
HermiT: A Highly-Efficient Reasoner for
Description Logics

Rob Shearer, Boris Motik, and Ian Horrocks

Oxford University Computing Laboratory
Oxford, OX1 3QD, UK

{rob.shearer,boris.motik,ian.horrocks}@comlab.ox.ac.uk

Abstract. HermiT is a reasoner for the Description Logic SHOIQ +.
The system is based on a novel “hypertableau” calculus and includes a
number of new optimizations. HermiT demonstrates significantly faster
performance when classifying large and complex ontologies than other
state-of-the-art reasoners. HermiT is also the first reasoner able to clas-
sify a number of important knowledge bases, including the original ver-
sion of the GALEN ontology.

1 Introduction

Reasoning services for Description Logic ontologies, such as subsumption testing
and classification, are usually performed by testing the consistency of a number
of knowledge bases derived from the original ontology [1]. Satisfiability of a class,
for example, is reduced to checking consistency of a knowledge base in which an
individual is a member of that class. Tableau reasoners perform such consistency
tests by attempting to construct a model for the knowledge base. The difficul-
ties in constructing such models arise from two primary sources. First, there are
often a great number of different possible constructions which might be models;
in general a tableau algorithm must analyze every one of these possibilities be-
fore concluding that no model is possible. Second, the models build by tableau
reasoners can be extremely large, even for relatively small ontologies. These two
sources of complexity also frequently interact: when the models constructed are
large there are also usually more possible models which need to be considered,
and reasoning can become impossible in practice.

HermiT is a Description Logic reasoning system based on an entirely new
architecture which addressed both of the major sources of complexity. HermiT
implements a hypertableau calculus which greatly reduces the number of models
which must be considered (down to only a single model for a significant subset
of ontologies). HermiT also incorporates the anywhere blocking strategy, which
limits the sizes of the models which are constructed. Finally, HermiT incorpo-
rates a novel and highly-efficient approach to handling nominals in the presence
of number restrictions and inverse roles; we expect that the ability to reason
with nominals will allow ontology authors to make much freer use of nominals
than has been possible to date. This combination of fundamental algorithmic
improvements enables a range of additional optimizations.



2 Rob Shearer, Boris Motik, and Ian Horrocks

Our tests show that HermiT is as fast as other DL reasoners when classifying
relatively easy-to-process ontologies, and usually much faster than other reason-
ers when classifying more difficult ontologies. Furthermore, HermiT is able to
classify a number of ontologies which no other reasoner has previously been able
to handle.

The HermiT system also serves as a platform for implementation of reasoning
for new ontologies features. HermiT already includes support for reasoning with
ontologies which include description graphs.

HermiT is available as an open-source Java library, and includes both a Java
API and a simple command-line interface. We use the OWL API both as part
of the public Java interface and as a parser for OWL files; HermiT can process
ontologies in any format handled by the OWL API, including RDF/XML, OWL
Functional Syntax, KRSS, and OBO.

2 ???

2.1 Reducing Tableau Complexity

To show that a knowledge base K = (R, T ,A) is satisfiable, a tableau algorithm
constructs a derivation—a sequence of ABoxes A0,A1, . . . ,An, where A0 = A
and each Ai is obtained from Ai−1 by an application of one inference rule.1 The
inference rules make the information implicit in the axioms of R and T explicit,
and thus evolve the ABox A towards a (representation of a) model of K. The
algorithm terminates either if no inference rule is applicable to someAn, in which
case An represents a model of K, or if An contains an obvious contradiction, in
which case the model construction has failed. The following inference rules are
commonly used in DL tableau calculi.

– t-rule: Given (C1 t C2)(s), derive either C1(s) or C2(s).
– u-rule: Given (C1 u C2)(s), derive C1(s) and C2(s).
– ∃-rule: Given (∃R.C)(s), derive R(s, t) and C(t) for t a fresh individual.
– ∀-rule: Given (∀R.C)(s) and R(s, t), derive C(t).
– v-rule: Given an axiom C v D and an individual s, derive (¬C tD)(s).

