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1 Introduction

Ontologies often describe domains in which concepts are highly interconnected.
An example is the description of structured objects, which consist of many parts
connected in complex ways. Such objects abound, for example, in molecular bi-
ology and in the clinical sciences. Clinical ontologies such as GALEN, the Foun-
dational Model of Anatomy (FMA) and the National Cancer Institute (NCI)
Thesaurus are currently being used in large-scale applications, and they de-
scribe numerous structured objects. For example, FMA models the human hand
as consisting of the fingers, the palm, various bones, blood vessels, and so on:
all of which are highly interconnected.

The representation of structured objects or, in general, of domains involving
highly interconnected concepts, poses well-known problems to OWL (and also to
OWL 2). In fact, OWL can only faithfully describe domains where the objects
are connected in a certain tree-like manner since OWL enjoys (a variant of)
the tree model property, which is responsible for the decidability of reasoning.
This property, however, also prevents sufficiently accurate description of complex
domains since OWL axioms cannot describe arbitrary relational structures.

To address this lack of expressivity we propose to extend OWL with descrip-
tion graphs, which consist of vertices labeled with concepts and edges labeled
with roles. These graphs are schema-level statements that specify patterns of
connections between objects. In addition, we allow for first-order rules [1] to
represent conditional statements about graphs. For example, we can represent
the hand and its parts using description graphs and use rules to represent state-
ments such as ‘if a bone in the hand is fractured, then the hand is fractured
as well’. We can then use OWL to model non-structural aspects of the domain,
such the fact that a medical doctor is a person with an MD degree.

We thus obtain a powerful knowledge representation formalism that addresses
our limitations in expressive power, but it is undecidable. It is widely recognized,
however, that reasoning algorithms are more likely to be effective in practice
if the underlying logics are decidable. We have identified the main causes for
undecidability and investigated restrictions under which our formalism can be
made decidable while still solving most of the identified expressivity problems.

To this end, we have exploited a fundamental observation about the represen-
tation of structured objects, namely that modeling them requires only a bounded



(but possibly large) number of objects. The fact that the domain is bounded is
intrinsic to the modeling problem since structured objects are always modeled up
to a certain level of granularity. For example, a human body consists of a certain
number of organs. These organs can be decomposed into smaller parts; however,
each such decomposition will eventually reach the parts that the modeler does
not want to describe, or know how to describe any further. For example FMA
describes the skeleton of the hand, but it does not describe the inner structure of
the distal phalanges of the fingers. The level of granularity of the representation
naturally determines a bound in the sequence of description graphs one needs
to represent and in the size of each of those graphs.

Effectively, when describing the structure of an object, we often obtain a
hierarchy of parts. This hierarchy does not contain cycles; for example, if the
carpal bones are part of the hand, then it will most likely not be the case that
the hand will eventually become a part of the carpal bones. To reflect the acyclic
nature of the representation, we impose an acyclicity condition in our formalism
which ensures that the description graphs representing each of those parts are
arranged in a hierarchical manner and lead to a bounded representation.

Our acyclicity condition, however, is not sufficient to ensure decidability due
to the arbitrary interaction between OWL axioms and rules [2]. To attain de-
cidability, we limit their interaction by introducing role separation, which places
restrictions in the usage of atomic roles in the OWL axioms, graphs and rules.

This paper summarizes the results published in a number of recent papers
[3, 4]. Here, we focus on presenting our formalism by means of examples and on
pointing out future applications. We refer the readers interested in the details of
our more technical results to [3, 4]. We shall assume, however, that the reader is
familiar with OWL and the basics of description logics (DLs).

2 Problems with Modeling Complex Structures

To understand the limitations of modeling structured objects in DLs (and hence
in OWL), we consider the problem of modeling the skeleton of the human hand
(see Figure 1a). The carpal bones form the base of the hand. The central part
contains the metacarpal bones, one leading to each finger. The fingers consist of
phalanges: the proximal phalanges are connected to the metacarpal bones, and
all fingers apart from the thumb contain a middle phalanx between the proximal
and the distal phalanx. This structure can be conceptualized as in Figures 1b–1e.

Figures 1b–1e could be represented in DLs using an ABox A. ABox asser-
tions, however, represent concrete data; thus, A would represent the structure of
one particular hand. In this paper, we are concerned with modeling structured
objects at the schema level—that is, we want to describe the general structure of
all hands. We should be able to instantiate such a description many times. For
example, if we say that each patient has a hand, then, for each concrete patient,
we should instantiate a different hand, each of the structure shown in Figures
1b–1e. This clearly cannot be achieved using ABox assertions.



