an axiom of the form A ≡ B, where both A and
B are concept names, then A and B are obviously synonyms (two names
for the same concept). This kind of axiom may introduce “fake” cycles and
dependencies into the TBox, and interfere with the application of some op-
timisations. For example, if the TBox includes the axioms B ≡ ∀R.C and
B ≡ A, then one of these two axioms would have to be treated as a pair of
inclusion axioms in Tg, leading to additional (and unnecessary) nondetermin-
ism in tableau expansion. Moreover, it may no longer be possible (in general)
to simplify the concept ¬A t ∀R.C to give >.

In FaCT++, a technique called synonym replacement is used in order to
mitigate such problems. If the TBox includes an axiom of the form A ≡ B,
for A and B concept names, then A is called a synonym of B, B is called
the representative concept of A, and the axiom A ≡ B is called the synonym
definition of A. During synonym replacement, each synonym definition is
removed from the TBox, and all occurrences of the synonym are replaced
with its representative concept. After this, other simplifications, such as those
described in Section 3.1, can be applied. For example, if the TBox includes
the axioms B ≡ ∀R.C and B ≡ A, as above, then we can discard B ≡ A
and replace B with A, so that B ≡ ∀R.C becomes A ≡ ∀R.C; the concept
¬A t ∀R.C can then be simplified to >.

Note that care must be taken to ensure that Tu is still unfoldable after an
application of synonym replacement. For example, if Tu includes the axioms

Optimisations.tex; 5/03/2007; 23:11; p.16



Optimising Expressive DLs 17

A ≡ C and B ≡ D, applying synonym replacement to the axiom B ≡ A
would leave two definitions of A in Tu; one of these must moved to Tg (in the
form of a pair of inclusion axioms).

3.2.3. Told Cycle Elimination
The idea of a told subsumer is widely used in DL reasoning, especially in
classification algorithms (see Section 5 below). Informally, a named concept
C has a told subsumer D if C v D is “obvious” from the syntactic structure
of the TBox. This information is useful in classification, because it provides
some initial information about subsumption relations (Horrocks, 2003).

More formally, a concept D appears in the expression C, if either C = D,
or C = C1u. . .uCn and D appears in the expression Ci for some 1 ≤ i ≤ n.
A named concept B is called an immediate told subsumer (ITS) of a named
concept A, written B ∈ ITS(A), iff:

− A v C ∈ T or A ≡ C ∈ T and B appears in the expression C;

− A v C ∈ T or A ≡ C ∈ T , ∃R.D appears in the expression C,
> v ∀ Inv(R).E ∈ Tr and B appears in the expression E;

− A v C ∈ T or A ≡ C ∈ T , ≥ nR.D appears in the expression C,
> v ∀ Inv(R).E ∈ Tr and B appears in the expression E.

Told subsumer is the transitive closure of ITS.

FaCT++ includes a simple but useful optimisation that tries to eliminate
cyclical told subsumptions. A TBox T has a told cycle if, for some A ∈ NC ,
A is a told subsumer of itself. The presence of told cycles in the TBox can lead
to several problems, and in particular can cause problems for algorithms that
exploit the told subsumer hierarchy (i.e., the concept hierarchy that is implied
by told subsumer relations). Told cycles also make some GCI simplifications
inapplicable. These cycles are, however, often quite easy to eliminate. We
assume that most modern reasoners include such an optimisation, although
we know of no reference to it in the literature.

Assume A1 . . . An are named concepts, such that Ai+1 ∈ ITS(Ai) for all
1 ≤ i < n, and A1 = An. In this case, all Ai are equivalent. We can chose A1

as a representative concept, make A2, . . . , An−1 synonyms of A1 by adding
axioms Ai ≡ A1 to Tu, and run the synonym replacement algorithm on T .

3.2.4. Redundant subsumption elimination
After applying told cycle elimination, some axioms might include redundant
information due to synonym replacement. For example, if A v B u C ∈ T ,
and after told cycle elimination B ≡ A was added to Tu, then the axiom
would be transformed into A v A u C, where the A in A u C is clearly

Optimisations.tex; 5/03/2007; 23:11; p.17



18 Tsarkov, Horrocks and Patel-Schneider

redundant. Redundant subsumption elimination is a simple optimisation used
in FaCT++ to remove this kind of redundancy.

A concept A occurs at the top level of a concept expression C if A
syntactically occurs in C, but not in the scope of role quantifiers. During
optimisation, for every axiom A v C, any top-level occurrences of A in C
are replaced with>; the usual syntactic simplifications are then applied to the
axiom.

Note that this optimisation is different from told cycle elimination (Sec-
tion 3.2.3), although there are some axioms that can be simplified using either
optimisation; the axiom A v A u ¬B would, for example, be simplified to
A v ¬B by either optimisation. Told cycle elimination cannot, however, deal
with axioms like A v ¬AtC, and redundant subsumption elimination is not
applicable if several axioms are involved in a cycle.

3.2.5. Absorption
Given the effectiveness of lazy unfolding in dealing with the unfoldable part
of a TBox Tu and the range and domain axioms in Tr, it makes sense to try to
rewrite the axioms in T so that the size of Tg can be reduced.

Absorption is such a rewriting optimisation that tries to eliminate GCIs
in Tg by absorbing them into concept definitions in Tu (concept absorption)
or domain axioms in Tr (role absorption). This is usually done by rewriting
general axioms into an equivalent form suitable for one of these absorptions:
for concept absorption, the axiom should be of the form CN v D, where CN
is a named primitive concept and D is an arbitrary concept expression (Hor-
rocks, 2003); for role absorption, the axiom should be of the form ∃R.> v D,
where D is an arbitrary concept expression (Tsarkov and Horrocks, 2004). In
addition, a special form of concept absorption, called nominal absorption, can
be employed when an axiom has form o1t. . .ton v D, or ∃R.o v D, where
o, o1, . . . , on are nominals and D is an arbitrary concept expression (Sirin
et al., 2006).

Given a TBox T , absorption proceeds as follows. First, Tu, Tr and Tg

are initialised such that Tr = ∅, Tu ∪ Tg = T and Tu is unfoldable. This
can be trivially achieved by setting Tg = T and Tu = Tr = ∅, but it is
usually best to try to maximise the number of definitional axioms in Tu, and in
particular to maximise the number of definitional axioms of the form A ≡ D
in Tu (Horrocks and Tobies, 2000b). Due to the uniqueness and acyclicity
restrictions, however, there may be no unique maximal Tu.

Next, the axioms in Tg are normalised by rewriting them as semantically
equivalent axioms of the form > v C, i.e., A v B is rewritten as > v
C, where C = (B t ¬A). The concepts occurring in such axioms can be
simplified using the techniques described in Section 3.1, and trivial axioms
can be dealt with as follows:

− > v > is trivially satisfiable and can be removed from the TBox.

Optimisations.tex; 5/03/2007; 23:11; p.18



Optimising Expressive DLs 19

− > v ⊥ is trivially unsatisfiable and leads directly to TBox unsatisfiabil-
ity.

Finally, a range of rewriting rules can be applied to axioms in Tg in order
to transform them into a suitable form, and then add them to either Tu or
Tr. These rules are repeatedly applied until either Tg is empty or no further
rules are applicable. Note that it is important to first eliminate told cycles, as
described in Section 3.2.3, otherwise application of the rewriting rules may
not terminate.

Axiom transformation rules:

− > v B t C, where B is a named concept with B ≡ D ∈ Tu, can
be rewritten as > v D t C.

− > v ¬B tC, where B is a named concept with B ≡ D ∈ Tu, can
be rewritten as > v ¬D t C.

− > v (D1 uD2) tC can be rewritten as two axioms > v D1 tC
and > v D2 t C.

Concept absorption:

− > v ¬AtC, where A is a named concept with A v D ∈ Tu, can
be absorbed into Tu by removing> v ¬AtC from Tg and adding
A v C to Tu.

Role absorption:

− > v (∀R.C) tD can be absorbed into Tr by removing it from Tg

and adding > v ∀ Inv(R).((∀R.C) tD) to Tr.
− > v (≤ nR.C) tD can be absorbed into Tr by removing it from

Tg and adding > v ∀ Inv(R).((≤ nR.C) tD) to Tr.

Nominal absorption:

− > v C, where C = ¬(o1 t . . . t on) t D, can be absorbed into
Tu by removing > v C from Tg and adding oi v D to Tu for all
1 ≤ i ≤ n.

− > v C, where C = ¬(∃R.(o1 t . . . t on)) tD, can be absorbed
into Tu by removing > v C from Tg and adding oi v ∀ Inv(R).D
to Tu for all 1 ≤ i ≤ n.

Note that there may be many different ways to apply these rewriting rules,
some of which may eventually lead to different absorptions. Defining what
constitutes a “good” absorption is still an open problem, but an absorp-
tion that leaves Tg empty is invariably better in practice than one that does
not (Horrocks and Tobies, 2000a; Tsarkov and Horrocks, 2004).

Optimisations.tex; 5/03/2007; 23:11; p.19



20 Tsarkov, Horrocks and Patel-Schneider

Finally, recent work has suggested a possible generalisation of absorption,
called binary absorption, that could extend the range of situations in which
absorption and lazy unfolding can be applied (Hudek and Weddell, 2006).
The basic idea is to extend lazy unfolding so as to deal with axioms of the
form AuB v C, and to extend absorption so as to be able to rewrite axioms
into this form. It remains to be seen, however, if this technique will be useful
in practice.

4. Optimisations in Core Satisfiability Testing

The core of FaCT++ is its TBox satisfiability algorithm, which implements
a highly optimised version of the tableau algorithm described in Section 2.2.
Before introducing the optimisations used in FaCT++, we briefly show how
such an algorithm is implemented in practice.

4.1. A “STANDARD” SATISFIABILITY ALGORITHM

The presentation of the algorithm in Section 2.2 is designed to facilitate
correctness proofs rather than implementation; it does not, for example, say
anything about the order in which rules of equal priority are applied, or
describe how non-deterministic rules would be dealt with in practice. We
will, therefore, describe a “standard” implementation of a satisfiability testing
algorithm which is based on the theoretical description from Section 2.2.

The first divergence from theory to practice is that concept expressions
are not usually in NNF. Instead, as we described in Section 3.1, practical
algorithms use a simplified normal form together with an additional ¬-rule,
which allows algorithms to find clashes faster.

Secondly, practical algorithms also usually keep track of changes in the
completion graph (e.g., which concepts were added to node labels, or the
creation of new edges in a completion graph), and maintain some ordering
of the concepts that have to be further expanded. As several expansion rules
might be applicable at the same time, some order of rule application must be
chosen in a deterministic implementation.