The t-rule is nondeterministic: if (C1tC2)(s) is true, then C1(s) or C2(s) or both
are true. Therefore, tableau calculi make a nondeterministic guess and choose
either C1 or C2; if choosing C1 leads to a contradiction, the algorithm must
backtrack and try C2. Thus, K is unsatisfiable only if all choices fail to construct
a model. We next discuss several sources of complexity in this procedure, and
how HermiT addresses them.

1 Some formalizations of tableau algorithms work on completion graphs [5], which have
a natural correspondence to ABoxes.



HermiT System Description 3

a0 b1 a1 an−1 bn an
R R R R

¬A
∀R.¬A tA
∀R.¬A

∀R.¬A tA
¬A

∀R.¬A

∀R.¬A tA
∀R.¬A
¬A

∀R.¬A tA
∀R.¬A
¬A

∀R.¬A tA
¬A

∀R.¬A

A
∀R.¬A tA
∀R.¬A
¬A

(i)
(ii)
(iii)
(iv)

Fig. 1: Or-Branching Example

Or-Branching Handing disjunctions through reasoning by case is often called
or-branching. The v-rule is the main source of or-branching, as it adds a dis-
junction for each TBox axiom to each individual in an ABox and is thus a major
source of inefficiency [1, Chapter 9]. For example, let T1 and A1 be a TBox and
an ABox as specified in (1).

T1 = {∃R.A v A}
A1 = {¬A(a0), R(a0, b1), R(b1, a1), . . . , R(an−1, bn), R(bn, an), A(an)} (1)

The ABox A1 is graphically shown in Figure 1. The individuals occurring in the
ABox are represented as black dots, an assertion of the form A(a0) is represented
by placing A next to the individual a0, and an assertion of the form R(a0, b1) is
represented as an R-labeled arrow from a0 to b1. Initially, A1 contains only the
concept assertions shown in line (i).

To satisfy the axiom in T1, a tableau algorithm applies the v-rule, thus
adding the assertions shown in line (ii) of Figure 1. Tableau algorithms are
usually free to choose the order in which they process the assertions in an ABox;
in fact, finding an order that exhibits good performance in practice requires
advanced heuristics [15]. Let us assume that the algorithm chooses to process
the assertions on ai before those on bj . Hence, by applying the rules to all ai,
the algorithm derives the assertions shown in line (iii) of Figure 1; after that,
by applying the rules to all bi, the algorithm derives the assertions shown in line
(iv) of Figure 1. The ABox now contains both A(an) and ¬A(an), which is a
contradiction. Thus, the algorithm needs to backtrack its most recent choice, so
it flips its guess on bn−1 to A(bn−1). This generates a contradiction on bn−1,
so the algorithm backtracks from all guesses for bi, changes the guess on an to
A(an), and repeats the work for all bi. This also leads to a contradiction, so
the algorithm must revise its guess for an−1; but then, two guesses are again
possible for an. In general, after revising a guess for ai, all possibilities for aj ,
i < j ≤ n, must be reexamined, which results in exponential behavior. None of
the standard backtracking optimizations [1, Chapter 9] are helpful: the problem
arises because the order in which the individuals are processed makes the guesses
on ai independent from the guesses on aj for i 6= j.



4 Rob Shearer, Boris Motik, and Ian Horrocks

The axiom ∃R.A v A, however, is not inherently nondeterministic: it is equiv-
alent to the Horn clause ∀x, y : [R(x, y) ∧A(y)→ A(x)], which can be applied
in a bottom-up manner to derive the assertions A(bn), A(an−1), . . . , A(a0) and
reveal a contradiction on a0. These inferences are deterministic, so we can con-
clude that K1 is unsatisfiable without any backtracking. This example suggests
that the processing of TBox axioms in tableau algorithms can be “unnecessarily”
nondeterministic.

