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Abstract

Since achieving W3C recommendation status in 2004, the Web Ontology Language (OWL) has been successfully
applied to many problems in computer science. Practical experience with OWL has been quite positive in general;
however, it has also revealed room for improvement in several areas. We systematically analyze the identified short-
comings of OWL, such as expressivity issues, problems with its syntaxes, and deficiencies in the definition of OWL
species. Furthermore, we present an overview of OWL 2—an extension to and revision of OWL that is currently be-
ing developed within the W3C OWL Working Group. Many aspects of OWL have been thoroughly reengineered in
OWL 2, thus producing a robust platform for future development of the language.
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1. Introduction

Since the inception of the Semantic Web, the de-
velopment of languages for modeling ontologies—
conceptualizations of a domain shared by a commu-
nity of users—has been seen as a key task. The initial
proposals focused on RDF and RDF Schema; how-
ever, these languages were soon found to be too lim-
ited in expressive power [18]. The World Wide Web
Consortium (W3C) therefore formed the Web On-
tology Working Group, whose goal was to develop
an expressive language suitable for application in
the Semantic Web. The result of this endeavor was
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the OWL Web Ontology Language, which became
a W3C recommendation in February 2004. OWL is
actually a family of three language variants (often
called species) of increasing expressive power: OWL
Lite, OWL DL, and OWL Full [28].

The standardization of OWL has sparked the de-
velopment and/or adaption of a number of reason-
ers, including FacT++ [37], Pellet [32], RACER [11],
and HermiT [26], and ontology editors, including
Protégé 1 and Swoop [21]. OWL ontologies are being
developed in areas as diverse as e-Science, medicine,
biology, geography, astronomy, defense, and the au-
tomotive and aerospace industries. OWL is exten-
sively used in the life sciences community, where it
has rapidly become a de facto standard for ontology
development and data interchange; for example, see
BioPAX, 2 NASA’s SWEET ontologies, 3 and the

1 http://protege.stanford.edu/
2 http://www.biopax.org/
3 http://sweet.jpl.nasa.gov/ontology/
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National Cancer Institute Thesaurus. 4

Despite the success story surrounding OWL, the
numerous contexts in which the language has been
applied have revealed some deficiencies in the orig-
inal design. In Section 2, we present a systematic
analysis of problems identified by OWL users and
the designers of OWL tools such as editors and rea-
soners. For example, ontology engineers developing
ontologies for biomedical applications have identi-
fied significant expressivity limitations of the lan-
guage. Also, the designers of OWL APIs have iden-
tified several practical limitations such as difficulties
in parsing OWL ontologies or the inability to check
for obvious errors, such as mistyped names.

In response to users’ comments and requests, the
idea was born to address some of these needs via an
incremental revision of OWL, provisionally called
OWL 1.1. The initial goal of OWL 1.1 was to ex-
ploit recent developments in DL research in order to
address some of the expressivity limitations of the
language. After extensive discussions at the 2005
OWL Experiences and Directions Workshop, 5 a
consensus was reached regarding the new features
to be provided by OWL 1.1. This set of new features
roughly corresponds to the intersection of what
users wanted, what theoreticians said was possible,
and what implementors believed was practicable.
As the design of OWL 1.1 progressed, it was de-
cided to also take the opportunity to “clean up”
the language and its specification, so as to provide
a more robust platform for future development.

The development of OWL 1.1 was initially under-
taken by an informal group of language users and
developers. After the original specification reached
a mature state and first implementations were re-
leased, the OWL 1.1 proposal was submitted to the
W3C as a Member Submission 6 with the inten-
tion of using it as a starting point for a new W3C
Working Group. The Working Group was officially
formed in September 2007. As the work on the new
language progressed, the initial Member Submis-
sion evolved significantly. Consequently, the Work-
ing Group eventually decided in April 2008 to call
the new language OWL 2 and so indicate a substan-
tial step in the evolution of the language.

In Section 3, we present the design of OWL 2 and
discuss how it addresses the drawbacks of OWL 1
that we identified in Section 2. We discuss differ-

4 http://www.nci.nih.gov/
5 http://www.mindswap.org/2005/OWLWorkshop/
6 http://www.w3.org/Submission/2006/10/

ent aspects of the language, such as its expressivity,
syntax, specification style, and various metalogical
features. In Section 4 we discuss the current state
of implementation, and conclude in Section 5 with
a discussion of possible future extensions. To avoid
any ambiguity, we refer to the initial version of OWL
as OWL 1 in the rest of this paper.

2. Why Go Beyond OWL 1?

Although, or even perhaps because, OWL 1 has
been successful, certain problems have been identi-
fied in its design. None of these problems are severe,
but, taken together, they indicate a need for a re-
vision of OWL 1. In this section, we discuss what
these problems are.

2.1. Expressivity Limitations

Practical experience with OWL 1 has shown that
OWL 1 DL—the most expressive but still decidable
language of the OWL 1 family—lacks several con-
structs that are often necessary for modeling com-
plex domains [31,30]. As a response, the community
of OWL 1 users and application designers developed
various patterns for approximating the missing con-
structs. 7 Since the actual expressive power is miss-
ing, these workarounds are often unsound or incom-
plete with respect to the intended semantics. Fur-
thermore, it is usually difficult, if not impossible, to
identify all the cases in which these patterns yield in-
correct results. Such patterns are therefore not only
cumbersome but also of limited utility, and extend-
ing the language with the missing constructs seems
to be the only satisfactory solution to the problem.

2.1.1. Qualified Cardinality Restrictions
The existential restrictions of OWL 1 DL allow

the restriction to be qualified with a class; for ex-
ample, one can define a class such as “persons that
have at least one child who is male.” Cardinality re-
strictions, however, cannot be qualified with a class;
thus, OWL 1 DL allows for the definition of a person
with at least three children, but not of a person with
at least three children who are male. Expressing the
latter class requires the restriction to be qualified
with respect to the class (i.e., male) to which the
objects being counted (i.e., children) belong. This

7 http://www.w3.org/2001/sw/BestPractices/OEP/
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feature is typically called a qualified cardinality re-
striction (QCR).

Ontology modelers have repeatedly identified the
importance of QCRs in various modeling problems.
For example, one may want to define a quadruped
as an animal with exactly four parts that are legs,
or a medical oversight committee as a committee
that consists of at least five members, of which two
are medically qualified, one is a manager, and two
are members of the public [30]. In OWL 1, quali-
fied cardinality restrictions are commonly approx-
imated using design patterns discussed in [30,40];
however, these workarounds are often unsound, or
incomplete, or both.

At the time the Web Ontology Working Group
was designing OWL 1, it was already known that
QCRs can be added to the language without affect-
ing its computational properties, both from a the-
oretical and from an implementation point of view;
in fact, QCRs were included in DAML+OIL—a lan-
guage that served as the basis for OWL 1 [18]. The
final decision was, however, not to include this par-
ticular feature in the language due to concerns about
user understandability.

2.1.2. Relational Expressivity
While OWL 1 provides a wide range of construc-

tors for building complex classes, relatively little can
be said about properties. Ontology modelers have
repeatedly asked for greater relational expressivity
(i.e., expressivity about properties), and the lack of
this expressivity has been identified as a major im-
pediment for the adoption of OWL 1. We will illus-
trate this point with two prominent use cases.

Propagation along properties. Applications com-
monly need to model interactions that are some-
times described as one property “propagating” or
being “transitive across” another. Use cases abound
in the life sciences domain, where one often needs
to describe interactions between locative properties
and various kinds of part-whole properties [29]. For
example, we might want to assert that an abnormal-
ity of a part of an anatomical structure constitutes
an abnormality of the structure as a whole [29].
This allows us to draw many useful inferences, such
as inferring that a fracture of the neck of the femur
is a kind of fracture of the femur, or that an ulcer
located in the gastric mucosa is a kind of stomach
ulcer. Languages specifically designed for use in life

sciences such as OBO 8 and SNOMED 9 commonly
provide for such features, even though they typically
support a much smaller set of class constructors
than OWL 1. Thus, supporting transitive propaga-
tion of roles in OWL seemed vital if OWL were to
gain widespread acceptance in the life sciences.

Properties of properties. In mereology—the philo-
sophic study of parts and wholes—the partOf rela-
tion is often specified to be transitive (if x is a part
of y and y is a part of z, then x is a part of z), reflex-
ive (every object is a part of itself), and asymmet-
ric (nothing is a part of one of its parts). Many ap-
plications that describe complex structures (such as
life science and engineering applications) extensively
use part-whole relations axiomatized according to
these principles. Other types of properties with dif-
ferent axiomatizations are often found in practice
(see, e.g., the OBO Relations Ontology 10 ), such as
locative relations (typically transitive and reflexive),
causal relations (typically transitive and irreflexive),
and membership relations (typically irreflexive).