Thirdly, whenever a non-deterministic rule is applied, a deterministic algo-
rithm must create a branching point in which the algorithm saves the state of
the reasoning process (including, e.g., the completion graph). The algorithm
then tries (in some order) possible applications of the rule, restoring the state
after each try, until one leads to a complete and clash free completion graph
or all have been shown to lead to a clash. In the former case, the algorithm
terminates and returns “satisfiable”, in the later case, it backtracks to the pre-
vious branching point if there is one, or terminates and returns “unsatisfiable”
otherwise.

Optimisations.tex; 5/03/2007; 23:11; p.20



Optimising Expressive DLs 21

It is easy to see that, in moving from theory to practice, our standard
implementation introduces two orderings: the order in which to deal with
applicable expansion rules, and the order in which to investigate different
possible expansions of non-deterministic rules. The chosen orderings can
have an enormous effect on the time and space used by the algorithm, and
many optimisations are targeted towards selecting “good” orderings for each
of these two cases.

4.2. ORDERING OF EXPANSION RULES

Most systems use a (modified) top-down approach for ordering expansion
rules. In this approach generating rules (like the ≥-rule and the ∃-rule) are
applied after all other rules. This approach is largely carried over from when
implemented DLs were weaker, and this top-down approach was both easy
to implement and generally effective. For some subsets of SHOIQ, like
SHF (a DL with simplified number restrictions and without inverse roles
and nominals), such a strategy can be used to create algorithms that only use
polynomial storage (by employing the so-called trace technique (Schmidt-
Schauß and Smolka, 1991)). In this technique the algorithm retains only the
current branch of the completion tree (for such logics the completion graph
is tree-shaped), fully expands it, and then discards the fully expanded branch
in order to reuse the space when investigating other branches.

Note that this trace technique cannot be directly used in the presence of
inverse roles, in particular because subtrees may interact via a common an-
cestor. However, most practical algorithms still use a modified version of the
trace technique.

The FaCT++ system, on the other hand, was designed with the intention
of implementing DLs that include inverse roles and other constructs that
interfere with trace techniques, as well as investigating new optimisation tech-
niques, including new ordering heuristics. Instead of a top-down approach,
FaCT++ uses a ToDo list to control the application of the expansion rules.
The basic idea behind this approach is that rules may become applicable
whenever a concept is added to a node label. When this happens, a note
of the node/concept pair is added to the ToDo list. The ToDo list sorts all
these entries according to some order, and gives access to the “first” element
in the list. A tableau algorithm based on a ToDo list proceeds by taking an
entry from the ToDo list and processing it according to the expansion rule(s)
relevant to the entry (if any). During the expansion process, new concepts may
be added to node labels, and hence entries may be added to the ToDo list. The
process continues until either a clash occurs or the ToDo list becomes empty.

In FaCT++ the ToDo list is implemented as a priority queue. It is possible
to set a priority for each rule type, and whenever an entry is added to the

Optimisations.tex; 5/03/2007; 23:11; p.21



22 Tsarkov, Horrocks and Patel-Schneider

queue, it is inserted after the already existing entries with the same or higher
priorities. This means that if the ∃-rule (the generating rule that expands
existential restrictions) has a low priority (say 0), and all other rules have
the same priority (say 1), then the expansion will be (modulo inverse roles)
top-down and breadth first.

The ToDo list approach has a number of advantages when compared to
the top-down approach. Firstly, it is applicable to a much wider range of
logics, including the expressive logics implemented in modern systems, be-
cause it makes no assumptions about the structure of the graph (in particular,
whether it is tree-shaped or not) or the order in which the graph will be
constructed. Secondly, the ToDo list approach allows for the use of more
powerful heuristics that try to improve typical-case performance by varying
the global order in which different syntactic structures are decomposed; in a
top-down construction, such heuristics can only operate on a local region of
the graph—typically a single node.

Empirical analysis (Tsarkov and Horrocks, 2005b) shows that the follow-
ing ordering would be optimal for the majority of realistic ontologies: the
t-rule has the lowest priority, the generating rules have the second-lowest
priority, all other rules except for the 6o-rule, the o-rule and the o?-rule have
the second-highest priority, and the 6o-rule, the o-rule and the o?-rule have
the highest priority. (Recall that giving the 6o-rule, the o-rule and the o?-rule
the highest priority is needed to ensure that the algorithm always terminates.)

4.3. DEPENDENCY-DIRECTED BACKTRACKING (BACKJUMPING)

Consider, for example, the concept C in the form

(C1 tD1) u . . . u (Cn tDn) u ∃R.(A uB) u ∀R.¬A.

In a classic top-down architecture, the disjunctions in this concept would be
expanded before the existential. A tableau algorithm would thus first expand
n disjunctions and then find a clash due to the ∃-rule.3 In the case of normal
(unoptimised) backtracking, 2n choices of different disjunction expansions
would be tried before the concept would be determined to be unsatisfiable.

To avoid this sort of exponential behaviour when checking the satisfiabil-
ity of C and similar concepts, a more sophisticated solution is required, and
can be found by adapting a form of dependency directed backtracking called
backjumping (Horrocks, 1998), which has also been used, e.g., in solving
constraint satisfiability problems (Baker, 1995) and (in a slightly different
form) in the HARP theorem prover (Oppacher and Suen, 1988).

3 If the ToDo list algorithm is used with the priority of the ∃-rule higher than that of the
t-rule, then the clash would be found after expansions of the ∃- and ∀-rules. The exponen-
tial behaviour would return, however, if the existential is “hidden” inside a disjunction, e.g.,
(∃R.(A uB) t ∃R.(A uB′)).

Optimisations.tex; 5/03/2007; 23:11; p.22



Optimising Expressive DLs 23

Intuitively, backjumping works by labelling each concept C in the label
of a node x with a dependency set DepC(x) indicating the branching points
(i.e., applications of a non-deterministic rule) on which it depends. In case
the completion graph contains some node x with {C,¬C} ∈ L(x), we use
DepC(x) and Dep¬C(x) to identify the most recent branching point b on
which either C or ¬C depends. The algorithm can then jump back to b over
intervening branching points without exploring any alternative branches (non-
deterministic choices), and make a different non-deterministic choice which
might not lead to the same clash condition being encountered. In case no
such b exists, the clash did not depend on any non-deterministic choice, and
the algorithm stops, reporting the unsatisfiability of the TBox.

A more detailed explanation of a backjumping in tableau algorithms can
be found in (Horrocks et al., 2006).

4.4. OPTIMISATIONS OF DISJUNCTION PROCESSING

4.4.1. Boolean constraint propagation (BCP)
As well as the standard tableau expansion rules described in Section 2, ad-
ditional inference rules can be applied to concepts occurring in a node label,
usually with the objective of simplifying them and reducing the number of
t-rule applications. The most commonly used simplification, often called
Boolean Constraint Propagation (BCP) (Freeman, 1995), is derived from
SAT solvers, where it is usually used in conjunction with the Davis-Putnam
procedure. The basic idea is to identify a disjunction C1 t . . . t Cn ∈ L(x)
such that the negations of all but one of the Cj are already elements of L(x);
when this is the case, the disjunction can be deterministically expanded by
adding the relevant Cj to L(x). This amounts to applying the following
inference rule

¬C1, . . . ,¬Cn, C1 t . . . t Cn t C

C

to the concept in a node label.
Note that, as with the more sophisticated search techniques described be-

low, careful consideration needs to be given to the dependencies of concepts
added by such inference rules if they are to be used together with backjump-
ing. In general, if a new inference rule which adds C to the label of node x is
introduced, then the dependency set DepC(x) will be the union of the depen-
dencies of all the concepts and completion graph edges that are mentioned
in the inference rule. In the case of the BCP inference rule, for example, this
would be:

DepC(x) = DepC1t...tCntC(x) ∪
n⋃

i=1

DepCi(x).

Optimisations.tex; 5/03/2007; 23:11; p.23



24 Tsarkov, Horrocks and Patel-Schneider

4.4.2. Semantic Branching
Consider the expansion of the following concept (for simplicity, assume that
disjunctions will be expanded before existentials, and C would be the first
choice in all applications of the t-rule):

(C tD1) u . . . u (C tDn) u ∃R.∀R−.¬C.

At the first branching point, C would be added to the label of the node. All
the other disjunctions become moot (no expansion is needed, because one of
the disjuncts, namely C, is already present in the label of the node). Further
expansion leads to a clash, because ¬C would be added to the node label after
applications of ∃- and ∀-rules. After backtracking, D1 would be chosen from
the first disjunction. But then C would be chosen from the second disjunction,
and the story would continue. Thus 3n expansion rules would be applied in
order to generate a clash-free completion graph.

Semantic Branching (Giunchiglia and Sebastiani, 1996) allows a tableau
algorithm to avoid such a situation. The idea is to try to avoid repeat-
ing “failed” choices when expanding disjunctions. Formally, it (implicitly)
transforms a disjunction of the form (C1 t C2) into the semantically equiv-
alent form (C1 t (¬C1 u C2)). After expanding the disjunction by adding
C1 to L(x) and obtaining a clash, choosing the other disjunct and apply-
ing the u-rule would cause ¬C1 and C2 to be added to L(x). The former
concept can be used to trigger BCP rule applications, thus preventing sub-
sequent attempts to add the concept C1 to the label of x (each of which
would inevitably lead to a clash). Note that this is very similar to the Davis-
Putnam-Logemann-Loveland procedure (DPLL), commonly used to solve
propositional satisfiability problems (Freeman, 1995; Davis and Putnam,
1960; Davis et al., 1962).

In the example given at the beginning of this section, after the clash caused
by adding C, semantic branching would cause ¬C and D1 to be added to the
node label, and all other disjunctions would then be expanded deterministi-
cally using BCP. In this case, only n + 4 expansion rules would be applied
in order to generate a clash-free completion graph. Note that this approach
may, however, also lead to an additional overhead, because further (possibly
non-deterministic) expansion of the concepts ¬Ci added to L(x) may be
required.

4.4.3. Heuristics for Choosing Expansion Ordering

It is well known that different orders of expanding non-deterministic rules
can result in huge (up to several orders of magnitude) differences in reason-
ing performance (Tsarkov and Horrocks, 2005b). Heuristics can be used to
choose a “good” order in which to try the different possible expansions of
such rules. In practise, this usually means using heuristics to select the way

Optimisations.tex; 5/03/2007; 23:11; p.24



Optimising Expressive DLs 25

in which the t-rule is applied to the disjunctions in a node label; a heuristic
function is used to compute the relative “goodness” of candidate concept.