Various absorption optimizations [1, Chapter 9] have been developed to ad-
dress this problem. The basic absorption algorithm tries to rewrite TBox axioms
into the form B v C where B is an atomic concept. Then, instead of deriving
¬B t C for each individual in an ABox, C(s) is derived only if the ABox con-
tains B(s); thus, the absorbed axioms can be applied in a “more deterministic”
way. This technique has been extended in several ways. Role absorption [14]
rewrites axioms into the form ∃R.> v C; then, C(s) is derived only if an ABox
contains R(s, t). Binary absorption [7] rewrites GCIs into the form B1 uB2 v C;
then, C(s) is derived only if an ABox contains both B1(s) and B2(s). Neither of
these two optimizations, however, helps us deal with the axiom in (1) directly.
Role absorption produces an axiom ∃R.> v A u ∀R.¬A, which still contains a
disjunction in the consequent. Furthermore, binary absorption is not applicable
to (1), since the axiom does not contain two concepts on the left-hand side of
the implication symbol v. The axiom (1) can be absorbed if it is rewritten as
A v ∀R−.A. In practice, however, it is often unclear in advance which combi-
nation of transformation and absorption techniques will yield the best results;
absorption algorithms are, therefore, typically guided primarily by heuristics and
may not eliminate all nondeterminism.

HermiT’s hypertableau algorithm generalizes these absorption optimizations
by rewriting description logic axioms into DL-clauses which allow standard ab-
sorption, role absorption, and binary absoprtion to be performed simultane-
ously, as well as allowing additional types of “absorption” impossible in stan-
dard tableau calculi. In the hypertableau calculus, an axiom A uB u ∃R.C v D
would only introduce D(s) if the ABox already contained A(s), B(s), R(s, t),
and C(t) for some t. Furthermore, HermiT actually rewrites DL concepts to
further reducing nondeterminism: testing satisfiability of the concept A t ¬B
causes nondeterministic application of the t-rule in standard tableau reasoners;
HermiT transforms this concept into an expression equivalent to A v B, and
thus is able to apply absorption-style optimizations much more pervasively than
standard tableau reasoners.

And-Branching The introduction of new individuals in the ∃-rule is often
called and-branching, and it is another major source of inefficiency in tableau
algorithms [1]. Consider, for example, the following (satisfiable) knowledge base
K2.

T2 = { A1 v ≥ 2S.A2, . . . , An−1 v ≥ 2S.An, An v A1,
Ai v (B1 t C1) u . . . u (Bm t Cm) for 1 ≤ i ≤ n }

A2 = { A1(a) }
(2)



HermiT System Description 5

a

S S

S

S S

S

(a) Ancestor Blocking

a

(b) Anywhere Blocking

Fig. 2: And-Branching Example

At-least restrictions are dealt with in tableau algorithms by the ≥-rule, which
is quite similar to the ∃-rule: from ≥ nR.C(s), the ≥-rule derives R(s, ti) and
C(ti) for 1 ≤ i ≤ n, and ti 6≈ tj for 1 ≤ i < j ≤ n. Thus, the assertion A1(a) im-
plies the existence of at least two individuals in A2, which imply the existence
of at least two individuals in A3, and so on. Given K2, a tableau algorithm thus
constructs a binary tree, shown in Figure 2a, in which with each individual is
labeled with some Ai and an element of Π = {B1, C1} × . . .× {Bm, Cm}. Each
individual at depth n is an instance of An; because of the GCI An v A1, this
individual must be an instance of A1 as well, so we can repeat the whole con-
struction and generate an even deeper tree. Clearly, a näıve application of the
tableau rules does not terminate if the TBox contains existential quantifiers in
cycles.

To ensure termination is such cases, tableau algorithms employ blocking [6],
which is based on an important observation about the shape of ABoxes that
can be derived from some input ABox A. The individuals in A are called named
(shown as black circles), and they can be connected by role assertions in an arbi-
trary way. The individuals introduced by the ∃- and ≥-rules are called blockable
(shown as white circles). For example, if ∃R.C(a) is expanded into R(a, s) and
C(s), then s is called a blockable individual and it is an R-successor of a. It
is not difficult to see that, if the knowledge base does not contains nominals,
no tableau inference rule can connect s with some element of A: the individual
s can participate only in inferences that derive an assertion of the form D(s),
create a new successor of s, or, in the presence of (local) reflexivity, connect s
to itself. Hence, each ABox A′ obtained from A can be seen as a “forest” of the
form shown in Figure 3: each named individual can be arbitrarily connected to
other named individuals and to a tree of blockable successors.