At the time OWL 1 DL became a W3C recom-
mendation, it was not known whether the language
could be augmented with such features (apart from
transitivity) without giving up the decidability of
key inference problems, much less whether it would
be possible to develop practical reasoning proce-
dures for such extensions. Consequently, such fea-
tures were excluded from OWL 1. As in the case of
QCRs, users have developed modeling patterns in-
tended to approximate the missing features, which
has often lead to problems in practice.

2.1.3. Datatype Expressivity
OWL 1 provides very limited expressive power for

describing classes whose instances are related to con-
crete values such as integers and strings. In OWL
1, it is possible to express restrictions on datatype
properties qualified by a unary datatype. For ex-
ample, one could state that every British citizen
must have a passport number which is an xsd :string ,
where the latter is an XML Schema datatype—a
unary predicate interpreted as the set of all string
values. In OWL 1, however, it is not possible to rep-
resent the following kinds of statements:

8 http://obo.sourceforge.net/
9 http://www.snomed.org/
10http://www.obofoundry.org/
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– restrictions to a subset of datatype values (e.g., a
gale is a wind whose speed is in the range from 34
to 40 knots);

– relationships between values of data properties on
one object (e.g., a square table is a table whose
breadth equals its depth);

– relationships between values of data properties on
different objects (e.g., people who are older than
their boss); or

– aggregation functions (e.g., the duration of a pro-
cess is the sum of the durations of its subpro-
cesses).
Another important limitation of the datatype

support in OWL 1 is the lack of a suitable set of
built-in datatypes. OWL 1 relies on XML Schema 11

for the list of built-in datatypes. The design of OWL
1, however, did not involve a thorough analysis of
which XML Schema datatypes were appropriate for
OWL 1. OWL 1 only requires the implementation
of xsd :string and xsd :integer , and leaves the im-
plementation of other XML Schema datatypes as
optional. A subsequent analysis has revealed that
datatypes in XML Schema and OWL 1 are used in
different ways, so not all datatypes of one formal-
ism are appropriate for the other and vise versa.
In particular, many XML Schema datatypes can
be difficult to implement in OWL 2. The datatypes
xsd :double and xsd :float are finite and are thus
equivalent to very large disjunctions, which can
be a significant source of inefficiency. Furthermore,
datatypes that represent time intervals, such as
xsd :gDay and xsd :time, require the representation
of infinite sets of irregular intervals; currently, it is
not clear whether and how such datatypes should
be implemented in practice.

2.1.4. Keys
OWL 1 DL does not provide means for express-

ing key constraints on data properties, which are a
core feature of database technologies. For example,
in OWL 1 DL it is not possible to state that “US
citizens are uniquely identified by their social se-
curity number.” Such statements can be expressed
in OWL 1 Full by means of inverse-functional data
properties; however, since no implementations of
OWL 1 Full are available (see Section 2.7), there
was no practical reasoning support for such state-
ments. Furthermore, no variant of OWL 1 supports
compound key constraints on either data or object

11http://www.w3.org/TR/xmlschema-2/

properties, such as that “each address is uniquely
identified by its street, street number, postcode,
and country.”

The lack of keys in OWL 1 has been recognized as
an important limitation in expressive power. Unfor-
tunately, adding keys in its full generality to OWL
1 would harm the computational properties of the
language and could even lead to undecidability[23].

2.2. Syntax Issues

OWL 1 comes with two normative syntaxes: the
Abstract Syntax 12 and OWL 1 RDF. 13 The stan-
dard also defines an XML syntax, but this syntax
is not normative and it has not been widely used,
so we do not discuss it here. The Abstract Syntax
serves as the actual definition of the language, and
it has often been used as basis for the design of
OWL 1 APIs. Certain design choices taken in OWL
1 Abstract Syntax, however, have made the syntax
confusing for developers, which resulted in the sub-
optimal design of OWL APIs. Furthermore, both
syntaxes have proved difficult to parse correctly. Fi-
nally, the relationship between the two syntaxes is
rather complex, which causes problems when trans-
forming an ontology from one syntax into the other.
We next discuss these problems in more detail.

2.2.1. Frame-Based Paradigm
The design of the OWL 1 Abstract Syntax

has been heavily influenced by the tradition of
frame-based ontology languages. The frame-based
paradigm was already familiar to many users, and
has proved natural and popular. Consider the OWL
1 DL axiom (1), which declares a class Tiger and
states that it is a subclass of the class Cat :

Class(Tiger partial Cat) (1)

In a frame-based system, this axiom is usually inter-
preted as a frame specification for the class Tiger ,
which typically acts as a declaration—a statement
that a class exists in an ontology—and groups all
relevant properties of the class in one place.

Although the frame-based paradigm is some-
times useful for modeling, the logical underpinning
of OWL 1 is actually provided by the somewhat
different paradigm of description logics (DLs). The
fundamental modeling concept in DLs is not a
frame, but an axiom—a logical statement about

12http://www.w3.org/TR/owl-semantics/
13http://www.w3.org/TR/owl-ref/
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the relationships between properties and/or classes
in the domain. The following is a subclass axiom
that defines an additional property of tigers:

SubClassOf(Tiger Predator) (2)

The relationship between frames and axioms in
the Abstract Syntax has been a major source of con-
fusion. For example, in a frame-based system, one
would expect each class or property to be defined
using at most one frame; furthermore, such a sys-
tem would naturally support an operation such as
“get all explicitly told superclasses of a class C” that
would extract the set of superclasses of C from the
frame of C. Since OWL 1 mimics the frame-based
paradigm, it should support such an operation; how-
ever, since it provides for both frames and axioms,
the meaning of such an operation is not clear. For
example, given the axioms (1)–(2), according to the
frame-based paradigm alone, the result should be
only Cat , since only this class appears in the frame
of Tiger . The class Predator , however, is also a told
superclass of Tiger ; the only difference is that this
relationship has not been defined in the frame for
Tiger . Thus, according to the axiom paradigm, the
intuitively “correct” answer is Cat and Predator .

These problems have affected the design of OWL
1 APIs. For example, the well-known Manchester
OWL API 14 initially tried to faithfully reflect both
paradigms. Given axioms (1)–(2), it would return
Cat as the only superclass of Tiger , while the rela-
tionship between Tiger and Predator is made acces-
sible separately as an axiom. This turned out to be
confusing for API users since, from the logical point
of view, both (1) and (2) just specify an inclusion
relationship between two classes.

2.2.2. Alignment with DL Constructs
Even though OWL 1 is based on DLs, the con-

structs of the OWL 1 Abstract Syntax do not com-
pletely correspond to the constructs of DLs. Con-
sider the following class definition:

restriction(hasParent
someValuesFrom(Person)
allValuesFrom(Person))

(3)

Most DLs allow only one class to appear in a prop-
erty restriction. For example, all DL implementa-
tions known to us translate definitions of the form
(3) into the following form:

14http://sourceforge.net/projects/owlapi/

intersectionOf(
restriction(hasParent

someValuesFrom(Person))
restriction(hasParent

allValuesFrom(Person)))

(4)

This caused confusion with developers of OWL 1
APIs who, whenever such differences arose, chose to
follow the DL structure. Thus, reading and saving
an ontology can actually change the structure of the
axioms due to mismatches between the API repre-
sentation and the actual language.

2.2.3. Determining the Types of Ontology Entities
Neither the Abstract Syntax nor OWL 1 RDF is

fully context-free—that is, an axiom containing a
URI often does not contain sufficient information to
disambiguate the type of ontology entity (i.e., a class,
a property, or an individual) that the URI refers to.
Consider the following OWL 1 class definition:

Class(Person partial
restriction(hasMother

someValuesFrom(Woman))
(5)

From this axiom alone, it is not clear whether
hasMother is a data property and Woman is a
datatype, or whether hasMother is an object prop-
erty and Woman is a class. To disambiguate the
syntax, OWL 1 DL relies on a strict separation of
the vocabulary into individuals, classes, and data
and object properties. The specification of OWL
1 DL, however, does not precisely specify how to
enforce this separation at the syntactic level. Thus,
whereas the semantics of OWL 1 DL requires strict
typing of all names, the syntax does not enforce
it, which can prevent certain ontologies from being
interpreted. For example, an ontology containing
only the axiom (5) seems to be a valid OWL 1 DL
ontology; however, the axioms in it are not suf-
ficient to disambiguate the types of the symbols
hasMother and Woman, so the ontology cannot be
correctly interpreted. The typing problem is further
exacerbated by the fact that the types of ontology
entities can be defined in imported ontologies, and
the specification of OWL 1 DL provides no guid-
ance on how to disambiguate the types in such cases
and how to resolve potential conflicts. OWL 1 tools
have dealt with this problem in ad hoc ways, which
has adversely affected interoperability.