We can give a logical, schema-level interpretation to Figures 1b–1e by treat-
ing vertices as concepts and arrows as participation constraints specifying their
relationships. For example, Hand and Index finger are concepts and the arrow
between them says that the index is a part of the hand. Participation constraints
are represented in ontologies using DL axioms such as (1)–(5)3.

Let K be a DL knowledge base containing the following axioms.4

Index finger ⊑ ∃hasPart .Distal phalanx(1)

Index finger ⊑ ∃hasPart .Middle phalanx(2)

Proximal phalanx ⊑ ∃isPartOf .Index finger(3)

Distal phalanx ⊑ ∃attachedTo.Middle phalanx(4)

Middle phalanx ⊑ ∃attachedTo.Proximal phalanx(5)

Sym(attachedTo)(6)

isPartOf ≡ Inv(hasPart)(7)

Let I be an interpretation corresponding to Figure 1e in the obvious way.
Clearly, I satisfies K, which justifies the formalization of Figure 1e using K.

Unfortunately, the ontology K is underconstrained: some models of K do not
correspond to the actual structure of the index finger from Figure 1e. Axioms (2)
and (4) imply the existence of two middle phalanges of the index finger, but K
does not state that these two middle phalanges must be the same object. Thus,
an interpretation I ′ corresponding to Figure 2 is also a model of K.

This discrepancy prevents us from drawing any conclusions that rely on the
nontree connections in the structure; for example, if the index finger has a broken
distal phalanx, then we should conclude that the phalanx adjacent to the middle
phalanx is broken (since this is the same broken phalanx). Furthermore, it can
also cause problems with the performance of reasoning. For example, we might
use axioms (2)–(7) to describe the relationships between the index finger, its
proximal phalanx and its middle phalanx.

While admitting a model corresponding to Figure 1e, these axioms do not
state that the index finger in (3) is a part of the “initial” index finger. Hence,
the interpretation I ′′ from Figure 3 is also a model of these axioms.

In fact, the latter model is ‘canonical’ in the sense that it reflects the least
amount of information derivable from the axioms. In order to disprove an en-
tailment, a DL reasoner will try to construct such ‘canonical’ model. In practice,
these models can be highly repetitive and much larger than the intended ones,
which, according to our experience, is the main reason why DL reasoners cannot
process ontologies such as FMA and certain versions of GALEN.

3 The role attached to is symmetric, so we do not orient the edges labeled with it.
4 For brevity, we use in these examples the terms Distal phalanx, Middle phalanx

and Proximal phalanx as an abbreviation for Distal phalanx of index finger, Mid-
dle phalanx of index finger and Proximal phalanx of index finger respectively. It
should be clear from the context that we are referring to the index finger.



(a) Anatomy of the Hand (b) Hand (Ghand )

(c) Finger (Gfinger ) (d) Thumb (Gthumb) (e) Index (Gindex finger )

Fig. 1: The Anatomy of the Hand and its Conceptual Models

We propose to extend K with additional axioms that make all its models
correspond as much as possible to the intended conceptualization in Figures 1b–
1e. Such axioms, however, cannot be stated in DLs since DL languages exhibit
(a variant of) the tree model property [5]: whenever a DL knowledge base K has
a model, it has a model of a certain tree shape. The relationship between the
index finger and its phalanges cannot be represented as a tree. Hence, in order to
faithfully represent Figures 1b–1e, we must leave the confines of DLs and OWL.

3 The Formalism

We now present our formalism. We first introduce description graphs.

Definition 1 (Description Graph). An ℓ-ary description graphis a directed
labeled graph G = (V, E, λ, M) with V = {1, . . . , ℓ} a set of vertices, E ⊆ V × V

a set of edges, and λ a labeling function that assigns a set of atomic concepts
or the negation of atomic concepts λ〈i〉 to each vertex i ∈ V and a set of atomic
roles λ〈i, j〉 ⊆ NR to each edge 〈i, j〉 ∈ E. Finally, M ⊆ NC is a set of main
concepts for G. For A an atomic concept, VA is the set of vertices that contain
A in their label; that is, VA = {k ∈ V | A ∈ λ〈k〉}.
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Fig. 2: Unintended Model I ′
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Index finger Middle phalanx Proximal phalanx Index finger

hasPart attachedTo isPartOf

Fig. 3: Unintended Infinite Model I ′′

Thus, description graphs are labeled graphs where the nodes are labeled with
concepts and the edges with roles. The main concepts indicate the objects whose
structure is defined by the graphs. For example, the main concepts for the graph
in Figure 1b (framed with rounded rectangles) are Hand and Palm , meaning
that this graph defines the structure of the hand and the palm. Intuitively, an
instance of a main concept implies the existence of a graph instance.