The forest-like structure of ABoxes enables ancestor blocking : an individual
s is directly blocked if s has an ancestor t identical to s;2 all successors of s are

2 The definition of “identical” depends on the logic used.



6 Rob Shearer, Boris Motik, and Ian Horrocks

t′

t

s′

s

u′

u

blocks

Fig. 3: Forest-Like Shape of ABoxes

then indirectly blocked. In standard tableau algorithms, the ∃- and ≥-rules are
applicable only to nonblocked individuals, which ensures termination. Intuitively,
blocking ensures that the part of the ABox rooted at s “behaves” just like the
part rooted at t, so we can generate a model by replacing the individual s with
a copy of the tree rooted at t. The model will be infinite (the copy of the t
subtree will include another copy of s, which will be replaced with another copy
of t, and so on), but we need never actually construct it—an ABox with blocked
individuals is sufficient to prove that such a model exists.

Consider now an “unlucky” run of a tableau algorithm with ancestor blocking
on K2. The number of elements in Π is exponential, so it can happen that block-
ing comes into effect only after the algorithm constructs an exponentially deep
tree; since the tree is binary, it is doubly exponential in total. In a “lucky” run,
the algorithm can always pick Bj instead of Cj ; then, the algorithm constructs
a polynomially deep binary tree, so the tree is exponential in total. Thus, the
and-branching caused by the ∃- and ≥-rules can lead to unnecessary generation
of an ABox that is doubly exponential in the size of the input, which limits the
scalability of tableau algorithms in practice.

We employ pairwise blocking from Section 2.1 to ensure termination of the
calculus; to curb and-branching, however, we extend it to anywhere pairwise
blocking. The key idea is to extend the set of potential blockers for s beyond the
ancestors of s. In doing so, we must avoid cyclic blocks: if s is allowed to block
t and t can block s, then neither s nor t is guaranteed to have all its successors
constructed, which would render the calculus incomplete. Therefore, we param-
eterize our algorithm with a strict ordering ≺ on individuals that contains the
ancestor relation. We allow t to block s only if, in addition to conditions men-
tioned in Section 2.1, we have t ≺ s. If ≺ coincides with the ancestor relation,
anywhere blocking becomes equivalent to the ancestor blocking.

Anywhere blocking can reduce and-branching in practice. Consider again the
knowledge base K2 from Section 2.1. After we exhaust the exponentially many
members of Π, all subsequently created individuals will be blocked. In the best
case, we can always choose Bj instead of Cj , so we create a polynomial path in



HermiT System Description 7

the tree and then use the individuals from that path to block their siblings, as
shown in Figure 2b. Hence, with anywhere blocking, satisfiability of K2 can be
checked in polynomial time.

Nominal Generation In logics which include both inverses and number re-
strictions, nominal concepts—concepts which refer to a particular individual in
the ABox—make the blocking rules more complex. Because each nominal has a
unique identity it cannot be copied, so it cannot be considered a part of a subtree
which occurs multiple times in a model due to blocking. In fact, the combination
of inverse roles and number restrictions can limit the number of neighbors of a
nominal node, making them “unique” and uncopyable as well; these neighbors
can impose uniqueness constraints on neighbors of neighbors, and so on. In order
to ensure the correctness of blocking, it is necessary to identify precisely which
individuals can be copied and which are unique.

Standard tableau algorithms identify unique individuals, called root individ-
uals, recursively, beginning with the individuals in the initial ABox. Whenever
there are number restrictions and inverse roles which limit the number of neigh-
bors of such a unique individual, the tableau NN -rule guesses exactly how many
such neighbors will exist in the final model and constructs these individuals.
Number restrictions on these individuals can cause another application of the
NN -rule to produce unique neighbors-of-neighbors, and so on. This procedure
will eventually terminate, but each possible “guess” for each NN -rule applica-
tion must be explored if a model cannot be found, and each application can
produce a large number of new individuals, leading to larger models. A single
large number in a number restriction can make reasoning using the NN -rule
completely impractical.

HermiT addressed this problem by replacing the NN -rule with an NI rule
which does not introduce new root individuals but instead simply labels existing
individuals as uncopyable. By keeping track of unique identifiers for each un-
copyable individual this approach is able to ensure correctness of the algorithm
without increasing the sizes of the models constructed.