This problem is made even more complex by the
fact that names for ontology entities can be intro-
duced without any prior announcement. This makes
detecting trivial syntactic problems difficult, such as

5



typographical errors in entity names. Consider, for
example, the following two axioms:

DisjointClasses(Animal Plant) (6)
SubClassOf(Human Animla) (7)

In axiom (7), instead of Animal , the user has in-
advertently typed Animla, which effectively intro-
duces a new class. Such errors are quite difficult to
detect in OWL 1: since there is no explicit statement
that an entity exists, axioms (6) and (7) constitute
a valid OWL 1 ontology.

2.2.4. Problems with OWL 1 RDF
The vast majority of OWL 1 ontologies have been

written in the OWL 1 RDF syntax; this syntax has,
however, shown itself to be quite difficult to use in
practice [5]. The main difficulty is that RDF rep-
resents everything using triples, which specify re-
lationships between pairs of objects. In contrast,
many OWL 1 constructs cannot be represented us-
ing triples without the introduction of new objects.
For example, to represent in OWL 1 RDF that class
A is the union of B and C, the following collection
of triples is required, in which the union operator is
represented by a blank node :x1 that encodes a list
of objects:

〈A, owl :unionOf , :x1〉 (8)
〈 :x1, rdf :first , B〉 (9)
〈 :x1, rdf :rest , :x2〉 (10)
〈 :x2, rdf :first , C〉 (11)

〈 :x2, rdf :rest , rdf :nil〉 (12)

This makes OWL 1 RDF ontologies difficult to read
and process.

Another problem with OWL 1 RDF is that the
triples corresponding to a single OWL 1 construct
need not be grouped together, and may even be split
across multiple documents. This further exacerbates
the typing problems discussed in Section 2.2.3. In
order to deal with this situation, all OWL 1 RDF
parsers known to us first load all RDF triples into
memory, analyze them, and then produce appropri-
ate OWL 1 axioms. This is clearly inefficient, and it
limits the scalability of OWL 1 systems.

Moreover, the OWL 1 RDF and OWL 1 Abstract
Syntax do not correspond completely. For example,
the axioms

Class(Human partial Animal) (13)
SubClassOf(Human Animal) (14)

are both equivalent to the following RDF triple:

〈Human, rdfs:subClassOf ,Animal〉 (15)

The OWL 1 specification provides only a mapping
from the Abstract Syntax into OWL RDF, but not
the converse. As a result, according to the OWL 1
specification, an RDF graph G is an OWL 1 DL on-
tology if there exists an ontologyO in Abstract Syn-
tax such that the result of the normative transfor-
mation of O into triples is precisely G. This makes
checking whether G is an OWL 1 DL ontology very
hard in practice: one essentially needs to examine
all “relevant” ontologies O in abstract syntax and
check whether the normative transformation of O
into RDF yields precisely G. This is clearly ineffi-
cient, so different OWL 1 tools have applied different
ad hoc optimizations, which is a significant source
of incompatibility between tools.

2.3. Metamodeling

In many practical cases, the distinction between
classes and individuals is not clear-cut. Consider the
statements that “Harry is an Eagle” and “Eagles are
an endangered species.” The first statement can be
modeled in OWL 1 by asserting the individual Harry
to be an instance of the class Eagle. The second
statement, however, talks about eagles as a species,
and not as a set of all living eagles; therefore, it
should be modeled by stating the individual Eagle
to be an instance of the class EndangeredSpecies.
Hence, Eagle plays the role of a class in one and of an
individual in another context. This style of modeling
is often called metamodeling.

The W3C OWL Working Group acknowledged
the importance of metamodeling in practice; how-
ever, at the time OWL 1 was designed, metamodel-
ing had not been widely considered in DL research.
Furthermore, as we discussed in Section 2.2.3, the
sets of names used for classes, properties, and indi-
viduals must be disjoint in OWL 1 Lite and OWL 1
DL ontologies. Therefore, metamodeling is possible
only in the OWL 1 Full species of OWL 1. This is
problematical, as OWL 1 Full has not been widely
implemented. Moreover, in [24] it was shown that
the style of metamodeling used in OWL 1 Full leads
to the undecidability of standard reasoning prob-
lems, making it unlikely that this style of metamod-
eling will be made available in OWL 1 tools. Users
are therefore forced to choose between metamodel-
ing, which may be needed in their application, and
tool support for ontology development.
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2.4. Imports and Versioning

OWL 1 provides a basic mechanism that allows
an ontology O to import another ontology O′, and
thus gain access to all entities and axioms inO′. This
can be understood as a form of “virtual” inclusion:
semantically, every model of O must also satisfy all
axioms of O′; however, the two ontologies are kept
physically separate. Imports in OWL 1 DL are “by
name and location”: the ontology O is required to
contain a URI pointing to the location of O′, and
this location should match with the name of O′.

The coupling of names and locations seems ap-
propriate when ontologies are published at a fixed
location on the Web. Applications, however, often
use OWL 1 ontologies off-line, by loading them from
local ontology repositories. Ontologies are also often
moved between locations. Thus, in many realistic
use cases, the location of an ontology does not cor-
respond with its name. Tools have dealt with this
in various ways. Some tools have stayed true to the
official OWL 1 specification, thus requiring users to
manually adjust the names of ontologies and the
import relations between them when ontologies are
moved around. This approach is often cumbersome,
particularly when an ontology depends on a large
number of other ontologies; therefore, many tools
have sacrificed compatibility with the official speci-
fication and have provided ad hoc caching and loca-
tion redirection mechanisms.

These problems become even more acute when
one needs to maintain several different versions of
the same ontology. The specification of OWL 1 pro-
vides no guidelines on how to handle such cases.

2.5. Annotations

OWL 1 ontologies and entities can be assigned
annotations, which are pieces of extra-logical in-
formation describing the ontology or entity. An-
notations in OWL 1 are written using annotation
properties. OWL 1 provides several built-in anno-
tation properties, some of which are inherited from
RDF: owl :versionInfo, rdfs:label , rdfs:comment ,
rdfs:seeAlso, and rdfs:isDefinedBy . Ontology engi-
neers can also create their own annotation prop-
erties and use them in their ontologies. OWL 1
Full does not put any constraints on the usage of
annotation properties in an ontology. OWL 1 DL,
however, disallows the usage of annotation prop-
erties in OWL 1 DL axioms; for example, it is not

possible in OWL 1 DL to define a subproperty or
to place a domain or a range constraint on an an-
notation property. To harmonize their treatment
between OWL 1 DL and RDF, annotation proper-
ties are given semantics as binary relations in the
interpretation domain. In this sense, annotation
properties are treated semantically in a very similar
way to object properties.

Because they cannot be used in axioms, users typ-
ically expect annotations to be extra-logical con-
structs: adding or removing annotations should not
affect the set of consequences derivable from an on-
tology. Therefore, providing an explicit semantics to
annotations in OWL 1 DL is rather counterintuitive,
as it makes annotation properties look like “poor
man’s properties.” All OWL 1 DL tools we know of
simply ignore the formal semantics of annotations
and thus are not strictly compliant with the official
specification of OWL 1 DL. Access to annotations is
typically provided in such tools through nonlogical
methods such as various API extensions.

In addition to this basic issue, the annotation sys-
tem of OWL 1 has been found to be inadequate for
many applications. In particular, OWL 1 does not
allow axioms to be annotated, which can be neces-
sary, for example, to represent provenance informa-
tion (e.g., who wrote a particular axiom) or for lan-
guage extensions (e.g., to represent the confidence
in the validity of axioms). Finally, users of OWL 1
DL have often complained about the inability to de-
fine domains and ranges of annotation properties,
or to use annotation properties in property hierar-
chies (e.g., to say that the range of the proteinID
annotation property is string).

2.6. OWL Semantics

OWL 1 DL was designed, on the one hand, as a
notational variant of the expressive description logic
SHOIN (D) [17]; on the other hand, it was very
important for OWL 1 to be compatible with exist-
ing Semantic Web languages such as RDF. Semantic
differences between SHOIN (D) and RDF made it
difficult to satisfy both requirements. The solution
to this problem chosen by the OWL Working Group
was to provide two coexisting semantics for OWL 1.
The first is a direct model-theoretic semantics based
on the semantics of SHOIN (D), and is the nor-
mative semantics for OWL 1 Lite and OWL 1 DL.
The second is an extension of the RDF model the-
ory [12], and is applicable to OWL 1 ontologies writ-
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ten in RDF. The practical experience with OWL 1
has identified a number of problems in each of these
semantics alone, as well as in the difficult marriage
between the two semantics.

2.6.1. OWL 1 DL Semantics
The description logic SHOIN (D) has been ex-

tensively investigated in the literature, and its ex-
pressivity and computational properties are well-
known [36,19]. The OWL 1 DL specification pro-
vides an explicit (and quite complex) definition of
the semantics, which does not straightforwardly cor-
respond to SHOIN (D). This caused a number of
problems regarding presentation and understand-
ability. Tool implementors are thus unnecessarily
burdened with the effort of establishing a correspon-
dence between OWL 1 DL and SHOIN (D) in or-
der to reuse known reasoning algorithms.