Definition 2 (Rules). Let NI and NV be disjoint sets of individuals and vari-
ables. An atom is of the form C(s), R(s, t), or s ≈ t, for s, t ∈ NI ∪ NV , C a
concept, and R a role. A rule is an expression of the form

U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn(8)

where Ui and Vj are atoms, m ≥ 0, and n ≥ 0. W.l.o.g we assume that the
body never contains ≈. The conjunction U1 ∧ . . . ∧ Um is called the body, and
the disjunction V1 ∨ . . . ∨ Vn is called the head. Variables x and y are directly
connected in a rule r if they both occur in a body atom of r, and connected is
the transitive closure of directly connected. A rule r is connected if each pair of
variables x and y occurring in r is connected in r.

A graph rule is a rule of the form (8) where all concepts and roles in atoms
are atomic, and that can also contain graph atoms of the form G(t1, . . . , tk), for
G an ℓ-ary description graph and ti ∈ NI ∪ NV .

Next, we introduce graph specializations, which allow us to represent objects
at different levels of abstraction. For example, we would like to describe the



abstract structure common to all fingers as shown in Figure 1c; then, we should
be able to specialize this structure for the index finger and introduce the middle
phalanx, as in Figure 1e. The graph specialization Gfinger ⊳ Gthumb states that
the graph for the thumb specializes the graph for a finger.

Definition 3 (Graph Specialization). A graph specialization is an axiom of
the form G1 ⊳ G2, where G1 = (V1, E1, λ1, M1) and G2 = (V2, E2, λ2, M2) are
description graphs with V1 ⊆ V2.

Next, we introduce axioms that allow us to properly connect graph instances.
For example, Ghand contains the vertices 3 and 4 for the thumb and its proximal
phalanx, which correspond to the vertices 1 and 3 of Gthumb . We can specify this
correspondence using a graph alignment of the form Ghand [3, 4] ↔ Gthumb [1, 3].
Intuitively, this ensures that it is not possible for Ghand and Gthumb to share the
thumb without sharing the proximal phalanx as well.

Definition 4 (Graph Alignment). A graph alignment is an expression of the
form G1[v1, . . . , vn] ↔ G2[w1, . . . wn], where G1 and G2 are description graphs
with sets of vertices V1 and V2, respectively, vi ∈ V1 and wi ∈ V2 for 1 ≤ i ≤ n.

Finally, we define GBoxes and graph-extended KBs.

Definition 5 (Formalism). A graph box (GBox) is a tuple G = (GG,GS ,GA)
where GG, GS , and GA are finite sets of description graphs, graph specializations
over GG, and graph alignments over GG. ABoxes are extended to allow for graph
assertions of the form G(a1, . . . , aℓ) for G an ℓ-ary graph. A graph-extended
knowledge base is a 4-tuple K = (T ,P ,G,A) where T is a TBox, P is a program
with a finite number of connected rules, G is a GBox, and A is an ABox.

Next, we define the semantics of the formalism.

Definition 6 (Semantics). An interpretation I = (△I , ·I) is defined as usual,
and it interprets each ℓ-ary description graph G as an ℓ-ary relation over △I ; that
is, GI ⊆ (△I)ℓ. A graph assertion is satisfied in I, written I |= G(a1, . . . , aℓ), iff
〈aI

1, . . . , a
I
ℓ 〉 ∈ GI . Satisfaction of a description graph, graph specialization, and

graph alignment is defined in Table 1. Satisfaction of T , P and A is standard.
A knowledge base K = (T ,P ,G,A) is satisfied in I, written I |= K, if all its
components are satisfied in I.

Thus, each ℓ-ary graph G is interpreted as an ℓ-ary relation GI in which each
tuple corresponds to an instance of G in the interpretation. The key and disjoint-
ness properties in Table 1 ensure that no two distinct instances of G can share
a vertex; for example, no two distinct instances of Ghand can share the vertex
for the thumb. These properties prevent, for example, the occurrence of infinite
‘chains’ of Ghand and therefore are needed to ensure that the representation of
the structured objects is bounded. The start property in Table 1 ensures that
each instance of a main concept A of G occurs in an instance of G. For example,
since Hand is a main concept for Ghand , each instance of Hand must occur as
vertex 1 in an instance of Ghand .