In DPLL, the well known MOMS heuristic (Freeman, 1995) is often
used to select the propositional variable on which to branch; by choosing
a variable that occurs frequently in small disjunctions (i.e., the variable
that has the Maximum number of Occurrences in disjunctions of Minimum
Size), it tries to maximise the effect of BCP and so minimise the number
of non-deterministic choices needed in order to find a solution (or deter-
mine that there is no solution). This technique can easily be adapted to
tableau algorithms: the MOMS value for a candidate concept C can be
computed by simply counting the number of times C or its negation occur
in minimally sized disjunctions (Horrocks, 2003). There is little evidence,
however, that this heuristic is effective with concepts, and even some evi-
dence to suggest that interference with the backjumping optimisation makes
it counter-productive (Horrocks, 2003).

An alternative heuristic, whose design was prompted by this observation,
tries to maximise the effect of backjumping by preferentially selecting con-
cepts which depend on earlier branching points (Horrocks, 2003; Hladik,
2002). This heuristic has the added advantage that it can also be used to select
the order in which successor nodes are expanded.

Most of these heuristics were, however, developed for the top-down rea-
soning approach in order to deal with its limitations. For the ToDo list
approach, where non-deterministic expansion rules may have lower priority
than generating ones, new classes of heuristics may be used. In FaCT++
we have concentrated on heuristics that take into account the syntactic
characteristics of disjuncts (Tsarkov and Horrocks, 2005b).

FaCT++ allows several possible expansion-ordering heuristics to be used
to choose the order in which to explore the different expansion choices of-
fered by the non-deterministic t-rule. This ordering can be on the basis of
the size, maximum quantifier depth, or frequency of usage of each of the
concepts in the disjunction, and the order can be either ascending (smallest
size, minimum depth and lowest frequency first) or descending. In order to
avoid the cost of repeatedly computing such values, all the relevant statistics
for each concept can be gathered as the knowledge base is loaded.

Another approach, proposed by Sirin et al (Sirin et al., 2005a), is to use a
learning-based technique to select disjuncts. Initially, all disjuncts are given
the same “penalty” value. When expanding disjunctions, disjuncts are ordered
according to their penalties, so that those with the lowest penalties are tried
first. If a clash occurs, disjuncts that are identified as being a cause of the
clash have their penalty values increased, resulting in their being chosen with
lower priority if the same disjunction is expanded again. This approach should
be particularly effective for disjunctions on nominal nodes, because they are

Optimisations.tex; 5/03/2007; 23:11; p.25



26 Tsarkov, Horrocks and Patel-Schneider

often expanded many times in a similar manner, and thus a poor statically-
chosen ordering on them can lead to a significant slowdown.

4.5. SAVE/RESTORE OPTIMISATIONS

As we have seen, in order to deal with non-deterministic rules, an imple-
mentation of a tableau algorithm must save its internal state before trying
one of the expansion choices, and restore it when backtracking (after a clash
has been detected). Amongst other things, the state of the completion graph
(including node labels, edge labels, etc.) must be saved.

A naive approach would be to save everything (including the whole com-
pletion graph) before each such expansion choice, and restore everything
on each backtrack. In realistic applications, however, the completion graph
may contain hundreds or even thousands of nodes, and only a few of them
might be changed as a result of any given expansion choice. This is true
even when using the ToDo List approach: a sequence of rule applications,
which may include non-deterministic rules, often changes only a small part of
the completion graph. A naive approach to saving and restoring is, therefore,
often highly inefficient. In order to address this problem, FaCT++ uses lazy
approach to state saving.

4.5.1. Lazy saving
The goal of the lazy saving optimisation is to minimise the saving of com-
pletion graph nodes: instead of saving the whole completion graph at each
branching point, lazy saving implements a “save-on-demand” approach.

In this approach, branching points are numbered according to the order
in which they are created, and each node of the completion graph contains
an additional field that records its level, i.e., the number of the most recently
created branching point when the node was last saved. Whenever a change is
going to be made to a node (including, e.g., additions to the node label, adding
new incoming or outgoing edges, merging with another node or changes
in blocking status), its level is checked: if it is lower than the most recent
branching point, then the node’s state is saved, and its level is set to the most
recent branching point, before the change is made.

In addition to the obvious gains in terms of state saving, there are addi-
tional savings when restoring the completion graph: when backtracking from
level n to level n − 1, only those nodes whose level is equal to n need to be
restored; when combined with the backjumping optimisation, backtracking
from level n directly back to level m still only requires the restoration of
those nodes whose level is greater than m.

In large completion graphs, it is usually the case that only a small number
of nodes are changed at a given branching level. This is especially true in
cases where non-deterministic rules are given the lowest priority. Avoiding

Optimisations.tex; 5/03/2007; 23:11; p.26



Optimising Expressive DLs 27

unnecessary saves for large numbers of nodes saves processing time and
memory space, but does introduce some additional overhead due to the need
to check a node’s level prior to any update. In theory (e.g., for TBoxes with
a small number of branching concepts) this check may consume more time
than is gained as a result of the optimisation, but in practice this is unlikely to
be a serious problem as the check is very cheap (just an integer comparison).

4.5.2. Lazy restoring
As for lazy saving, lazy restoring implements a “restore-on-demand” ap-
proach. Instead of restoring when backtracking, it is possible to check before
accessing nodes (i.e., before either examining or changing them) whether it
is necessary to restore the state of the node. If the node appears to be “out of
date”, then it is necessary to restore it before accessing it.

This technique is, however, less useful than lazy saving for the following
reasons:

− Lazy restoring is a check-on-access instead of a check-on-write tech-
nique. As there are many more reads than writes to a completion graph
(∀-rule application, blocking checks etc.), this checking will be much
more costly.

− In lazy saving, after backtracking from level n to level m, new branch-
ing points can “reuse” levels greater than m. This is not possible when
using lazy restoring, because there may still be nodes with levels greater
than m that need to be restored before being accessed. In some cases,
it might be necessary to keep and (probably) maintain the whole tree
of branching decisions in order to determine when nodes need to be
restored before being accessed.

− The number of restores is usually just a small fraction of the number
of saves. In our experiments on realistic TBoxes, restores were between
0.5 and 5% as frequent as saves. This indicates that lazy restoring would
provide at best only 5% of the benefit of lazy saving.

FaCT++ does not, therefore, use lazy restoring.

4.6. COMBINED GENERATING RULES

After creating or changing an edge label L(〈x, y〉), the ∀- and/or ∀+-rules
may become applicable to any or all of the universal restriction concepts
in L(x) or L(y). It is usually better to immediately check for and expand
any relevant concepts, rather than to defer this work (for example, by putting
entries in the ToDo list).

Assume, for example, that a concept ∃R.C ∈ L(x) was expanded, leading
to the creation of a node y with C ∈ L(y) and R ∈ L(〈x, y〉). Usually, ∃-
rules are expanded later than ∀-rules (applying generating rules with a low

Optimisations.tex; 5/03/2007; 23:11; p.27



28 Tsarkov, Horrocks and Patel-Schneider

priority is a commonly used heuristic), and in this case universal restrictions
in L(x) will only be applicable to the new R-neighbour y of x. To minimise
the amount of work that needs to be (re-)done, it is possible to immediately
check for the applicability of the ∀- and/or ∀+-rules with respect to the new
or modified edge label; moreover, it is only necessary to apply the expansion
rules to concepts of the form ∀S.D ∈ L(x) or ∀ Inv(S).D ∈ L(y) such that
R v* S.

Combined generating and universal restriction rules of this kind are
probably implemented in most tableau-based reasoners.

4.7. CACHING SAT STATUS

Suppose that no inverse roles and no nominals appear in the TBox, and that
a top-down technique is used, i.e., applications of the expansion rules are
ordered by applying generating rules with the lowest priority. In this case,
all information from predecessors is added to a node label before it is pro-
cessed. This means that when a given node has been fully expanded (i.e., the
expansion rules have been exhaustively applied to it), a successor node y with
L(y) = {C1, . . . , Cn} can be treated as an independent problem, equivalent
to testing the satisfiability of C1 u . . . u Cn. Please note that this is the basis
of the trace technique, discussed in Section 4.2.

A completion graph may contain many such nodes, and the labels of nodes
tend to be quite similar. For some concepts, this may result in the same sub-
problem being solved again and again. In order to avoid this, it is possible
to cache and re-use the results of such sub-problems. The usual technique is
to use a hash table to store the satisfiability status of node labels (i.e., sets of
concepts treated as a conjunction). Before applying any expansion rules to a
new node x, the cache is interrogated to determine if the satisfiability status
of L(x) is already known. If it is known, then the result can be used without
further expansion, i.e., L(x) can be treated as though it were either {⊥} (for
unsatisfiable) or {>} (for satisfiable). If the satisfiability status of L(x) is
not known, then L(x) is added to the cache; if we subsequently prove that
the subproblem represented by L(x) is satisfiable, then its cache status set to
satisfiable, and to unsatisfiable otherwise.

Note that when the tableau algorithm uses blocking in order to ensure
termination (see Section 2.2), care must be taken when determining the satis-
fiability status of L(x). For example, if x has a successor y, y has a successor
z, and x blocks z, then the satisfiability status of L(y) depends on L(x)
also being satisfiable (because the block represents a cyclical or periodically
repeating model in which z is “replaced by” x) (Möller, 2001).

Since the satisfiability of a set of concepts L implies the satisfiability of
each subset of L, and the unsatisfiability of a set of concepts L implies the
unsatisfiability of each superset of L, this basic idea can be extended to check

Optimisations.tex; 5/03/2007; 23:11; p.28



Optimising Expressive DLs 29

for satisfiable supersets of L(x) and unsatisfiable subsets of L(x). However,
this requires a considerably more sophisticated data structure if cache op-
erations are to be efficient (Hoffmann and Koehler, 1999; Giunchiglia and
Tacchella, 2000).

Apart from the problem of the storage required for the cache, another more
subtle disadvantage of caching is that in the case where the cache returns
“unsatisfiable” for L(x) there is no information about the cause of the unsat-
isfiability that can be used to derive the dependency information required for
backjumping. Backjumping can still be performed by combining the depen-
dency sets of all of the concepts in L(x), but this is likely to overestimate the
set of branching points on which the unsatisfiability depends.

Another problem with caching is that in the presence of inverse roles or
nominals, it cannot be directly used. In particular, nominals can be referred
to from different nodes of a completion graph, so new concepts may be
propagated to the label of an already cached node. In the case of inverse
roles, information may be propagated from the node label to its parent, so just
checking the SAT status of the child is not enough. Recent publications (Ding
and Haarslev, 2005; Ding and Haarslev, 2006) suggest how caching can still
be used in the presence of inverse roles, although so far only for a weaker
logic than SHOIQ (SHI).