A source of confusion is the ability to use unnamed
individuals in OWL 1 facts (this feature was inspired
by RDF blank nodes). For example, one can assert an
individual John to be a friendOf a friendOf an in-
dividual Paul without naming the intervening indi-
vidual. Unnamed individuals are not directly avail-
able in SHOIN (D), and it is not obvious how to
simulate them.

Another source of confusion is due to the frame-
based constructs of OWL 1 (see Section 2.2.1 for an
in-depth discussion). SHOIN (D) is purely axiom-
based and it provides no frame-like features. The
frame-like axioms of OWL 1 DL thus need to be
translated into SHOIN (D) for the purpose of rea-
soning, which is unnecessarily complex.

2.6.2. RDF-Compatible Semantics
OWL 1 ontologies written as RDF graphs can be

interpreted using an extension of the RDF seman-
tics. This semantics, however, has proved to be ex-
tremely complex to understand, use, and implement.

First, the RDF-compatible semantics of OWL 1
is not a standard first-order semantics; rather, it is
fully reified: classes and properties are assigned ex-
tensions indirectly, by first mapping them into ele-
ments of the domain of discourse and then assigning
an extension to the domain elements. This adds an
additional level of complexity in understanding the
logical consequences of an ontology.

Second, the RDF-compatible semantics of OWL
1 includes so-called comprehension principles that
enforce the existence of an individual in the inter-
pretation domain for each class and property that

can be formed using the vocabulary of the ontology.
For example, if A and P are a class and a property,
respectively, and I is an RDF interpretation, then
I must contain domain elements oA and oP for A
and P themselves, as well as for all the infinitely
many classes that can be built from A and P , such
as o∃P.A, o∃P∃P.A, and so on. As a consequence, the
domain of every OWL 1 Full interpretation must
be infinite. Furthermore, the comprehension prin-
ciples make it difficult to verify whether the RDF-
compatible semantics of OWL 1 contains a built-in
contradiction; that is, it may even be the case that
even an empty RDF graph is inconsistent under the
RDF-compatible semantics.

Third, even if the semantics were consistent, the
implementation of a complete reasoner would still be
infeasible, as checking satisfiability of RDF graphs
interpreted under the RDF-compatible semantics of
OWL 1 is undecidable due to the mixing of logical
and metalogical symbols [24].

Fourth, the RDF-compatible semantics of OWL
1 is not robust under language extensions: if OWL
1 were extended to cover all of first-order logic, the
RDF-compatible semantics would become inconsis-
tent due to logical paradoxes [27].

2.6.3. Relating the DL and the RDF Semantics
A key idea behind the two semantics of OWL 1

was that they should be “equivalent” on OWL 1 DL
and OWL 1 Lite ontologies. This requirement, how-
ever, has been found difficult to realize, so it was
subsequently weakened. The OWL 1 DL specifica-
tion contains a proof that, for any two OWL 1 DL
ontologies O and O′ written in OWL 1 Abstract
Syntax, if O entails O′, then the translation of O
into RDF entails the translation of O′ into RDF as
governed by the (extended) RDF semantics.

Furthermore, maintaining this compatibility be-
comes increasingly problematical with increasing
expressive power. It has been shown that it would
be impossible to maintain compatibility with the
OWL 1 RDF semantics if OWL 1 were extended to
the expressive power of first-order logic [27]. The
coexistence of the two semantics is therefore clearly
a dangerous choice with respect to the possible
extension of OWL 1 DL: even if these extensions
would be decidable under either semantics, the two
semantics might no longer be equivalent.
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2.7. OWL 1 Full

OWL 1 Full is the most expressive variant of OWL
1. Each RDF graph is a syntactically valid OWL 1
Full ontology; that is, in contrast to OWL 1 DL,
in OWL 1 Full there are no syntactic restrictions
on the usage of the built-in OWL 1 vocabulary and
the vocabulary elements defined in the ontology.
The semantics of OWL 1 Full is given by the RDF-
compatible semantics of OWL 1.

As discussed in the previous section, the basic rea-
soning problems for the RDF-compatible semantics
are undecidable. Furthermore, the free usage of vo-
cabulary adds an additional source of undecidabil-
ity; for example, OWL 1 Full does not enforce the
well-known restrictions needed for decidability, such
as using only simple roles in number restrictions [20].
To the best of our knowledge, no complete imple-
mentation of OWL 1 Full currently exists, and it is
not clear whether OWL 1 Full can be implemented
in practice.

2.8. OWL 1 Lite

Although it is decidable, reasoning in OWL 1 DL
is of a high worst-case computational complexity
(NExpTime-complete [36]). Therefore, the OWL
Working Group considered it important to define a
fragment of OWL 1 DL with more tractable infer-
ence problems and that was easier to understand
and use. To this purpose, the W3C OWL Working
Group defined the OWL 1 Lite subset of OWL 1 DL.
OWL 1 Lite is a syntactic subset of OWL 1 DL that
excludes constructors that some thought to be diffi-
cult to use and/or lead to high computational com-
plexity. In particular, OWL 1 Lite does not allow the
use of union and complement constructors in class
descriptions, it limits descriptions in the scope of a
quantifier to be class names, it disallows the oneOf
constructor (i.e., nominals), and it limits the num-
bers in cardinality restriction to 0 and 1 only.

Unfortunately, even though OWL 1 Lite seems to
be much simpler than OWL 1 DL, most of the com-
plexity of OWL 1 DL can be captured due to implicit
negations in axioms. For example, the following two
OWL 1 Lite axioms implicitly define the class C as
the negation of D:

Class(C complete
restriction(P

allValuesFrom(owl :Nothing)))
(16)

Class(D complete
restriction(P

someValuesFrom(owl :Thing)))
(17)

In fact, of all the OWL 1 DL constructors, only
nominals and cardinality restrictions with cardinal-
ity larger than one cannot be captured in OWL 1
Lite, thus making the language equivalent to the
description logic SHIF(D). Hence, from a users’
perspective, OWL 1 Lite is confusing since the
available modeling constructs do not correspond to
the expressivity of the language. Moreover, from a
computational perspective, basic reasoning prob-
lems are only slightly less complex for OWL 1 Lite
than for OWL 1 DL (ExpTime- instead of NExp-
Time-complete), so the language remains highly
intractable.

2.9. Species Validation

Species validation is the problem of determining
whether an OWL 1 ontology is in OWL 1 Lite, OWL
1 DL, or OWL 1 Full. This seemingly trivial task
turned out to be rather problematic in OWL 1.

2.9.1. OWL 1 Lite or OWL 1 DL?
The OWL 1 specification defines OWL 1 Lite in

terms of a fragment of the OWL 1 DL Abstract Syn-
tax: an OWL 1 DL ontologyO in Abstract Syntax is
also an OWL 1 Lite ontology if and only if it can be
generated using the OWL 1 Lite grammar, as given
in the normative documents.

In the case of ontologies written in OWL 1 RDF,
the lack of a direct mapping between OWL 1 RDF
and Abstract Syntax makes species validation prob-
lematic. If O is given in the OWL 1 RDF syntax,
then it is an OWL 1 Lite ontology if and only if there
exists an ontology O′ in the OWL 1 Lite fragment
of the Abstract Syntax such that the translation of
O′ into triples is precisely O. Similarly, an ontology
O in the OWL 1 RDF syntax is an OWL 1 DL on-
tology if and only if there exists an ontology O′ in
the Abstract Syntax such that the translation of O′
into triples is precisely O.

Therefore, determining whether an ontology in
RDF is an OWL 1 Lite or an OWL 1 DL ontol-
ogy becomes very hard in practice since it involves
“guessing” ontologies in Abstract Syntax and
checking whether their normative transformation
into RDF yields precisely the original ontology. In
practice, validating parsers are usually based on
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informal guidelines [4] that are not an official part
of the OWL 1 specification.

Moreover, as we already discussed, the expressive
power of OWL 1 Lite corresponds to the description
logic SHIF(D). Now consider an ontology O that,
for example, uses the unionOf construct, but actu-
ally corresponds to SHIF(D). Technically, O is an
OWL 1 DL ontology; however, an OWL 1 Lite ontol-
ogy O′ exists that is equivalent to O. Any reasoner
for O′ could handle O without any problems (the
complexity of the reasoner is defined by the actual
DL fragment). Thus, the distinction between O and
O′ seems quite artificial, and classifying O as being
“harder” than O′ is not intuitive.

2.9.2. Species Validation and Imports
Suppose that O1 is an OWL 1 ontology that im-

ports another OWL 1 ontologyO2; logically, we thus
get a new ontology O = O1 ∪ O2. We identify two
basic requirements concerning the robustness of the
imports mechanisms regarding species validation.

First, membership in a certain species of OWL 1
should ideally be preserved under imports; for ex-
ample, if O1 and O2 are in OWL 1 DL, then it is
intuitive to expect O to be in OWL 1 DL as well.