2.2 Additional Optimizations

DL reasoning algorithms are often used in practice to compute a classification
of a knowledge base K—that is, to determine whether K |= A v B for each pair
of atomic concepts A and B occurring in K. Clearly, a näıve classification algo-
rithm would involve a quadratic number of calls to the subsumption checking
algorithm, each of which can potentially be highly expensive. To obtain accept-
able levels of performance, various optimizations have been developed that re-
duce the number of subsumption checks [2] and the time required for each check
[1, Chapter 9]. Along these lines, we have developed two simple optimizations
that, to the best of our knowledge, have not been considered previously in the
literature.



8 Rob Shearer, Boris Motik, and Ian Horrocks

Reading Classification Relationships from Concept Labels Let (A, C)
be an ABox and a set of HT-clauses obtained by clausifying a knowledge base
K, and let A and B be atomic concepts for which we want to check whether
K |= A v B; since A and B are atomic, this is the case if and only if (A′, C) is
unsatisfiable where A′ = A ∪ {A(a),¬B(a)} and a is a fresh individual. Let A1

be a clash-free ABox labeling a leaf in a derivation from (A′, C). We can use A1

to learn the following things about subsumption in K. The proof of these claims
is trivial, and we omit if for the sake of brevity.

1. If C(a) ∈ A1 and the derivation of C(a) does not depend on a nondetermin-
istic choice, then K |= A v C.

2. If A1 has been obtained from A′ deterministically, then K |= A v C only if
C(a) ∈ A1.

3. If C(b) ∈ A1 but D(b) 6∈ A1 for C and D concepts and b an individual that
is not blocked, then K 6|= C v D.

From the first two properties, if K is a deterministic knowledge base such as
GALEN, we can classify it using a linear number of calls to the hypertableau
algorithm: for each atomic concept A, we check satisfiability of (A ∪ {A(a)}, C); if
the algorithm produces a clash-free ABox A1, the superclasses of A are contained
in LA1(a). These optimizations are applicable in the case of tableau algorithms as
well; however, due to increased or-branching, they are likely to be less effective.

Caching Blocking Labels Let T and R be a SHIQ TBox and RBox, respec-
tively, and let C = ΞT R(T ∪ R). Furthermore, let us assume that the classifi-
cation of T ∪ R involves n consecutive calls to the hypertableau algorithm for
({Ai(ai),¬Bi(ai)}, C). Then, if a derivation from ({Ai(ai),¬Bi(ai)}, C) contains
a leaf node labeled with a clash-free ABox Ai, we can use the nonblocked indi-
viduals from Ai as potential blockers in all subsequent satisfiability satisfiability
checks of ({Aj(aj),¬Bj(aj)}, C) for j > i.

This is a simple consequence of the following fact. Let I1 and I2 be two
models of T ∪ R such that 4I1 ∩4I2 = ∅; furthermore, let I be defined as
4I = 4I1 ∪4I2 , AI = AI1 ∪AI2 , and RI = RI1 ∪RI2 , for each atomic concept
A and each atomic role R. Then, by a simple induction on the structure of
axioms in T ∪ R, it is trivial to show that I |= T ∪ R. This property does not
hold in the presence of nominals, which can impose a bound on the number of
elements in the interpretation of a concept; the bound could be satisfied in I1
and I2 individually, but violated in I.

Our optimization is correct because, instead of ({Ai(ai),¬Bi(ai)}, C), we can
check the satisfiability of (Ai ∪ {Ai(ai),¬Bi(ai)}, C), and in doing so we can use
the individuals from Ai as potential blockers due to anywhere blocking. This
optimization can be seen as a very simple form of model caching [1, Chapter 9],
and it has been key to obtaining the results that we present in Section ??. For
example, on GALEN only one subsumption test is costly because it computes a
substantial part of a model of the TBox; all subsequent subsumption tests reuse
large parts of that model.



HermiT System Description 9

In practice, we do not need to keep the entire ABox Ai around; rather, for
each nonblocked blockable individual t with a predecessor t′, we simply need to
retain the sets LAi(t), LAi(t

′), LA(t, t), LAi(t, t
′), and LAi(t

′, t).

Individual Re-use [Find some content for this.]