4.8. OPTIMISED BLOCKING

In the tableau decision procedure for SHOIQ, blocking is used to ensure
the termination of the algorithm, but its definition (in Section 2.2) serves
theoretical purposes such as facilitating proofs more than practical ones such
as efficient reasoning. For example, using the given definition of blocking, the
root node cannot block any other node. This may lead to later recognition of
repeating parts of completion graphs, the construction of larger graphs, and a
decrease in the performance of reasoning.

This conservative approach to blocking is designed to ensure that a block
in the completion graph always corresponds to an infinitely repeating pattern
in the model represented by the graph. Such a model can be defined by in-
finitely “unravelling” the cycle that would result if the blocked node were
identified with the blocking node. The blocking condition ensures that inter-
actions between concepts that appear in the label of the blocking node and the
predecessor of the blocked node are just those that are required, i.e., neither
undesirable nor insufficient. FaCT++ employs a more fine-grained approach,
as proposed by Horrocks and Sattler (Horrocks and Sattler, 2002), that allows
blocks to be identified sooner, and significantly increases reasoning perfor-
mance. This happens because earlier blocking leads to smaller completion
graphs, which in turn leads to fewer applications of expansion rules, some of
which may have been non-deterministic ones.

Optimisations.tex; 5/03/2007; 23:11; p.29



30 Tsarkov, Horrocks and Patel-Schneider

The idea of this optimised approach is to explicitly check all possible
interactions between concepts in the blocking node and the predecessor of
the blocked node. This makes it possible to weaken the blocking condition,
and in particular to identify situations where a so-called “cyclic block” (c-
block) can be used. Such a block corresponds to the case where the blocked
and blocking nodes are mapped to the same element in the model represented
by the completion graph, and this model thus contains a cycle. In the case of
SHIQ and SHOIQ, atmost restrictions in the label of the blocking node
may be applicable to inverse roles, and this may rule out cyclical models. The
stricter blocking condition described in the SHIQ and SHOIQ algorithms
ensures that a block can always be “unravelled” to produce an infinite model
where such interactions do not present any problem; this kind of block is
called an “acyclic block” (a-block). The optimised approach does not prevent
the identification of a-blocks, but allows the possible earlier identification of
c-blocks.

Even with respect to a-blocks, the original blocking condition is unneces-
sarily conservative: it calls for two pairs of node labels and the intervening
edge labels to be identical. In the optimised approach, this condition is
weakened by only comparing relevant parts of the node and edge labels.

In the formal definition of optimised blocking, as presented in (Horrocks
and Sattler, 2002), a node is label blocked if it is either a-blocked or c-blocked.
A node w is a-blocked if none of its blockable ancestors are blocked, it is not
c-blocked, and it has ancestors v and w′ such that w is a successor of v, and

B1 L(w) ⊆ L(w′),

B2 if w is an Inv(S)-successor of v and ∀S.C ∈ L(w′) then

1. C ∈ L(v), and

2. if there is some R with Trans(R) and R v* S such that w is an
Inv(R)-successor of v, then ∀R.C ∈ L(v),

B3 if (6nT.E) ∈ L(w′), then

1. w is not an Inv(T )-successor of v or

2. w is an Inv(T )-successor of v and ¬̇E ∈ L(v) or

3. w is an Inv(T )-successor of v, E ∈ L(v) and w′ has at most n − 1
S-successors z with E ∈ L(z), and

B4 if (>mU.F ) ∈ L(w′) (resp. ∃U.F ∈ L(w′)), then ¬̇F ∈ L(w).

1. w′ has at least m (resp. at least one) U -successors z with F ∈ L(z)
or

2. w is an Inv(U)-successor of v and F ∈ L(v).

Optimisations.tex; 5/03/2007; 23:11; p.30



Optimising Expressive DLs 31

A node w is c-blocked if none of its blockable ancestors are blocked, it has
ancestors v and w′ such that w is a successor of v, it satisfies B1 and B2
above, and

B5 if (6nT.E) ∈ L(w′), then w is not an Inv(T )-successor of v or ¬̇E ∈
L(v), and

B6 if w is a U -successor of v and (>mU.F ) ∈ L(v), then ¬̇F ∈ L(w).

As proved in (Horrocks and Sattler, 2002), the correctness of the tableau
algorithm is preserved when optimised blocking is used in place of standard
blocking.

5. Optimisations in Classification

Classification is the process of establishing the partial order ≺ on the set
of named concepts in a TBox with respect to the subsumption relation, i.e.
C � D ⇐⇒ C v D. This order is often referred to as the taxonomy, or
hierarchy, of concepts. Classification is an important operation for reasoners
because its results can be used to cheaply answer subsequent subsumption
queries. It is also important in ontology engineering applications, where on-
tology developers often want to compare the computed taxonomy with their
own intuition.

Traditionally, the classification partial order is built iteratively. The order
is initialised with the trivial relation⊥ ≺ > (unless the TBox is unsatisfiable,
in which case all concepts are equivalent, and the whole taxonomy collapses
into a single node), and on every iteration one new concept name C is added.
For each concept name C to be added to the taxonomy, the set of parents (i.e.,
already classified immediate subsumers) and the set of children (i.e., already
classified immediate subsumees) is determined. These two sets uniquely iden-
tify the place of C in the current taxonomy. Note that if, for some concept D,
it is determined that D is both a parent and a child of C, then C ≡ D, and C
and D share the same place in the taxonomy.

The set of parents (resp. children) is defined by a procedure called top-
down (resp. bottom-up) search. These two procedures are very similar, so we
describe only one of them in detail.

The top-down search phase for concept C involves breadth-first search for
the subsumers of C starting from >. Once it is determined that C v D the
algorithm searches for subsumers among the children of D. Concepts that are
subsumers of C, but where none of their children are subsumers of C, become
parents of C. This algorithm was first described by Baader et al (Baader
et al., 1994), along with other optimisations that significantly improve the

Optimisations.tex; 5/03/2007; 23:11; p.31



32 Tsarkov, Horrocks and Patel-Schneider

performance of classification. In the following section we are going to touch
on some of these, along with some newer techniques.

5.1. TAXONOMY CREATION ORDER

The number of subsumption tests required for classification can be affected
by the order in which concepts are added to the taxonomy. A well-known
optimisation is to add concepts in definition order.

The concept named C directly uses the concept named D if D occurs
syntactically in the definition of C. The relation uses is the transitive closure
of directly uses. If C uses D then D comes before C in definition order.
If no named concept uses itself then a TBox can be classified in definition
order, i.e., a named concept is not classified until all the named concepts
it uses are classified. Baader et al (Baader et al., 1994) showed that, for a
purely definitional TBox (i.e. Tg = ∅), when classifying in definition order,
the bottom-up search phase can be omitted for primitive concepts (as the only
child for such concepts would be ⊥).

If Tg 6= ∅, however, the bottom-up search phase cannot be omitted for
primitive concepts. Consider the TBox T = Tu ∪ Tg with

Tu = {C1 v D,C2 v D}, Tg = {> v C1 u C2}.
In this TBox concept D should be classified as equal to>, i.e., have> both as
a parent and child. If the bottom-up phase is omitted, however, the algorithm
would be unable to find the subsumption > v D, and hence would give the
wrong result.

Haarslev and Möller (Haarslev and Möller, 2001a) modified the basic ap-
proach in order to allow the bottom-up phase to be omitted in more cases.
They utilized a directly refers to relation, which is similar to directly uses,
but where references occurring in the scope of role quantifiers are not con-
sidered. Again, refers to is the transitive closure of directly refers to, and this
relation induces a partial order relation on sets of concept names. A total order
compatible with this relation is called a quasi-definition order.

Usage of a quasi-definition order instead of definition order presupposes
that the subsumption relation between primitive concepts cannot be derived
from information inside role quantifiers. This is not true in the presence of
inverse roles. For example, in the TBox

C v D,D v ∃R.∀R−.C

using a quasi-definition order will result in a classification taxonomy where
D ≺ C, while semantically C ≡ D.

Optimisations.tex; 5/03/2007; 23:11; p.32



Optimising Expressive DLs 33

5.2. TOLD SUBSUMERS AND DISJOINTS

Various optimisations can be used in order to minimise the number of sub-
sumption tests needed in classification. For example, when adding a concept
C to the taxonomy, a top-down breadth first traversal can be used that only
checks if D subsumes C when it has already been determined that C is sub-
sumed by all the concepts in the taxonomy that subsume D (Baader et al.,
1994). The structure of TBox axioms can also be also used to compute a set
of told subsumers of C (i.e., trivially obvious subsumers). (See Section 3.2.3
for the formal definition of a told subsumer.) As subsumption is immediate
for told subsumers, no tests need to be performed w.r.t. these concepts. In
order to maximise the benefit of this optimisation, all of the told subsumers
of a concept C should be classified before C itself is classified.

The told subsumer optimisation can be used to approximate the position
of C in the taxonomy: all of its told subsumers can be marked as subsumers
of C. The most specific concepts in this set of marked concepts are then can-
didates to be parents of C. In the standard algorithm, however, it is necessary
to (recursively) check if the children of these concepts are also subsumers of
C. This can be costly in the case where one of the told subsumers has a very
large number of children. When it has been determined for some subsumer
D of C that none of the children of D subsume C, then we know that D is a
parent of C.

At the end of the top-down phase, the set of parents of C has been com-
puted: all of the concepts in this set, along with all their super-concepts, are
subsumers of C; all other concepts are non-subsumers of C. The next step is
to determine the set of children of C (as mentioned above, this step can some-
times be omitted for a primitive concept when concepts have been classified
in definitional order). This bottom-up phase is very similar to (the reverse
of) the top-down one, and we won’t describe it here—interested readers can
refer to (Baader et al., 2003) for full details. It is, however, worth mentioning
that, prior to the bottom-up phase, non-subsumption results can be propagated
down the classified hierarchy (Baader et al., 1994): If, when classifying C, it
is determined that D is not a subsumer of C, then clearly no concept D′

subsumed by D can be a subsumer of C, i.e., C 6v D implies C 6v D′ for all
D′ such that D′ v D. Thus, all descendents of D in the classified hierarchy
can be marked as non-subsumers of C.

Finally, in addition to using told subsumers to propagate positive sub-
sumption information, it is possible to use told disjoints to propagate negative
subsumption information (Haarslev and Möller, 2001a). A concept D is told
disjoint with concept C if the definition of C looks like C v ¬D u D′.
Having told disjoint information, it is possible to immediately determine
non-subsumption (and propagate this information if necessary).