Table 1: Satisfaction of GBox Elements in an Interpretation

I |= G for G = (V, E, λ, M) iff

Key property :

∀x1, . . . , xℓ, y1, . . . , yℓ ∈ △I :
〈x1, . . . , xℓ〉 ∈ GI ∧ 〈y1, . . . , yℓ〉 ∈ GI ∧

W

1≤i≤ℓ

xi = yi →
V

1≤j≤ℓ

xj = yj

Disjointness property :

∀x1, . . . , xℓ, y1, . . . , yℓ ∈ △I : 〈x1, . . . , xℓ〉 ∈ GI ∧ 〈y1, . . . , yℓ〉 ∈ GI →
V

1≤i<j≤ℓ

xi 6= yj

Start property : for each atomic concept A ∈ M ,

∀x ∈ △I : x ∈ AI → ∃x1, . . . , xℓ ∈ △I : 〈x1, . . . , xℓ〉 ∈ GI ∧
W

k∈VA

x = xk

Layout property :

∀x1, . . . , xℓ ∈ △I : 〈x1, . . . , xℓ〉 ∈ GI →
V

i∈V, B∈λ〈i〉

xi ∈ BI ∧
V

〈i,j〉∈E, R∈λ〈i,j〉

〈xi, xj〉 ∈ RI

I |= G1 ⊳ G2 iff

∀x1, . . . , xℓ2 ∈ △I : 〈x1, . . . , xℓ1 , . . . , xℓ2〉 ∈ GI
2 → 〈x1, . . . , xℓ1〉 ∈ GI

1

I |= G1[v1, . . . , vn] ↔ G2[w1, . . . wn] iff, for each 1 ≤ i ≤ n,

∀x1, . . . , xℓ1 , y1, . . . , xℓ2 ∈ △I :
〈x1, . . . , xℓ1〉 ∈ GI

1 ∧ 〈y1, . . . , yℓ2〉 ∈ GI
2 ∧ xvi = ywi →

V

1≤j≤n

xvj = ywj

Note: ℓ(i) is the arity of the description graph G(i).

Graph specializations are interpreted as inclusions over the graph relations;
for example, Gfinger ⊳ Gindex finger means that each instance of an index finger
is also an instance of a finger. The two graphs share all the vertices of the more
general graph, and the more specific graph can introduce additional vertices.
Finally, graph alignments state that, whenever two graphs share some vertex
from the specified list, then they share all other vertices from the list as well.
For example, the alignment Ghand [3, 4] ↔ Gthumb [1, 3] states that, if instances
of Ghand and Gthumb share vertices 3 and 1, respectively, then they must also
share vertices 4 and 3, respectively.

The main reasoning problem is satisfiability checking, as subsumption and
instance checking can be reduced to satisfiability as usual.

4 Other Applications

The potential applications of our formalism are not restricted to anatomy. In
particular, our formalism could be applied to domains where the concepts used in
the representation are highly interconnected, but where the number of arbitrarily
interconnected objects has a natural bound in size. In this section, we provide a



Fig. 4: The Benzene Ring

few additional examples of domains that cannot be faithfully represented using
OWL, but which could be modeled using our formalism.

Chemical Compounds: The precise description of molecules is an important
issue in bio-informatics [6]. In particular, a suitable formal representation of
molecules and chemical compounds would enable the integration of chemical
information at different levels of granularity [6]. The description of molecules
involves objects whose structure is not tree-like. For example, a benzene is an
organic chemical compound which naturally occurs in crude oil. Benzenes are
hydrocarbons— compounds whose structure involves at least one benzene ring
(see Figure 4). Apart from the non-tree benzene ring, hydrocarbons could contain
arbitrary chains of carbon and hydrogen atoms, whose structure is tree-like.

Scientific Workflows: Scientific workflows are depictions of a sequence of op-
erations, such as actions involved in scientific experiments. Scientific workflows
are often represented as DAGs with the nodes being computational components
and the edges paths along which data and results can flow between components.
The precise description of workflows is increasingly important, for example, in
bioinformatics. There has been attempts of providing semantics to workflows
using OWL [7]; however, the non-tree like and bounded nature of many realistic
workflows makes them more suitable for representation using description graphs.

Engineering: OWL has recently being used in engineering domains such as, for
example, in the aerospace industry. These domains involve the representation of
very complex structured objects, such as passenger aircrafts. The representation
of such objects is specially well-suited for our formalism.

5 Technical Results

This section summarizes our main technical results on reasoning with graph-
extended KBs. The first relevant result is the undecidability of the satisfiability
problem: the interaction between DL axioms and rules alone, or between graphs
and rules, or between DL axioms and graphs already leads to undecidability.