Second, if O1 and O2 are written in different
species, one would expect O to be in the most ex-
pressive one; for example, if O1 is in OWL 1 Lite
and O2 is in OWL 1 DL, we would expect O to be
in OWL 1 DL.

Unfortunately, imports can interact with OWL 1
species in a quite unpredictable and unintuitive way.
As a result, none of these requirements are satisfied.

As an example of a violation of these require-
ments, suppose that O1 is an OWL 1 DL ontology
that defines a property P as transitive. Assume also
that the ontology O2 is an OWL 1 DL ontology that
uses P in a cardinality restriction, but it does not
define P as transitive. The ontology O is no longer
in OWL 1 DL since P is not a simple property (due
to transitivity) and it is used in a cardinality restric-
tion. Therefore, O is an OWL 1 Full ontology.

Furthermore, the following example demonstrates
a surprising fact: O1 and O2 can be in OWL 1 Full,
while O is in OWL 1 Lite. Suppose that O1 contains
just the following triples:

〈A, rdfs:subClassOf , B〉 (18)
〈A, rdf :type, owl :Class〉 (19)

Furthermore, O2 contains just the following triples:

〈B, rdfs:subClassOf , A〉 (20)

〈B, rdf :type, owl :Class〉 (21)

The ontology O1 is in OWL 1 Full because it does
not contain the triple (21) specifying the type of B;
similarly, O2 is is OWL 1 Full because it misses the
triple (19). The union of these ontologies, however,
contains all necessary triples, so it is in OWL 1 Lite.

3. The Design of OWL 2

To address the problems with OWL 1 that we
identified in Section 2, the design of OWL 2 has
departed from that of OWL1 in several ways.

3.1. Increasing Language Expressivity

The drawbacks of OWL 1 regarding expressivity
identified in Section 2.1 have long been recognized
in the DL community, and a significant amount of
research has been devoted to finding possible solu-
tions. The cumulative results of this work are em-
bodied in the DL SROIQ [16], which is strictly
more expressive than SHOIN . This is evidenced by
an increase in the computational complexity of the
basic reasoning problems: reasoning in SROIQ is
2NExpTime-complete [22], whereas in SHOIN it
is NExpTime-complete [36].

Although reasoning in SROIQ is harder than in
SHOIN , the tableaux-based reasoning algorithm
for SROIQ [16] follows the same principles as the
one for SHOIN . If the new features are not used,
then the new reasoning algorithm behaves just like
the old algorithm for SHOIN . Furthermore, the
source of added complexity is well understood [22],
and it seems realistic to expect that the complex-
ity increase will not occur on typical practical prob-
lems. Finally, existing reasoners can and have been
easily extended to SROIQ. Thus, SROIQ seems
to provide a good logical underpinning for OWL 2
from both a theoretical and a practical perspective.

3.1.1. Qualified Number Restrictions
Even while OWL 1 was being designed, it was

known that QCRs could have been added to the lan-
guage without any theoretical or practical problems:
the resulting logics are still decidable and have been
successfully implemented in practical reasoning
systems. Moreover, as mentioned in Section 2.1.1,
QCRs have been supported in DAML+OIL—a
predecessor of OWL. Thus, qualified number re-
strictions are not really a novel feature of either

10



SROIQ or of DL-based ontology languages, and
were incorporated into OWL 2 in the obvious way.

3.1.2. Relational Expressivity
As mentioned in Section 2.1, a major drawback of

OWL 1 is the limited expressivity regarding prop-
erties. This is addressed in SROIQ and OWL 2 by
the addition of complex property inclusion axioms,
which significantly increase the relational expressiv-
ity of the language. In particular, they provide for
the propagation of one property along another. For
example, axiom (22) states that, if a contains b and
b has a part c, then a also contains c:

SubPropertyOf(
PropertyChain(contains hasPart)
contains)

(22)

If such axioms are used in an unrestricted way,
they easily make the logic undecidable. To achieve
decidability, SROIQ (and hence OWL 2) imposes a
regularity restriction on such axioms: roughly speak-
ing, it must be possible to arrange all properties in
a total ordering � such that, for each property p on
the left-hand side of a subproperty axiom, p is either
equal to or a �-predecessor of the property on the
right-hand side of the axiom. Although this might
seem rather complex, it merely formalizes a simple
restriction that complex subproperty axioms should
not define properties in a cyclic way. For example,
although (22) by itself does not cause problems, it
should not be simultaneously used with the follow-
ing axiom, which states that if b is a part of a and b
contains c, then c is also a part of a:

SubPropertyOf(
PropertyChain(hasPart contains)
hasPart)

(23)

The axioms (22) and (23) together introduce a cyclic
dependency between contains and hasPart , which
can easily lead to problems with decidability.

In addition to complex property inclusion axioms,
properties in SROIQ and OWL 2 can be transi-
tive, reflexive, irreflexive, symmetric, and/or asym-
metric, and pairs of properties can be made disjoint.
Thus, OWL 2 provides many of the features neces-
sary for applying the principles of mereology.

3.1.3. Increasing Datatype Expressivity
OWL 2 significantly extends the set of built-in

datatypes of OWL 1 by reusing certain datatypes
from XML Schema. Thus, OWL 2 now supports
owl :boolean, owl :string , xsd :integer , xsd :dateTime,

xsd :hexBinary , and a number of datatypes derived
from these by placing various restrictions on them.
In addition, xsd :decimal , xsd :double, and xsd :float
will most likely be complemented with owl :real—a
datatype interpreted as the set of all real numbers.

OWL 2 also provides a datatype restriction con-
struct, which allows new datatypes to be defined by
restricting the built-in datatypes in various ways.
For example, the following expression defines a new
datatype by specifying a lower bound of 18 on the
XML Schema datatype xsd :integer :

DatatypeRestriction(xsd:integer
xsd:minInclusive 18) (24)

It is worth mentioning, however, that the Working
Group has still not made a final decision on the ex-
act set of datatypes that the language will support.
Therefore, some of the information in this section
may become obsolete in the future.

3.1.4. Keys
As mentioned in Section 2.1.4, keys are impor-

tant in many applications. Extending DL-based lan-
guages such as OWL 2 with keys, however, poses
both theoretical and practical problems [23]. There-
fore, the Working Group has decided to include a
more restricted variant of keys that can be useful
in practice as well as relatively easy to implement,
commonly known as easy keys.

OWL 2 thus provides for key axioms of the form
HasKey(CP1 . . . Pn), which state that the object or
data properties Pi are keys for (named) instances of
the class C—that is, no two (named) instances of C
can coincide on the values of all Pi.

For example, the following OWL 2 axiom states
that persons are uniquely identified by their social
security number:

HasKey( Person hasSSN ) (25)

The following assertions state that two individuals—
PSmith and PeterSmith—have the same social se-
curity number:

PropertyAssertion(PSmith
hasSSN “123-45-6789”) (26)

PropertyAssertion(PeterSmith
hasSSN “123-45-6789”) (27)

Since the individuals PSmith and PeterSmith are
known by name, axioms (25)–(27) entail that
PSmith and PeterSmith are the same individuals:

SameIndividual(PSmith PeterSmith) (28)
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Unlike the general keys, easy keys are not applied
to individuals not known by name. For example,
the following axiom states that Jane is connected
through marriedTo to an individual α that is an
instance of Man and that has “123-45-6789” as the
value of hasSSN :

ClassAssertion(
SomeValuesFrom(marriedTo

IntersectionOf(
Man
HasValue(hasSSN “123-45-6789”)

)
)
Jane )

(29)

Even though α has the same value for hasSSN as,
say, PSmith, individual α is not known by name.
Therefore, the key axiom (25) is not applicable to α
so, consequently, axioms (25), (26), and (29) do not
entail the following assertion:

ClassAssertion(Man PSmith) (30)

Thus, the main drawback of easy keys is that they
can only produce consequences about explicit data
and are thus relevant mainly for query answering,
whereas the general variant of keys [23] can also af-
fect the subsumption hierarchy between classes. The
main benefits of easy keys are that adding them to
OWL 2 do not increase the worst-case complexity of
reasoning, and that implementing them in the ex-
isting reasoners is relatively straightforward.

3.1.5. Extensions under Discussion
The Working Group is currently discussing

whether to extend OWL 2 with n-ary datatypes,
such as the binary datatype equal . Such datatypes
could then be used to compare values of data prop-
erties for a given object. For example, the following
expression defines the class of objects whose width
is equal to their height:

AllValuesFrom(width height equal) (31)

Unfortunately, ever since concrete datatypes were
introduced in [2], it has been known that compar-
ing values of data properties for different objects
(e.g., defining the class of people who have a child
who is older than their spouse) easily leads to un-
decidability, unless the concept language is signifi-
cantly weakened. Similarly, aggregate functions can
be combined only with very simple DLs if decidabil-
ity is desired [3], so it was therefore decided not to
include these expressive features into OWL 2.