Optimisations.tex; 5/03/2007; 23:11; p.33



34 Tsarkov, Horrocks and Patel-Schneider

5.3. USING SIMPLE BUT INCOMPLETE [NON-]SUBSUMPTION TESTS

In some cases, it is possible to replace expensive subsumption tests with other
(incomplete, but cheap) tests.

If one has the completion graph GC for C, it is possible to save (par-
tial) information about GC in a structure usually called a pseudo-model. The
pseudo-model contains information about concepts that appeared in the root
node label of GC , in particular information about named concepts and about
complex concepts involving roles. In order to check whether two concepts
can label the same node (i.e., if the intersection of the two concepts is satis-
fiable), it is possible to check if the relevant pseudo models can be merged.
Informally, two pseudo-models can be merged if a) the union of their named
concept sets does not contain a clash, and b) no complex concept involving
a role (e.g., ∃R.C) in one pseudo model interacts with a complex concept
involving a role (e.g., ∀R.D) in the other pseudo model. If the TBox does
not contain nominals, then a successfully merged pseudo model implies the
existence of a “real” model for the intersection of the two concepts (i.e., one
produced by merging suitable models for the individual concepts). For a more
detailed description of this procedure, see (Horrocks, 2003; Haarslev et al.,
2001a).

This technique can be used as a cheap way to check for non-subsumption.
When checking the subsumption C v D, for example, cached pseudo-
models for C and ¬D can be used (such pseudo-models can be generated and
cached on the fly if necessary). If these pseudo-models can be merged, and
the TBox is nominal-free (or at least the parts of it reachable from C and D
are nominal-free), then the concept Cu¬D is satisfiable and the subsumption
C v D does not hold.

The pseudo-model merging technique relies on the fact that, if the com-
pletion graphs from which the pseudo-models are derived were merged, then
they could only interact via their (common) root node. In the presence of
nominals, however, things become more complicated, as interactions between
merged graphs might also occur via nominal nodes. For example, if one graph
includes a nominal node a labelled with C, and another one has the same
node labelled with ¬C, then the combined graph will contain a clash. It is
not difficult to imagine other examples in which more subtle interactions
occurring via one or more nominals could also lead to a clash. In view of
these problems, FaCT++ takes a conservative approach, and simply gives up
if more than one of the pseudo-models to be merged was derived from a
completion graph containing nominal nodes.

5.4. CLUSTERING

In the case of wide (and shallow) taxonomies, one taxonomy node (repre-
senting a concept D) may have tens or hundreds of children (representing

Optimisations.tex; 5/03/2007; 23:11; p.34



Optimising Expressive DLs 35

concepts D1, . . . , Dn). If, when classifying a concept C, it is determined that
C v D, then n subsumption tests will be needed in order to determine if
C v Di for each of D1, . . . , Dn. Typically, at most one of these tests will
succeed (i.e., C v Di for at most one of the Di), as such taxonomies are
usually tree-like.

In order to reduce this large number of failed subsumption tests, Haarslev
and Möller (Haarslev and Möller, 2001a) propose a so-called clustering tech-
nique. For concepts Di . . . Dj , a new “virtual concept” Dij ≡ Di t . . . tDj

is inserted into the taxonomy. Instead of checking C v Dk for i 6 k 6 j,
the subsumption C v Dij is first checked, and if C 6v Dij , then it immedi-
ately follows that C 6v Dk for i 6 k 6 j. Moreover, when Di, . . . , Dj are
primitive concepts, this check can be done cheaply using the pseudo-model
merging technique, because the label of the root node of the pseudo-model
for ¬Dij is just {¬Di, . . . ,¬Dj}.

The children of D can be gathered into clusters using several such virtual
concepts. Typically, at most one of these clusters will need to be fully ex-
plored, with the rest being marked as non-subsumers as a result of a failed
subsumption test w.r.t. the relevant virtual concept.

5.5. COMPLETELY DEFINED CONCEPTS

In FaCT++, the notion of completely defined concepts is used in order to
reduce the number of subsumption tests needed for classification. Given a
TBox T , a primitive concept C is said to be completely defined (CD) w.r.t. T
when, for the definition C v C1 u . . . u Cn in T , it holds that:

1. For all 1 6 i 6 n, Ci is a primitive concept (primitivity).

2. There exist no i, j such that 1 6 i 6 n, 1 6 j 6 n and Cj is a told
subsumer of Ci (minimality).

When the TBox is obvious from the context we will talk about completely
defined concepts without reference to a TBox.

If we assume a cycle-free TBox containing only CD concepts and no
GCIs, then the classification process is very simple. In fact, we don’t need
to perform any subsumption tests at all: the position of every concept in
the taxonomy is completely defined by its told subsumers. If concepts are
processed in definitional order, then when a concept C is classified, where C
is defined by the axiom C v C1 u . . .uCn, the parents of C are C1, . . . , Cn,
and the only child of C is ⊥ (Tsarkov and Horrocks, 2005a). Note that every
concept in such a taxonomy is satisfiable, because there is no use of negation.

This fact is, however, of very little practical value due to the very stringent
conditions on the structure of the TBox. In the following, we will show how
the basic technique can be made more useful by weakening some of these
conditions.

Optimisations.tex; 5/03/2007; 23:11; p.35



36 Tsarkov, Horrocks and Patel-Schneider

5.5.1. Primitivity
In general, a CD concept should not have non-primitive concepts in its def-
inition. This is because when the taxonomy already includes non-primitive
concepts (which will be the case given definitional order classification) the
bottom-up phase can not be omitted, and the CD method could therefore lead
to incorrect results. Assume, e.g., a TBox

{C v C1 u C2 u C3, C ′ ≡ C1 u C2}. (1)

Using the CD classification approach, C will be classified under C1, C2 and
C3, whereas it should be classified under C ′ and C3.

One case in which this condition can be weakened is for primitive syn-
onyms. A non-primitive concept C is a primitive synonym if its definition is
of the form C ≡ D, where D is a primitive concept. Synonyms (primitive or
otherwise) may come from an application domain, or occur as a result of dif-
ferent preprocessing optimisations. It is easy to see that primitive synonyms
don’t require special classification: once D is classified, C will take the same
place in the hierarchy, so adding primitive synonyms to the CD-only TBox
still allows application of the CD approach.

5.5.2. Minimality
Non-minimal concepts may occur as a result, e.g., of badly designed TBoxes
or the absorption of GCIs. The minimality check may, however, be removed
from the definition of CD concepts provided that we check for any non-
minimal concepts at classification time, i.e., we check that each Ci in a
definition C v C1 u . . . u Cn is really a parent of C (i.e., has no children
that are subsumers of C). This check is relatively cheap, and is already im-
plemented as part of the standard classification algorithm (see Section 5.5.5),
where it is used to check which of the told subsumers of a concept C are
possible parents of C.

5.5.3. Non-CD Concepts
CD-classification would be of limited interest if its applicability were limited
to TBoxes consisting entirely of CD concepts. This is because most “inter-
esting” TBoxes, including most TBoxes designed using DL based ontology
languages, will contain concept constructors other than conjunction, and this
will lead to some concepts being non-CD; in its current form the CD approach
would, therefore, be of very limited use.

On the other hand, almost all TBoxes will contain some CD concepts. In
this case, it may be possible to split the TBox into two parts—a CD part (i.e.,
containing only CD concepts) and a non-CD part—and use the CD algorithm
only for the CD part.

Note that such a split will not introduce any problems if the CD part of
the classification is performed first—in fact the classification of the CD part

Optimisations.tex; 5/03/2007; 23:11; p.36



Optimising Expressive DLs 37

is independent of the non-CD part of the TBox, because the definitions of CD
concepts only refer to other CD concepts.

In the TBox (1) above, for example, concepts C1, C2, C3 and C will be in
the CD part, and C ′ in the non-CD part. After CD-classification C will have
three parents, and the standard algorithm will then insert C ′ with parents
C1, C2 and child C.

In the case of definitional cycles, we can distinguish two kinds. The first
(and simplest) is a cycle via concept names, as in the TBox K = {A v
B,B v AuC}; cycles of this kind are eliminated during preprocessing (see
Section 3.2.3). Any other kind of terminological cycle must involve non-CD
concepts, and so must occur in the non-CD part of the TBox; in this case it
will be dealt with in the normal way by the standard classification algorithm.

5.5.4. General Axioms
It is easy to see that in the general case the CD approach cannot be used in
the presence of GCIs. Consider, for example, a TBox T = Tu ∪ Tg with

Tu = {C v >, A v D,B v D}, Tg = {> v A tB}.

In this case, the CD algorithm classifies C under >, whereas it should be
classified under D. The CD approach is, therefore, applicable only if all GCIs
in the TBox are absorbed (i.e., Tg = ∅) using the techniques described in
Section 3.2.5.

5.5.5. A Two-stage Approach for Completely Defined Concepts
A two-stage CD classification algorithm has been implemented in FaCT++.
After preprocessing, as described in Section 3.1, the TBox is classified using
the following procedure:

1. If the TBox does not contain any GCIs, mark some concepts as CD.
Namely, > is marked as CD; a primitive concept C is marked as CD
if it has the definition C v C1 u . . . u Cn and every Ci is marked CD;
a non-primitive concept D is marked CD if it has the definition D ≡ C
and C is marked CD.

2. If the TBox contains concepts marked as CD, then run the CD-classifier.
The CD classifier works only on those concepts that are marked CD,
processing them in definitional order. For each such concept C, the steps
it performs are as follows:

a) If C is a synonym of some already classified concept D, then insert
C at the same place as D.

b) If C has the definition C v C1 u . . . u Cn, the concepts C1, . . . , Cn

are candidates to be parents of C.

Optimisations.tex; 5/03/2007; 23:11; p.37



38 Tsarkov, Horrocks and Patel-Schneider

c) For every candidate Ci, check whether it is redundant, i.e. whether
Ci has a child that is an ancestor of C. This can be done by
labelling all ancestors of candidate concepts: labelled candidates
will be redundant. Remove redundant candidates from the list of
candidates.

d) Insert C into the taxonomy with the remaining candidates as parents
and ⊥ as the only child.

3. Classify the remaining concepts using the standard classification algo-
rithm.

5.5.6. Empirical Evaluation
We have tested our implementation using several large TBoxes derived from
application ontologies. NCI is the US National Cancer Institute “thesaurus”,
an ontology containing the working vocabulary used in NCI data systems (see
http://ncicb.nci.nih.gov/NCICB/core/EVS/); SNOMED is a
“universal health care terminology” developed by the College of American
Pathologists (see http://www.snomed.org/); GO is the Gene Ontol-
ogy from the Gene Ontology Consortium; GALEN is the anatomical part
of the well-known medical terminology ontology (Rogers et al., 2001). The
structural characteristics of these TBoxes is summarised in the beginning
of Table I, where nCD is the number of completely defined concepts, and
nNonCD is the number of the other named concepts. All experiments used
v.0.99.6 of FaCT++ running under Linux on a Pentium4 2.2GHz machine
with 512Mb of memory.