Theorem 1. Checking satisfiability of graph-extended KBs K = (T ,P ,G,A) is
already undecidable in the following situations:

– K = (T , ∅,G,A) with T a TBox in ALCF and G = (GG, ∅, ∅)



– K = (∅,P ,G,A) with P a Horn program and G = (GG, ∅, ∅)
– K = (T ,P , ∅,A) with P a Horn program and T in ALC

Undecidability is partly due to the fact that one could axiomatize models
containing unbounded sequences of graphs. In practice, however, structured ob-
jects are modeled up to a certain level of granularity. Effectively, we often obtain
a hierarchy of parts. For example, if the carpal bones are part of the hand, then
it will most likely not be the case that the hand will eventually become a part of
the carpal bones. To reflect the acyclic nature of the representation, we impose
the following acyclicity condition in our formalism.

Definition 7 (Acyclic GBox). A GBox G = (GG,GS ,GA) is acyclic if a strict
order ≺ on GG exists s.t., for each G = (V, E, λ, M) and G′ = (V ′, E′, λ′, M ′) in
GG, if G 6� G′, then, for each A ∈ M ′ and ⊳∗ the reflexive–transitive closure of
⊳ in GS: (i) if G′

⊳∗ G, then ¬A ∈ λ〈i〉 for each i ∈ V \ V ′; (ii) if G′ 6⊳∗ G, then
¬A ∈ λ〈i〉 for each i ∈ V .

We call a graph-extended knowledge base acyclic if its GBox is acyclic. Intu-
itively, G1 ≺ G2 means that G2 is subordinate to G1. In our example, we would
have Ghand ≺ Gfinger and Ghand ≺ Gthumb , since the structures of the finger and
the thumb are subordinate to the structure of a hand, respectively. We would
also have Gfinger ≺ Gthumb , since a finger is more general than the thumb. The
conditions in Definition 7 make it sure that no cycles occur.

Unfortunately, acyclicity is not sufficient to regain decidability To this end,
we have proposed to place restrictions on the usage of atomic roles in T , P and
G in order to limit the possible interaction between different types of axioms.

Definition 8 (Role Separation). A role separation scheme Λ is a triple of the
form (NT , NP , NG) where NT , NP , and NG are (not necessarily disjoint) sets
of atomic roles. The roles in NT , NP , and NG are called T -, P-, and G-roles,
respectively. A KB K = (T ,P ,G,A) is Λ-separated if all roles occurring in T ,
P, and G are T -, P-, and G-roles, respectively. We say that Λ = (NT , NP , NG)
is weak if NT ∩ NP = ∅; it is strong if additionally NG = NP . A knowledge base
K is weakly separated (respectively strongly separated) if a weak (respectively
strong) role separation scheme Λ exists such that K is Λ-separated.

Intuitively, weak separation prevents any interaction between T and P . It
allows one to describe general knowledge using TBox axioms and then to spe-
cialize such knowledge using graphs. For example, even if the general structure
of a finger were described using DLs (e.g., this description might be a part of a
general, coarse-grained KB that does not use graphs), one could describe more
specialized knowledge, such as the structure of an index finger, using graphs. One
can thus choose the appropriate style of modeling for knowledge at different lev-
els of granularity. The main restriction is that one cannot use rules involving
roles occuring in DL axioms. Acyclicity and weak separation seem reasonable
assumptions in all the application domains mentioned in Section 4.

Strong separation restricts the modeling style in a more significant way than
weak separation: essentially, it requires the modeler to determine in advance



which knowledge will be modeled using DLs and which using graphs. Thus,
knowledge modeled using DLs cannot be specialized using graphs and vice versa.
The restriction to strong separation is particularly limiting in the use case of
chemical compounds in Section 4. It is, however, reasonable in the anatomy and
engineering use cases.

Theorem 2. Satisfiability of a weakly separated and acyclic K = (T ,P ,G,A) is
NExpTime-complete for T in SHOQ and undecidable for T in ALCIF . For
K strongly separated and acyclic, satisfiability is decidable for T in SHOIQ.
Moreover, if T is in either SHIQ or SHOQ, it is NExpTime-complete.

It is worth noticing that inverse roles interact badly with graphs in the case
of weak separation. In contrast, decidability is much more robust in the case of
strong separation. Finally, we emphasize that it is possible to design practical
reasoning algorithms for the decidable cases identified in Theorem 2. We have
developed a prototypical implementation on top of the HermiT reasoner [8].5

The preliminary evaluation we have conducted has shown promising results.

6 Future Work

The main challenge is to validate the applicability of our formalism in appli-
cations. To this end, we will extend Protégé to support description graphs and
apply our formalism in the practical scenarios. We will also improve the imple-
mentation of our reasoning algorithms.
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