3.2. The MOF Metamodel for OWL 2

To solve the problems identified in Section 2.2,
the structure of OWL 2 ontologies has been unam-
biguously specified using OMG’s Meta-Object Facil-
ity (MOF). 15 MOF is a well-known metalanguage,
and has been extensively used for specification of
other languages. The MOF metamodel—also called
the structural specification—of OWL 2 is presented
in the documents using the Unified Modeling Lan-
guage (UML).

The classes of the MOF metamodel describe the
canonical structure of OWL 2 ontologies in a way
that is independent of the syntax used to serial-
ize the ontologies. The specification consists of 22
UML class diagrams. For example, Figure 1 shows
the UML diagram that defines an ontology as con-
sisting of a set of axioms and of a set of annotations;
furthermore, it shows that an ontology can import
a set of ontologies and that each axiom can contain
a set of annotations.

OWL 2 axioms are defined as subclasses of the
abstract class Axiom. For example, Figure 2 shows
the diagram that defines the structure of class ax-
ioms, where the axiom EquivalentClasses is defined
as taking a set of classes.

The MOF metamodel for OWL 2 can be seen as
analogous to the Document Object Model (DOM)
specification 16 for XML. It unambiguously specifies
what OWL 2 ontologies are in terms of their struc-
ture and thus makes the specification precise. More-
over, it can be taken as a foundation for the design
of an OWL 2 API. By committing to a well-known
metamodel, APIs of different developers should be
interoperable, which will reduce the burden on ap-
plication developers.

The MOF metamodel of OWL 2 also defines the
notion of structural equivalence, which determines
whether two ontology components are considered to
be the same. For example, the following two OWL
2 axioms are not identical; they are, however, struc-
turally equivalent, since the EquivalentClasses axiom
consists of a set of classes in which the order of the
elements is not relevant:

EquivalentClasses(Person Human) (32)
EquivalentClasses(Human Person) (33)

Structural equivalence is important for the defi-
nitions of the functionality of OWL 2 APIs and ser-

15http://www.omg.org/mof/
16http://www.w3.org/DOM/

12



Fig. 1. Object Model of OWL 2 Ontologies

Fig. 2. Class Axioms in OWL 2

vices. For example, OWL 2 reasoners might support
incremental addition and deletion of axioms. By re-
lying on the notions of structural equivalence of ax-
ioms and sets of axioms, the semantics of the addi-
tion and deletion operations can be easily defined in
terms of standard set operations on sets of axioms.

3.3. Typing and Declarations

To address the problems described in Section 2.2.3
regarding disambiguation of ontology types, OWL
2 introduces the notion of declarations. All entities
can, and sometimes even must, be declared in an

OWL 2 ontology. A declaration for an entity with a
URI u in an ontology O serves two purposes:
– It states that u is part of the vocabulary of O; for

example, an ontology editor can use declarations
to implement functions such as “Add New Class.”

– It associates with u an entity type—that is, it says
whether u is a class, datatype, object property,
data property, annotation property, or an individ-
ual.
For example, the existence of the classes Plant

and Animal (see axioms (6)–(7)) can be stated in
the following way:

Declaration(Class(Plant)) (34)
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Declaration(Class(Animal)) (35)

Declarations are nonlogical statements in the sense
that they do not directly affect the semantics; they
affect the semantics only indirectly by properly typ-
ing the ontology’s vocabulary.

Certain declarations are required for an ontology
to be syntactically valid. For example, if an ontology
contains an axiom

SubPropertyOf(P Q), (36)

then P and Q must be declared; otherwise, it would
not be possible to tell whether they are object or
data properties. In OWL 2, however, a URI u can be
used as an individual in O even if it is not declared
as an individual in O. This is so because it is always
possible by looking at the syntax of an OWL 2 on-
tology to distinguish the usages of a URI as a class
or an individual.

OWL 2 imposes certain typing constraints on on-
tologies. Roughly speaking, the sets of object, data,
and annotation properties, as well as the sets of
classes and datatypes in an OWL 2 ontology must
be mutually disjoint. Note that these restrictions are
weaker than in OWL 1 DL; for example, a URI u
can be used in an OWL 2 ontology to refer to both
a class and an individual.

The type of a URI u in an ontology O is deter-
mined by considering all the declarations in O and
the ontologies imported (directly or indirectly) into
O. Also, the imported ontologies can be written in
different syntaxes. This makes parsing O somewhat
difficult, as it requires two passes through O and
all imported ontologies—one to identify the types
of URIs and one to actually construct the axioms
of O. The intended result, however, has been pre-
cisely described in OWL 2 by means of a canonical
parsing process, which removes any ambiguity as to
what constitutes normative behavior.

Finally, OWL 2 provides a notion of declaration
consistency : an ontology O has consistent declara-
tions if each URI u occurring in O in position of an
entity with a type T is declared in O as having type
T . Declaration consistency is not a prerequisite for
syntactic validity: an OWL 2 ontology can be used
even if its declarations are not consistent. A declara-
tion consistency check, however, can be very useful
for detecting trivial errors caused, for example, by
mistyping the names of ontology entities.

3.4. Metamodeling with Punning

The fact that OWL 2 typing constraints are more
permissive than in OWL 1 allows for a form of meta-
modeling in OWL 2 that addresses some of the lim-
itations described in Section 2.3. For example, the
following axioms state the facts that eagles are an
endangered species, and that Harry is an eagle:

ClassAssertion(Eagle Harry) (37)
ClassAssertion(Endangered Eagle) (38)

Note that the symbol Eagle is used in (37) as a class,
whereas in (38) it is used as an individual.

The semantics of metamodeling in OWL 2 corre-
sponds to the contextual semantics defined in [24]:
the usage of Eagle as a class is completely unrelated
to its usage as an individual. In fact, the semantics
can be best understood by imagining each symbol
to be prefixed according to the context in which it
is used. The axioms (37)–(38) could thus be inter-
preted as follows:

ClassAssertion(Cls-Eagle Ind -Harry) (39)
ClassAssertion(Cls-Endangered Ind -Eagle) (40)

Because the names of concepts and individuals do
not interact even if they are the same, this type of
metamodeling is often referred to as punning.

3.5. Annotations of Axioms and Entities

To address the limitations described in Section
2.5, in OWL 2 it is possible to annotate axioms as
well as ontologies and entities. This can be used to
capture additional information about axioms, such
as their provenance or certainty values [34,8]. For
example, the following axiom states that all humans
are animals, and attributes that statement to Peter:

SubClassOf(
Annotation(attributedTo “Peter”)
Human Animal)

(41)

In contrast to OWL 1, annotations in OWL 2
carry no formal semantics—that is, they do not af-
fect the set of consequences that can be derived from
an ontology. Annotations are, however, accessible in
the structural specification of OWL 2. Thus, appli-
cations are expected to provide access to annota-
tions by nonlogical means, such as APIs.

Although annotations do not affect the semantics
of an ontology, they do affect their structural equiva-
lence. Thus, for two axioms to be structurally equiv-
alent, the annotations on them must be structurally
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equivalent as well, and similarly for ontologies. For
example, the axiom above is semantically equivalent
but not structurally equivalent to the following one:

SubClassOf(Human Animal) (42)

3.6. Ontology Publishing, Imports, and Versioning

In order to address the problems described in Sec-
tion 2.4, OWL 2 precisely specifies the way in which
ontologies are to be published on the Web. In partic-
ular, each ontology O can be given an ontology URI
ou that uniquely identifies the ontology; if this is the
case, thenO should be located at location ou. Locat-
ing the ontologies imported into O is thus straight-
forward in OWL 2: the ontology O always speci-
fies the location of the imported ontology. Thus, in
essence, the import mechanism of OWL 2 is “by
name and location.”

The main difference to OWL 1 is that OWL 2 al-
lows implementations to provide a suitable redirec-
tion mechanism: when requested to access an ontol-
ogy from a location u, a tool can redirect u to a differ-
ent location v and retrieve the ontology from there.
The accessed ontology should, however, be treated
just as though it had been retrieved from u. For ex-
ample, relative URIs in the ontology should be re-
solved as if the ontology had been retrieved from u,
and the ontology URI, if present, should be equal to
u. The design of concrete redirection mechanisms is
left entirely to OWL 2 implementations.

OWL 2 also provides a simple method for the
management of ontology versions. In addition to an
ontology URI, an OWL 2 ontology can contain a
version URI, which identifies the version of the on-
tology. In such cases, the ontology URI identifies an
ontology series—a set of all versions of a particular
ontology—whereas the version URI identifies a par-
ticular version in the series.