The results of the classification tests are given in the rest of Table I, where
time is the time taken to classify the TBox (in seconds), nOps is the number
of tableau expansion rule applications during the classification process, and
nCache is the number of subsumptions that were computed using cached
pseudo-models (see Section 5.3).

As might be expected, the effectiveness of CD-classification depends
largely on the structure of the TBox. For NCI and GO, both of which have
many CD concepts and few non-primitive concepts, the CD optimisation re-
duces classification time by factors of approximately 20 and 2 respectively. It
is interesting to note that, for NCI, all subsumption tests are solved cheaply
using cached models. Without CD, however, more than ten million tests are
performed; using CD reduces this number to less than one million. Clas-
sifying GO does require some satisfiability tests to be performed, but the
great majority of subsumption tests are again solved cheaply using cached
models. Like NCI, GO has a simple structure, with a very broad and shallow
taxonomy, so CD still gives a very significant reduction in the number of these
cache based tests that need to be performed.

Optimisations.tex; 5/03/2007; 23:11; p.38



Optimising Expressive DLs 39

Table I. Classification with- and without completely defined optimisation

TBox nCD nNonCD CD time nOps nCache

NCI 15,195 12,457 no 49.27 1,614,903 10,311,475
yes 2.06 1,496,621 766,054

SNOMED 200,295 179,396 no 5,816 1,887,490,334 947,755,276
yes 4,523 1,883,296,987 19,613,458

GO 11,718 2,211 no 4.06 744,497 5,184,061
yes 1.48 729,666 625,879

GALEN 546 2,201 no 102.44 69,644,624 74,558
yes 101.56 70,150,537 38,010

For SNOMED, which has quite a large number of non-primitive (and
hence non-CD) concepts, the reduction factor is only about 1.3. This is be-
cause, although there is still a dramatic reduction in the number of cache
based tests, the classification time is dominated by the relatively large number
of satisfiability tests that need to be performed. Moreover, more than half of
the total time is consumed in loading and preprocessing of the TBox, and this
is not affected by the optimisation. For GALEN, the complex structure of the
TBox means that the proportion of cache based tests is much smaller, and
less than half of these can be avoided by CD. The classification time is again
dominated by the relatively large number of satisfiability tests that need to be
performed, and the benefit of CD is negligible. It is interesting to note that, in
this case, CD actually leads to a small increase in the number of satisfiability
tests being performed—this is due to the change in classification ordering.

In general, it is easy to see that CD optimisation can significantly re-
duce the number of subsumption tests, but mainly by eliminating those tests
that can be performed using pseudo-model merging (i.e., “obvious” non-
subsumptions). If such tests make up a significant proportion of all tests, then
the impact can be quite large (more than an order of magnitude in the case of
NCI). In other cases the impact is usually quite small, but it is unlikely that
it will have a detrimental effect: the CD check is a syntactic one, and so is
always likely to be cheaper than pseudo-model merging.

6. Discussion

Optimisations.tex; 5/03/2007; 23:11; p.39



40 Tsarkov, Horrocks and Patel-Schneider

6.1. SUMMARY AND OVERVIEW OF OPTIMISATION TECHNIQUES

An evaluation of the effectiveness of all of the presented techniques is beyond
the scope of this paper; the interested reader will find evaluations of most
of these techniques in the papers where they were first described. Instead
we will summarise the various techniques, noting important interactions and
indicating their relative importance in influencing the overall performance of
a tableau-based reasoner.

6.1.1. Preprocessing Optimisations
As mentioned in Section 3, the preprocessing optimisations described in
this paper take at most polynomial time to run, and will hardly ever have
a detrimental effect on reasoning performance. It is thus sensible to use
them in almost every case. Moreover, these optimisations are not specific
to tableau-based reasoners, and may also be useful with other kinds of DL
reasoners.

Lexical Normalisation is particularly effective because it helps to im-
prove the performance of the core satisfiability test by facilitating early clash
detection. Lexical normalization also works well with the lazy unfolding op-
timisation. Similarly, most lexical simplifications are so simple that they take
very little time to apply. Some of the simplifications defined in Section 3.1,
though, are more costly and give positive effects only in very special cases; it
is important, therefore, to be more circumspect when using such simplifica-
tions. Lazy unfolding is almost always very beneficial, and can never increase
the number of rule applications, so there is no reason not to use it. It doesn’t
do any good in case no early clash occurs, but these cases are very rare in
realistic ontologies.

Synonym replacement has linear complexity and works well together with
told cycle elimination which, while not very useful by itself, is also very
cheap and, if applicable, facilitates other optimisations (such as absorption
and definition-order classification). These techniques can be effective with
TBoxes obtained by merging several smaller TBoxes together; in this case
synonyms and told cycles are much more likely to arise. Redundant subsump-
tion elimination is also unlikely to be of much use with a typical TBox, but it
is useful after told cycle elimination (and in general, in the presence of cycles
of length 1). Eliminating such cycles allows definition order to be used, and
so may allow the bottom-up phase of classification to be omitted.

Finally, absorption is well known to be a crucial optimisation for tableau-
based reasoners. Although it is difficult to find an optimal absorption, or
even to define what optimal might mean w.r.t. absorption, empirical evidence
suggests that almost any absorption in which Tg = ∅ will lead to better per-
formance than one in which Tg 6= ∅. Moreover, when Tg 6= ∅, it is impossible

Optimisations.tex; 5/03/2007; 23:11; p.40



Optimising Expressive DLs 41

to use other optimisations such as definition order and completely defined
classification.

6.1.2. Core Satisfiability Optimisations
Reasoning with expressive DLs like SHOIQ is highly intractable, and in
the worst case, the time required for a single satisfiability test will increase
at least exponentially w.r.t. the size of the input TBox. It is, therefore, cru-
cial to employ optimisations that try to improve the performance of the core
satisfiability tester in typical cases.

Using a ToDo List architecture makes the reasoner more flexible, and
allows for a wider range of heuristic tuning optimisations. In (Tsarkov and
Horrocks, 2005a) we show that, in most cases, it is best to give branching
rules the lowest priority (as opposed to the standard top-down approach that
gives generating rules the lowest priority). Moreover, decision procedures for
SHOIQ require some ordering on expansion rule application in order to
ensure termination (Horrocks and Sattler, 2005), a requirement that is easily
incorporated into the ToDo list priority scheme. Note that, unlike a reasoner
based on the top-down approach, a ToDo list-based reasoner cannot use the
trace technique to stay in polynomial space. This is irrelevant when reason-
ing with SHOIQ, however, as the problem is known to require exponential
space in the worst case.

Backjumping is another optimisation that is crucial for effective tableau-
based reasoning. Although there is a cost in building and carefully maintain-
ing dependency sets, this is vastly outweighed (in all realistic cases) by the
benefits that are obtained from this optimisation.

As mentioned in (Horrocks and Patel-Schneider, 1999), using semantic
branching gives significant increases in performance on artificial tests (where
the emphasis is often on propositional reasoning). With real applications,
however, our experiments show that this optimisation produces only very
small (although almost always positive) effects. BCP has the ability to turn
non-deterministic operations into deterministic ones, and can thus provide
significant benefits (although mainly when used in conjunction with seman-
tic branching, and on artificial tests). In any case, BCP does not have any
detrimental effect, as it simply prevents the reasoner from choosing disjuncts
that immediately lead to a clash.

Tsarkov and Horrocks (Tsarkov and Horrocks, 2005a) have shown that
the choice of disjunction expansion heuristics can have a very large effect on
the performance of a reasoner (the difference in some cases was more than
three orders in magnitude). Unfortunately, there is no currently known way
to consistently choose the best (or even a good) set of heuristics, so most
systems opt for a set of heuristics that usually behave reasonably, and rarely
exhibit very bad behaviour. Developing better heuristics, and selecting good
heuristics, e.g., on the basis of the input TBox, is an area for future research.

Optimisations.tex; 5/03/2007; 23:11; p.41



42 Tsarkov, Horrocks and Patel-Schneider

Note that some heuristics (like MOMS), interact badly with backjumping
(which is one of the most important optimisation techniques in satisfiability
testing). This sort of interaction means that care must be taken when choosing
heuristics.

Caching optimisations can be highly effective, and can produce signifi-
cant improvements in the speed of reasoning (Horrocks and Patel-Schneider,
1999). Unfortunately, caching optimisations are difficult to apply in the pres-
ence of inverse roles (although recent work has shown how this problem can
be partly overcome (Ding and Haarslev, 2005; Ding and Haarslev, 2006)).

Finally, “low level” optimisations can also lead to significant performance
gains. For example, lazy saving is very important with complex TBoxes that
lead to the generation of large completion graphs; it is also very important if
the TBox contains a large number of nominals, as the completion graph will
usually include many or all of them (Sirin et al., 2005a). Optimised Blocking
is also important with more complex TBoxes, in particular those with TBox
cycles, where blocking is often required in order to ensure termination. Hor-
rocks and Sattler (Horrocks and Sattler, 2002) have shown that, in such cases,
optimised blocking can improve reasoning performance by as much as 2-3
orders of magnitude with respect to standard blocking.

6.1.3. Classification Optimisations
Note that, while all classification optimisations save (at most) a number of
subsumption tests that is quadratic in the number of named concepts in the
TBox, this can still lead to significant improvements in performance, partic-
ularly if very expensive subsumption tests can be avoided. Moreover, such
optimisations rarely have any significant negative effect on performance, so
it makes sense to apply them in all cases.

Taxonomy Creation Order, Told Subsumers and Caching Subsumptions all
work well when applicable, reducing the number of performed subsumption
tests at the price of (at most) polynomial time computations. Several empiri-
cal evaluations (Baader et al., 1994; Haarslev and Möller, 2001a) have shown
that they are of benefit with both artificial and application TBoxes.

Tsarkov and Horrocks (Tsarkov and Horrocks, 2005b) have shown that the
completely defined classification optimisation gives the best results on large
TBoxes with very simple structure. At the same time, it incurs only a very
small additional cost, and does not adversely affect performance on general
TBoxes, as most TBoxes contain at least a (large or small) part that can be
dealt with using this technique.