The coexistence of different versions is enabled by
relaxing the publishing restrictions mentioned ear-
lier in this section: if an ontology O has an ontology
URI ou and a version URI vu, then O should be lo-
cated at vu; furthermore, if O is the current version
of the ontology series, then it should be located at
both ou and vu. Thus, a particular version of an on-
tology from a series can always be accessed from the
location identified by the version URI, and the cur-
rent version from the series can be accessed at the
location identified by the ontology URI. (As usual,
all these locations can be redirected in a way that
is transparent to the ontologies in question.) Pub-

lishing a new current version of an ontology thus
involves placing the new ontology in the appropri-
ate location as identified by the version URI, and
replacing the ontology located at the ontology URI
with the new ontology.

3.7. Functional-Style Syntax

In addition to the MOF metamodel, the OWL
2 specification defines a Functional-Style Syntax as
a simple encoding of the metamodel. The OWL 2
Functional-Style Syntax and the OWL 1 Abstract
Syntax differ in many respects.

The main difference with respect to the OWL 1
Abstract Syntax is that the Functional-Style Syntax
of OWL 2 does not contain the frame-like syntac-
tic constructs of OWL 1; instead, ontology entities
are described at a more fine-grained level using ax-
ioms. As explained in Section 2.2.1, the frame-like
constructs in OWL 1 caused a significant amount
of confusion in the OWL developer community. The
new Functional-Style Syntax is more verbose than
the old Abstract Syntax; however, this is generally
not considered to be a problem: most ontologies are
created using editors such as Protégé, which are free
to present the information to the user in a compact,
or even frame-like way.

The OWL 2 Functional-Style Syntax is not back-
wards compatible with the OWL 1 Abstract Syn-
tax: an ontology written in OWL 1 Abstract Syntax
may not be a valid OWL 2 ontology. The Working
Group did not, however, consider this lack of back-
wards compatibility to be a problem in practice: the
OWL 1 Abstract Syntax was used mainly for defin-
ing the structure and semantics of OWL 1, and has
rarely been used to publish ontologies on the Web.

3.8. XML Syntax

As mentioned in Section 2.2.4, OWL 1 RDF is
the syntax that has been mainly been used for pub-
lishing OWL 1 ontologies on the Web. This syntax,
however, suffers from a number of problems. In or-
der to provide an alternative to RDF, OWL 2 comes
with an XML Syntax which presents a number of
advantages for publishing ontologies on the Web. In
particular, the new XML Syntax is easy to parse and
process; also, XML is a widely adopted format on
the Web and it is supported by a variety of tools.

The XML Syntax is also well-suited for use in pro-
tocols and APIs for accessing OWL 2 implementa-
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tions. The Description Logics Implementors Group
(DIG) 17 interface specification has established it-
self in the DL community as a de-facto standard for
accessing DL reasoners. It is supported by virtually
all DL reasoners and many ontology editors. DIG
is based on exchanging XML messages over HTTP.
In its previous incarnations, it used a bespoke XML
language for describing ontologies, which was not
completely aligned with OWL 1. In its newest incar-
nation (version 2.0), DIG reuses the ontology lan-
guage and the syntax of OWL 2, thus reducing the
implementation burden on developers. The XML
Syntax for OWL 2 is obtained from the MOF meta-
model by a straightforward translation of the MOF
diagrams into XML Schema.

3.9. RDF Serialization

The vast majority of OWL 1 ontologies have been
published online using the OWL 1 RDF syntax. For
OWL 2 to be successful, it is important to ensure
that existing OWL 1 ontologies can still be used
and further developed with OWL 2 implementa-
tions. Therefore, an important requirement in the
development of OWL 2 was to maintain backwards
compatibility with the RDF syntax of OWL 1. At
the same time, a major design goal in OWL 2 was
to clean up problems in the definition of OWL 1 as
discussed in Section 2.

This dilemma was resolved in OWL 2 via the
following compromise. On the one hand, the con-
ceptual structure of OWL 1 was reengineered with-
out considering backwards compatibility, and the
Functional-Style Syntax and the XML Syntax were
changed accordingly. On the other hand, these
changes were not reflected in the OWL 2 RDF
syntax; rather, the OWL 2 RDF syntax has been
designed so that every OWL 1 DL ontology written
in RDF is also a valid OWL 2 ontology. The two
representations are connected by a bidirectional
translation between the Functional-Style Syntax
(or, equivalently, the MOF metamodel) and RDF
graphs. In contrast to OWL 1, the OWL 2 specifica-
tion contains an explicit mapping from RDF graphs
into the Functional-Style Syntax, which solves the
ambiguity problems mentioned in Section 2.2.4.

The translations have been designed such that ev-
ery OWL 2 ontology in the Functional-Style Syntax
can be mapped into RDF triples and back without

17http://dig.cs.manchester.ac.uk/

any change in the meaning of the ontology. More
precisely, suppose that RDF(O) is the set of triples
obtained by serializing the OWL 2 ontology O into
RDF and assume that O′ is the OWL 2 ontology
obtained by applying the reverse transformation to
RDF(O). Then, O and O′ are logically equivalent
(i.e., they have exactly the same models).

The ontologies O and O′, even if logically equiva-
lent, can still be structurally different; however, the
mappings have been designed such that the struc-
ture of the ontologies is preserved whenever possi-
ble. Thus, syntactic changes may arise only ifO uses
certain OWL 2 features, which we briefly discuss in
the rest of this section; in all other cases, the struc-
ture of ontologies is preserved.

First, since representing n-ary associations in
RDF is cumbersome, certain axioms that involve
more than two objects are translated into several
independent axioms involving only two objects. For
example, axiom

EquivalentClasses(A B C D) (43)

is serialized into RDF as the following triples:

〈A, owl :equivalentClass, B〉 (44)
〈B, owl :equivalentClass, C〉 (45)
〈C, owl :equivalentClass, D〉 (46)

On these triples, the reverse mapping produces the
following axioms:

EquivalentClasses(A B) (47)
EquivalentClasses(B C ) (48)
EquivalentClasses(C D) (49)

Clearly, (43) and (47)–(49) are logically, but not
structurally equivalent.

Second, since RDF does not allow blank nodes
to occur in the property position, inverse properties
in property assertions are translated into equivalent
assertions without the inverse property. For exam-
ple, axiom

PropertyAssertion(InverseOf(P ) o1 o2) (50)

is translated into the following triple:

〈o2, P, o1〉 (51)

The reverse mapping then produces the following
axiom, which is semantically equivalent but not
structurally equivalent with the original one:

PropertyAssertion(P o2 o1) (52)

Third, annotations containing punned entities
may not be correctly preserved. For example, as-
sume that an ontology O uses a URI u both as
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a class and an individual, but it defines different
annotations for these two usages of U :

EntityAnnotation( Class(u)
Annotation(P a1)) (53)

EntityAnnotation( NamedIndividual(u)
Annotation(Q a2)) (54)

The translation of O into RDF contains the follow-
ing triples:

〈u, P, a1〉 (55)
〈u,Q, a2〉 (56)

When translating these triples back into the struc-
tural specification, it is not possible to reproduce the
original structure since the information that a1 has
been attached to the usage of u as a class and a2 to
the usage of u as an individual has been lost.

Finally, the RDF syntax of OWL 2 is backwards-
compatible with that of OWL 1 DL in the sense
that every OWL 1 DL ontology O1 in RDF syntax
can be mapped into a valid OWL 2 ontology O2 us-
ing the reverse transformation from RDF to OWL
2 such that O2 has exactly the same set of models
as O1, except for the effects due to annotations. As
mentioned in Section 2.5, annotation properties are
interpreted as binary predicates in OWL 1; in OWL
2, however, they are not given any semantics. Even
so, the semantics of the rest of the ontology is pre-
served: every model of O1 is a model of O2 and any
model of O2 can be extended to a model of O1 by
interpreting the annotation properties.

3.10. Semantics

In order to avoid the problems described in
Section 2.6, OWL 2 defines a clean direct model-
theoretic semantics that clearly corresponds to
the description logic SROIQ(D)—a language ob-
tained by extending SROIQ with datatypes. It
has been defined for ontologies in Functional-Style
Syntax; however, since this syntax is in one-to-one
correspondence with the MOF metamodel and the
XML Syntax, the semantics can directly be applied
to these representations as well. The clear corre-
spondence between SROIQ(D) and OWL 2 facil-
itates the direct reuse of the reasoning algorithms
available for SROIQ(D) and therefore support for
OWL 2 in existing DL reasoners.

At the moment, OWL 2 does not provide an RDF-
style semantics. Therefore, in OWL 2, the transfor-
mation of ontologies in Functional-Style Syntax into

RDF graphs is a purely syntactic process: the triples
obtained by the RDF serialization are not intended
to be interpreted directly, and the meaning of the
RDF semantics on them does not define the mean-
ing of the corresponding OWL 2 ontology.

There is, however, an interest within the Work-
ing Group in providing an RDF-style semantics to
OWL 2. Currently, the design of such a semantics is
work in progress. We believe, however, that the re-
quirement for full semantic compatibility with RDF
is of doubtful benefit: to the best of our knowledge,
the systems that rely on the RDF-compatible se-
mantics of OWL 1 do not fully support it. Moreover,
the definition of an RDF semantics for the whole
language will exacerbate the problems described in
Section 2.6 and it may prevent further extensions to
OWL 2 since the RDF semantics is not robust under
extensions.

3.11. Profiles

To address the problems outlined in Sections 2.8
and 2.9, the OWL 2 specification identifies several
profiles—trimmed down versions of the language
that trade some expressive power for efficiency
of reasoning. In logic, profiles are usually called
fragments or sublanguages. OWL 2 provides three
profiles—OWL 2 EL, OWL 2 QL, and OWL 2 RL—
each of which provides different expressive power
and targets different application scenarios.

The OWL 2 profiles are defined by placing restric-
tions on the Functional-Style Syntax of OWL 2. An
ontology written in any of these profiles is a valid
OWL 2 ontology. Therefore, the semantics of the
OWL 2 profiles is given by the direct model theo-
retic semantics of OWL 2. Ontology modelers who
want to ensure that their ontologies are in a certain
profile can use these restrictions as a guide; further-
more, tool developers can easily use the correspond-
ing grammars to create tools for checking which pro-
file an ontology belongs to.

Apart from the profiles specified here, there are
many other possible profiles of OWL 2. For example,
one could define a subset of the OWL 2 Functional-
Style syntax that corresponds to OWL 1 Lite or
OWL 1 DL. Therefore, those subsets could also be
viewed as OWL 2 profiles. We next discuss the fea-
tures and applicability of each of the profiles of OWL
2.
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3.11.1. The OWL 2 EL Profile
OWL 2 EL is based on the EL++ family of de-

scription logics, which have been designed to allow
for efficient reasoning with large terminologies [1].
The main reasoning service of interest is classifica-
tion—the computation of the subclass relation be-
tween all the classes in an ontology. Reasoning in
this profile can be implemented in time that is poly-
nomial in the size of the ontology [1].

The central modeling features of this profile are
class conjunction and SomeValuesFrom restrictions.
In order to achieve tractability, the use of nega-
tion, disjunction, AllValuesFrom restrictions, and
cardinality restrictions is disallowed. Many large-
scale ontologies can be captured using this pro-
file; a prominent example is the medical ontology
SNOMED CT. In particular, OWL 2 EL captures a
very common pattern used in ontologies for defining
concepts, namely the combined use of conjunction
and existential quantification. For example, it al-
lows one to state that each heart contains a left
ventricle and a right ventricle as its parts.

3.11.2. The OWL 2 QL Profile
OWL 2 QL is based on the DL-Lite family of de-

scription logics [7], which has been designed to allow
for efficient reasoning with large amounts of data
structured according to relatively simple schemata.
The main reasoning service in the this profile is con-
junctive query answering: given an ontology O and
a conjunctive query q, the problem is to compute
all tuples of individuals that constitute an answer
to q w.r.t. O. This task can be implemented by first
rewriting q into a union of conjunctive queries uq
that captures the information implicit in O; then,
uq can be answered over the data set by using con-
ventional relational database techniques.

The profile provides most features needed to
capture conceptual models, such as UML class di-
agrams, ER diagrams, and database schemas. For
example, it provides means for representing class
disjointness, the domain and range of properties,
and participation constraints (e.g., every paper has
an author). In order to ensure that each ontology
can indeed be rewritten into a union of conjunctive
queries, however, OWL 2 QL forbids the use of dis-
junction and AllValuesFrom restrictions, as well as
certain other features that require recursive query
evaluation.

3.11.3. The OWL 2 RL Profile
OWL 2 RL has been designed such that several

reasoning tasks can be implemented as a set of rules
in a forward-chaining rule system. To achieve this
implementability criterion, OWL 2 RL is not as ex-
pressive as OWL 2. OWL 2 RL is attractive in situ-
ations where a limited extension of RDF-Schema is
desired.

OWL 2 RL allows for most constructs of OWL 2;
however, to allow for rule-based implementations of
reasoning, the way these constructs can be used in
axioms has been restricted. These restrictions en-
sure that a reasoning engine only needs to reason
with the individuals that occur explicitly in the on-
tology. Thus, in OWL 2 RL it is not possible to use
SomeValuesFrom restrictions on the right-hand side
of a subclass axiom, as this would imply the exis-
tence of an “anonymous” individual—that is, an in-
dividual that is not explicitly known by name. Sim-
ilar principles have been followed in the design of
Description Logic Programs (DLP) [9].

The OWL 2 RL specification also provides a set
of first-order implications that can directly be ap-
plied to an RDF graph in order to derive the relevant
consequences. These implications are reminiscent of
the pD∗ semantics for OWL 1 [35], and they pro-
vide a useful starting point for the implementation
of forward-chaining reasoners for OWL 2 RL. These
first-order implications are equivalent to the direct
model-theoretic semantics of OWL 2 in a certain
well-defined sense: if O is an OWL 2 RL ontology
in Functional-Style Syntax and it does not employ
punning, then O and its RDF encoding RDF(O) en-
tail the same set of ground facts.

4. Implementation and Adoption

Considerable progress has been achieved in the
development of tool support for OWL 2. This is due
to the improvements made in the specification which
have facilitated the implementors’ work, as well as
to the pressing need in practice for the additional
functionality provided by OWL 2. The development
activity can be grouped into two major categories:
the extension of existing APIs and ontology man-
agement systems to the new syntax and the MOF
metamodel, and the extension of reasoning systems
to support the new expressive features.

The new syntax is currently supported by the new
version of the OWL API. The widely used Protégé
system has recently been extended with support for
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the additional constructs provided by OWL 2 [14].
The commercial tool TopBraid composer also cur-
rently supports OWL 2. The KAON2 API is in the
process of being extended to make it compliant with
the MOF metamodel of OWL 2, and we hope that
other widely used APIs will soon follow suit.

Support for OWL 2 has also been included into
the FaCT++ and the Pellet systems. The developers
of these tools have not reported any difficulties in
extending their existing implementations with the
new constructs, and it is hoped that other major DL
reasoning systems, such as RACER and HermiT,
will soon follow suit and support SROIQ.

Furthermore, there are already stable implemen-
tations of the OWL 2 profiles. OWL 2 EL has been
implemented in the CEL system; 18 Arity Corpo-
ration has also made a commercial implementation
available. 19 OWL 2 QL has been implemented in
the QuONto 20 and Owlgres 21 systems. The OWL
2 RL profile has been recently implemented in Ora-
cle’s database system version 11g.

Concerning the adoption of the language, OWL 2
has already been used in several application areas,
such as bioinformatics [33,38], clinical sciences [10],
engineering [15], and law [13]. This is partly due to
the availability of editors and reasoners for OWL 2.
We expect that, as the tools continue to improve,
OWL users will increasingly migrate to OWL 2 and
will start using the new language features. More-
over, we expect that the specification of profiles and
the availability of reasoning engines that allow for
tractable forms of reasoning will facilitate the use
of OWL by users who were initially discouraged by
scalability and efficiency issues.

5. The Future of OWL

Apart from addressing acute problems with ex-
pressivity, a goal in the development of OWL 2 was
to provide a robust platform for future development.
We conclude this paper by speculating about poten-
tial future extensions.

Syntactic Extensibility. Since the first OWL-ED
workshop, many proposals for syntactic sugar were
put forward. In particular, extending OWL with a
“macro” system, allowing users to define their syn-

18http://lat.inf.tu-dresden.de/systems/cel/
19http://www.arity.com/
20http://www.dis.uniroma1.it/~quonto
21http://pellet.owldl.org/owlgres/

tactic shortcuts, might be very useful. For example,
one could define SomeAllValuesFrom(P A) as a syn-
tactic shortcut for a SomeValuesFrom restriction
conjoined with an AllValuesFrom.

Query Languages. Expressive query languages are
very important for practical applications of OWL.
Variants of conjunctive queries have repeatedly been
proposed, and were extended to algebraic languages
in proposals such as EQL-Lite [6] and nRQL [39].
The challenge for the OWL development community
is to clarify the exact relationships between these
proposals, as well as the relationship with the RDF
query language SPARQL.

Integration with Rules. The W3C Rules Interchange
Format (RIF) Working Group 22 is currently work-
ing on producing an interchange format for the rules
on the Web. Furthermore, many approaches to in-
tegrating rules with DL-based languages were pro-
posed in the past couple of years. Hence, integrating
the RIF effort with the development of OWL is a
task of critical importance to both communities. A
set of rules that are of particular relevance are the
so-called DL-safe rules [25] since they provide useful
expressive power while still allowing for practically
feasible implementations.

Nonmonotonic Extensions. Users have repeatedly
asked for nonmonotonic extensions of OWL, as they
are crucial to solving advanced modeling problems
such as exceptions or database-like constraints.
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