6.1.4. Tuning
In practice, not all optimisations can be (usefully) applied to a given TBox:
most of optimisations have clearly defined areas of application, and it would
be possible to tune the (choice of) optimisations to suit a given TBox, or even

Optimisations.tex; 5/03/2007; 23:11; p.42



Optimising Expressive DLs 43

a given satisfiability test. Such tuning might be performed on the basis of a
(syntactic) analysis of the TBox, or in response to the run-time behaviour of
the algorithm. Currently, however, FaCT++ simply uses a fixed setting that
has been found to work well for a wide range of realistic TBoxes.

6.2. NON-TABLEAU DL REASONERS

In spite of the success of the tableau approach to building DL reasoners,
there exist a number of reasoners that are based on alternative algorithmic
techniques.

6.2.1. CEL
CEL (Suntisrivaraporn et al., 2006) is a reasoner for the description logic
EL+ (Baader et al., 2005), supporting as its main reasoning task the com-
putation of the subsumption hierarchy induced by EL+ ontologies. A distin-
guishing feature of CEL is that, unlike the other reasoners mentioned here, it
implements a polynomial-time algorithm for a sub-Boolean DL.

The supported description logic EL+ offers a selected set of expressive
means that are tailored towards the formulation of medical and biological
ontologies, and CEL has been shown to work well with large ontologies of
this kind. If the expressive power of EL+ is sufficient for a given application,
then CEL is likely to be a good choice.

6.2.2. Hoolet
Hoolet (Tsarkov et al., 2004; Horrocks et al., 2005) is an implementation of
a SHOIQ DL reasoner that uses a first order prover. In order to test TBox
satisfiability, the TBox is translated into a first order theory (in the obvious
way, based on the DL semantics), and this theory is given to a first order
prover for consistency checking.

Hoolet is intended as a proof of concept rather than as an effective DL
reasoner, and the approach used means that it is not guaranteed to terminate
on all SHOIQ reasoning problems. However, in spite of this, it provides
a useful tool for use on small illustrative examples and allows for easy
experimentation with more expressive languages.

6.2.3. KAON2
KAON2 is “an infrastructure for managing OWL-DL, SWRL and F-Logic
ontologies” (see http://kaon2.semanticweb.org/). The reasoning
part of KAON2 consists of a SHIQ reasoner, which uses novel algorithms to
reduce a SHIQ KB to a disjunctive datalog program (Hustadt et al., 2004).
This allows for the application of well-known deductive database techniques,
such as magic sets and join-order optimizations, to DL reasoning. Recent
work has shown how to extend the resolution-based approach to the logic
SHOIQ (Kazakov and Motik, 2006).

Optimisations.tex; 5/03/2007; 23:11; p.43



44 Tsarkov, Horrocks and Patel-Schneider

KAON2 is still quite new, and there is as yet relatively little empirical
evidence to show how it will perform in comparison to existing tableau-based
reasoners. Early results suggest, however, that it is likely to be very effective
when the TBox is relatively simple, but there are very large numbers of in-
dividuals; it is less clear how effective it will be with large and/or complex
TBoxes.

6.2.4. MSPASS
MSPASS (Hustadt and Schmidt, 2000; Hustadt et al., 1999) is a fully au-
tomated theorem prover that can handle a wide range of logics. Being an
extension of SPASS, it is fundamentally a resolution prover for first-order
logic (with equality). However, by using sophisticated translation techniques
allied to particular resolution strategies, it can also decide satisfiability
problems for numerous description logics, including SHI.

Although MSPASS has been shown to be quite effective with artificial test
problems, there is little evidence as to how it would behave as a DL classifier
in realistic applications: it is not easy to perform such tests as MSPASS has
no infrastructure for handling TBoxes or for classifying them.

6.3. FUTURE WORK

The FaCT++ reasoner employs a wide variety of optimisation techniques that
are needed for acceptable performance when performing TBox reasoning in
the SHOIQ Description Logic. Some of these are well-known, some are
modifications of existing optimisations, and some are new to FaCT++.

Much more work remains to be done in devising and evaluating optimi-
sations for expressive Description Logics like SHOIQ. Among other areas,
better heuristics are needed to guide the choices needed during tableau rea-
soning, better use of cached information is expected to provide significant
benefits, and more opportunistic optimisations (noticing that a part of the
TBox does not use constructs that make optimisations from simpler De-
scription Logics invalid) will often provide benefits, particularly in realistic
ontologies. Devising an automated strategy for selecting and tuning optimi-
sations is also a promising direction for future work. We expect to continue to
improve FaCT++ in all of these areas, as well as to add both existing and new
optimisations directed towards ABox reasoning, an area in which FaCT++ is
still relatively weak.

References

Baader, F., S. Brandt, and C. Lutz: 2005, ‘Pushing the EL Envelope’. In: Proc. of the 19th Int.
Joint Conf. on Artificial Intelligence (IJCAI 2005).

Optimisations.tex; 5/03/2007; 23:11; p.44



Optimising Expressive DLs 45

Baader, F., D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider (eds.): 2003,
The Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press.

Baader, F., E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich: 1994, ‘An Empirical
Analysis of Optimization Techniques for Terminological Representation Systems or: Mak-
ing KRIS get a move on’. Applied Artificial Intelligence. Special Issue on Knowledge Base
Management 4, 109–132.

Baader, F. and U. Sattler: 2001, ‘An Overview of Tableau Algorithms for Description Logics’.
Studia Logica 69(1), 5–40.

Baker, A. B.: 1995, ‘Intelligent Backtracking on Constraint Satisfaction Problems: Experi-
mental and Theoretical Results’. Ph.D. thesis, University of Oregon.

Calvanese, D., G. De Giacomo, and M. Lenzerini: 1998a, ‘On the Decidability of Query
Containment under Constraints’. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS’98). pp. 149–158.

Calvanese, D., G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati: 1998b, ‘Description
Logic Framework for Information Integration’. In: Proc. of the 6th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR’98). pp. 2–13.

Chen, C., V. Haarslev, and J. Wang: 2005, ‘LAS: Extending Racer by a Large Abox Store’.
In: Proceedings of the 2005 International Workshop on Description Logics (DL-2005),
Edinburgh, Scotland, UK, July 26-28. pp. 200–207.

Davis, M., G. Logemann, and D. Loveland: 1962, ‘A machine program for theorem proving’.
Communications of the ACM 5, 394–397.

Davis, M. and H. Putnam: 1960, ‘A Computing Procedure for Quantification Theory’. J. of
the ACM 7(3), 201–215.

Ding, Y. and V. Haarslev: 2005, ‘Towards Efficient Reasoning for Description Logics with
Inverse Roles’. In: Proceedings of the 2005 International Workshop on Description Logics
(DL-2005), Edinburgh, Scotland, UK, July 26-28. pp. 208–215.

Ding, Y. and V. Haarslev: 2006, ‘Tableau Caching for Description Logics with Inverse and
Transitive Roles’. In: Proceedings of the 2006 International Workshop on Description
Logics (DL-2006).

Fensel, D., F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-Schneider: 2001,
‘OIL: An Ontology Infrastructure for the Semantic Web’. IEEE Intelligent Systems 16(2),
38–45.

Freeman, J. W.: 1995, ‘Improvements to Propositional Satisfiability Search Algorithms’.
Ph.D. thesis, Department of Computer and Information Science, University of Pennsyl-
vania.

Giunchiglia, E. and A. Tacchella: 2000, ‘A Subset-Matching Size-Bounded Cache for Satisfi-
ability in Modal Logics’. In: Proc. of the 4th Int. Conf. on Analytic Tableaux and Related
Methods (TABLEAUX 2000). pp. 237–251, Springer.

Giunchiglia, F. and R. Sebastiani: 1996, ‘Building Decision Procedures for Modal Logics from
Propositional Decision Procedures—the Case Study of Modal K’. In: M. A. McRobbie
and J. K. Slaney (eds.): Proc. of the 13th Int. Conf. on Automated Deduction (CADE’96),
Vol. 1104 of Lecture Notes in Artificial Intelligence. pp. 583–597, Springer.

Haarslev, V. and R. Möller: 2000, ‘Expressive ABox Reasoning with Number Restrictions,
Role Hierarchies, and Transitively Closed Roles’. In: Proc. of the 7th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR 2000). pp. 273–284.

Haarslev, V. and R. Möller: 2001a, ‘High Performance Reasoning with Very Large Knowl-
edge Bases: A Practical Case Study’. In: Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2001). pp. 161–168.

Haarslev, V. and R. Möller: 2001b, ‘Optimizing Reasoning in Description Logics with
Qualified Number Restrictions’. In: Proc. of the 2001 Description Logic Workshop

Optimisations.tex; 5/03/2007; 23:11; p.45



46 Tsarkov, Horrocks and Patel-Schneider

(DL 2001). pp. 142–151, CEUR Electronic Workshop Proceedings, http://ceur-ws.
org/Vol-49/.

Haarslev, V. and R. Möller: 2003, ‘Racer: A Core Inference Engine for the Semantic Web’.
pp. 27–36.

Haarslev, V. and R. Möller: 2004, ‘Optimization Techniques for Retrieving Resources De-
scribed in OWL/RDF Documents: First Results’. In: Ninth International Conference
on the Principles of Knowledge Representation and Reasoning, KR 2004, Whistler, BC,
Canada, June 2-5. pp. 163–173.

Haarslev, V., R. Möller, and A. Turhan: 2001a, ‘Exploiting Pseudo Models for TBox and ABox
Reasoning in Expressive Description Logics’. In: R. Goré, A. Leitsch, and T. Nipkow
(eds.): International Joint Conference on Automated Reasoning, IJCAR’2001, June 18-23,
Siena, Italy. pp. 29–44, Springer-Verlag.

Haarslev, V., R. Möller, and M. Wessel: 2005, ‘Description Logic Inference Technology:
Lessons Learned in the Trenches’. In: I. Horrocks, U. Sattler, and F. Wolter (eds.): Proc.
International Workshop on Description Logics.

Haarslev, V., M. Timmann, and R. Möller: 2001b, ‘Combining Tableaux and Algebraic Meth-
ods for Reasoning with Qualified Number Restrictions’. In: Proceedings International
Workshop on Description Logics (DL-2001), Stanford, USA, 1.-3. August. pp. 152–161.

Hladik, J.: 2002, ‘Implementation and Optimisation of a Tableau Algorithm for the Guarded
Fragment’. In: U. Egly and C. G. Fermüller (eds.): Proceedings of the International Con-
ference on Automated Reasoning with Tableaux and Related Methods (Tableaux 2002),
Vol. 2381 of Lecture Notes in Artificial Intelligence. Springer.

Hoffmann, J. and J. Koehler: 1999, ‘A New Method to Index and Query Sets’. In: Proc. of the
16th Int. Joint Conf. on Artificial Intelligence (IJCAI’99). pp. 462–467.

Horrocks, I.: 1997, ‘Optimising Tableaux Decision Procedures for Description Logics’. Ph.D.
thesis, University of Manchester.

Horrocks, I.: 1998, ‘Using an Expressive Description Logic: FaCT or Fiction?’. In: Proc. of
the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’98). pp.
636–647.

Horrocks, I.: 2003, ‘Implementation and Optimisation Techniques’. In: F. Baader, D. Cal-
vanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider (eds.): The Description
Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press,
Chapt. 9, pp. 306–346.

Horrocks, I., U. Hustadt, U. Sattler, and R. Schmidt: 2006, ‘Computational modal logic’. In:
P. Blackburn, J. van Benthem, and F. Wolter (eds.): Handbook of Modal Logic. Elsevier.

Horrocks, I. and P. F. Patel-Schneider: 1998, ‘DL Systems Comparison’. In: Proc. of the 1998
Description Logic Workshop (DL’98), Vol. 11 of CEUR (http://ceur-ws.org/).
pp. 55–57.

Horrocks, I. and P. F. Patel-Schneider: 1999, ‘Optimizing Description Logic Subsumption’. J.
of Logic and Computation 9(3), 267–293.

Horrocks, I. and P. F. Patel-Schneider: 2003, ‘Reducing OWL Entailment to Description Logic
Satisfiability’. In: D. Fensel, K. Sycara, and J. Mylopoulos (eds.): Proc. of the 2003
International Semantic Web Conference (ISWC 2003). pp. 17–29, Springer.

Horrocks, I., P. F. Patel-Schneider, S. Bechhofer, and D. Tsarkov: 2005, ‘OWL Rules: A
Proposal and Prototype Implementation’. J. of Web Semantics 3(1), 23–40.

Horrocks, I., P. F. Patel-Schneider, and F. van Harmelen: 2002, ‘Reviewing the Design of
DAML+OIL: An Ontology Language for the Semantic Web’. In: Proc. of the 18th Nat.
Conf. on Artificial Intelligence (AAAI 2002). pp. 792–797, AAAI Press.

Horrocks, I., P. F. Patel-Schneider, and F. van Harmelen: 2003, ‘From SHIQ and RDF to
OWL: The Making of a Web Ontology Language’. J. of Web Semantics 1(1), 7–26.

Optimisations.tex; 5/03/2007; 23:11; p.46



Optimising Expressive DLs 47

Horrocks, I. and U. Sattler: 1999, ‘A Description Logic with Transitive and Inverse Roles and
Role Hierarchies’. J. of Logic and Computation 9(3), 385–410.

Horrocks, I. and U. Sattler: 2002, ‘Optimised Reasoning for SHIQ’. In: Proc. of the 15th
Eur. Conf. on Artificial Intelligence (ECAI 2002). pp. 277–281.

Horrocks, I. and U. Sattler: 2005, ‘A Tableaux Decision Procedure for SHOIQ’. In: Proc. of
the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005). pp. 448–453.

Horrocks, I., U. Sattler, and S. Tobies: 1999, ‘Practical Reasoning for Expressive Description
Logics’. In: H. Ganzinger, D. McAllester, and A. Voronkov (eds.): Proc. of the 6th Int.
Conf. on Logic for Programming and Automated Reasoning (LPAR’99). pp. 161–180,
Springer.

Horrocks, I., U. Sattler, and S. Tobies: 2000, ‘Reasoning with Individuals for the Descrip-
tion Logic SHIQ’. In: D. McAllester (ed.): Proc. of the 17th Int. Conf. on Automated
Deduction (CADE 2000), Vol. 1831 of Lecture Notes in Computer Science. pp. 482–496,
Springer.

Horrocks, I. and S. Tobies: 2000a, ‘Optimisation of Terminological Reasoning’. In: Proc. of
the 2000 Description Logic Workshop (DL 2000). pp. 183–192.

Horrocks, I. and S. Tobies: 2000b, ‘Reasoning with Axioms: Theory and Practice’. In: Proc.
of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2000).
pp. 285–296.

Hudek, A. K. and G. Weddell: 2006, ‘Binary Absorption in Tableaux-Based Reasoning for
Description Logics’. In: Proc. of the 2006 Description Logic Workshop (DL 2006), Vol.
189. CEUR (http://ceur-ws.org/).

Hustadt, U., B. Motik, and U. Sattler: 2004, ‘Reducing SHIQ-Description Logic to Dis-
junctive Datalog Programs’. In: Proc. of the 9th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2004). pp. 152–162.

Hustadt, U. and R. A. Schmidt: 2000, ‘MSPASS: Modal Reasoning by Translation and First-
Order Resolution’. In: R. Dyckhoff (ed.): Automated Reasoning with Analytic Tableaux
and Related Methods, International Conference (TABLEAUX 2000), Vol. 1847 of Lecture
Notes in Artificial Intelligence. pp. 67–71, Springer.

Hustadt, U., R. A. Schmidt, and C. Weidenbach: 1999, ‘MSPASS: Subsumption Testing with
SPASS’. In: P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, and P. Patel-Schneider
(eds.): Proc. of Intern. Workshop on Description Logics’99. pp. 136–137, Linköping
University.

Kalyanpur, A., B. Parsia, and J. Hendler: 2005, ‘A Tool for Working with Web Ontologies’.
International Journal on Semantic Web and Information Systems 1(1), 36–49.

Kazakov, Y. and B. Motik: 2006, ‘A Resolution-Based Decision Procedure for SHOIQ’. In:
Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006), Vol. 4130 of Lecture
Notes in Artificial Intelligence. pp. 662–677, Springer.

Knublauch, H., R. Fergerson, N. Noy, and M. Musen: 2004, ‘The Protégé OWL Plugin: An
Open Development Environment for Semantic Web Applications’. In: S. A. McIlraith, D.
Plexousakis, and F. van Harmelen (eds.): Proc. of the 2004 International Semantic Web
Conference (ISWC 2004). pp. 229–243, Springer.

Lutz, C.: 1999, ‘Complexity of Terminological Reasoning Revisited’. In: Proc. of the 6th
Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99), Vol. 1705 of
Lecture Notes in Artificial Intelligence. pp. 181–200, Springer.

Massacci, F.: 1999, ‘TANCS Non Classical System Comparison’. In: Proc. of the 3rd Int.
Conf. on Analytic Tableaux and Related Methods (TABLEAUX’99), Vol. 1617 of Lecture
Notes in Artificial Intelligence.

McGuinness, D. L. and J. R. Wright: 1998, ‘An Industrial Strength Description Logic-based
Configuration Platform’. IEEE Intelligent Systems pp. 69–77.

Optimisations.tex; 5/03/2007; 23:11; p.47



48 Tsarkov, Horrocks and Patel-Schneider

Möller, R.: 2001, ‘Expressive Description Logics: Foundations for Practical Applications’.
Habilitation Thesis, University of Hamburg, Computer Science Department.

Oppacher, F. and E. Suen: 1988, ‘HARP: A Tableau-Based Theorem Prover’. J. of Automated
Reasoning 4, 69–100.

Pan, Z.: 2005, ‘Benchmarking DL Reasoners Using Realistic Ontologies’. In: Proc. of the
First OWL Experiences and Directions Workshop.

Protégé: 2003, ‘http://protege.stanford.edu/’.
Rector, A.: 2003, ‘Medical Informatics’. In: F. Baader, D. Calvanese, D. McGuinness,

D. Nardi, and P. F. Patel-Schneider (eds.): The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, Chapt. 13, pp. 415–435.

Rogers, J. E., A. Roberts, W. D. Solomon, E. van der Haring, C. J. Wroe, P. E. Zanstra, and
A. L. Rector: 2001, ‘GALEN Ten Years On: Tasks and Supporting tools’. In: Proc. of
MEDINFO2001. pp. 256–260.

Schmidt-Schauß, M. and G. Smolka: 1991, ‘Attributive Concept Descriptions with Comple-
ments’. Artificial Intelligence 48(1), 1–26.

Sirin, E., B. C. Grau, and B. Parsia: 2005a, ‘Optimizing Description Logic Reason-
ing for Nominals: First Results’. Technical report, University of Maryland In-
stitute for Advanced Computes Studies (UMIACS), 2005-64. Available online at
http://www.mindswap.org/papers/OptimizeReport.pdf.

Sirin, E., B. C. Grau, and B. Parsia: 2006, ‘From Wine to Water: Optimizing Description Logic
Reasoning for Nominals’. In: International Conference on the Principles of Knowledge
Representation and Reasoning (KR-2006).

Sirin, E., B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz: 2005b, ‘Pellet: A Practical
OWL-DL Reasoner’. To appear.

Stevens, R., C. Goble, I. Horrocks, and S. Bechhofer: 2002, ‘Building a bioinformatics on-
tology using OIL’. IEEE Transactions on Information Technology in Biomedicine 6(2),
135–141.

Suntisrivaraporn, B., F. Baader, and C. Lutz: 2006, ‘CEL—A Practical Reasoner for Life Sci-
ence Ontologies’. In: Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006).

Tsarkov, D. and I. Horrocks: 2004, ‘Efficient Reasoning with Range and Domain Constraints’.
In: Proc. of the 2004 Description Logic Workshop (DL 2004). pp. 41–50.

Tsarkov, D. and I. Horrocks: 2005a, ‘Optimised Classification for Taxonomic Knowledge
Bases’. In: Proc. of the 2005 Description Logic Workshop (DL 2005), Vol. 147 of CEUR
(http://ceur-ws.org/).

Tsarkov, D. and I. Horrocks: 2005b, ‘Ordering Heuristics for Description Logic Reasoning’.
In: Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005). pp. 609–614.

Tsarkov, D. and I. Horrocks: 2006, ‘FaCT++ Description Logic Reasoner: System Descrip-
tion’. In: Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006), Vol. 4130
of Lecture Notes in Artificial Intelligence. pp. 292–297, Springer.

Tsarkov, D., A. Riazanov, S. Bechhofer, and I. Horrocks: 2004, ‘Using Vampire to Reason
with OWL’. In: S. A. McIlraith, D. Plexousakis, and F. van Harmelen (eds.): Proc. of the
2004 International Semantic Web Conference (ISWC 2004). pp. 471–485, Springer.

Wolstencroft, K., A. Brass, I. Horrocks, P. Lord, U. Sattler, R. Stevens, and D. Turi: 2005, ‘A
Little Semantic Web Goes a Long Way in Biology’. In: Proc. of the 2005 International
Semantic Web Conference (ISWC 2005). pp. 786–800, Springer.

Optimisations.tex; 5/03/2007; 23:11; p.48