2.3 Features

HermiT includes some nonstandard functionality that is currently not available
in any other system. In particular, HermiT supports reasoning with ontologies
containing description graphs. As shown in [9] and [10], description graphs allow
for the representation of structured objects—objects composed of many parts
interconnected in arbitrary ways. These objects abound in bio-medical ontologies
such as FMA and GALEN and they cannot be faithfully represented in OWL.
For example, FMA models the human hand as consisting of the fingers, the palm,
various bones, blood vessels and so on, all of which are highly interconnected.

3 Empirical Results

To evaluate our reasoning algorithm in practice, we compared HermiT with the
state-of-the-art tableau reasoners Pellet 1.5.1 [11], and FaCT++ 1.1.10 [16]. Pel-
let and FaCT++ are based on the existing reasoning algorithms [5], so they differ
from HermiT in both derivation rules and blocking strategy. (Both Pellet and
FaCT++ employ ancestor blocking.) In order to estimate the practical impact
of these two differences separately, we implemented a version of HermiT with
ancestor blocking, which we call HermiT-Anc.

We selected test ontologies from the Gardiner ontology suite [3]—a collec-
tion of OWL ontologies gathered from the Web; the Open Biological Ontologies
(OBO) Foundry3—a collection of biology and life science ontologies; and several
variants of the GALEN ontology [12]—a large and complex biomedical ontology.
Most ontologies from the Gardiner and OBO collections contain datatypes, which
are currently not supported in HermiT; therefore, we have converted datatypes
in these ontologies to atomic classes. After eliminating syntactically incorrect
OWL ontologies, we obtained a test suite consisting of 139 ontologies.

We measured the time needed to classify each test ontology using all of the
mentioned reasoners. All tests were performed on a 2.2 GHz MacBook Pro with
2 GB of physical memory. A classification attempt was aborted if it exhausted
all available memory (Java tools were allowed to use 1.5 GB of heap space), or
if it exceeded a timeout of 20 minutes.

The majority of the test ontologies—126 of them, to be precise—were classi-
fied in under a second by HermiT, and under ten seconds by Pellet and FaCT++.
For these “trivial” ontologies, the performance of HermiT was comparable to
that of the other reasoners. Therefore, we consider here only the tests results
3 http://obofoundry.org/



10 Rob Shearer, Boris Motik, and Ian Horrocks

Table 1: Results of Performance Evaluation

Ontology Name
Classification Times (seconds)

HermiT HermiT-Anc Pellet FaCT++

Fly Taxonomy 1.1 1.2 1.2 5.3
GO Term DB 1.6 1.8 36.4 19.2

Biological Process 2.4 1.6 10.7 79.2
NCI 2.8 3.7 17.0 30.2

MGED 5.7 11.2 0.8 0.249
BP XP OBOL 8.7 8.5 505.1 1742.3

OWL Guide Food 19.3 29.6 14.2 1388.1
FMA Lite 43.8 error error error

DLP ExtDnS 95.8 error 7.1 0.1
FMA-constitutional part error error error error

GALEN-horrocks 1.5 1.5 13.5 156.9
Not-GALEN 1.6 1.8 54.1 200.4

GALEN-doctored 3.9 4.9 error 2836.1
GALEN-original 11.9 error error error
GALEN-module1 error error error error

GALEN-full error error error error

for “interesting” ontologies—that is, ontologies that are either not trivial or on
which the tested reasoners exhibited a significant difference in performance.

Table 1 summarizes the results of tests on the “interesting” ontologies. In
most cases, HermiT performs as well as or better than the other reasoners.

HermiT performs worse than Pellet and FaCT++ on the DLP ExtDnS on-
tology. This ontology includes a substantially more complex RBox than most
other ontologies in the test suite, with 384 role axioms. The tested version of
HermiT implements transitivity through axiom rewriting; our analysis revealed
that HermiT’s poor performance on DLP ExtDnS is due to inefficiencies in this
rewriting. We expect our development version of HermiT to exhibit substantially
improved performance on ontologies with many role axioms.

HermiT also performs worse than Pellet and FaCT++ on the MGED ontol-
ogy. This ontology contains nominals, as well as a moderately complex ABox
(over 600 assertions). Since the ontology uses nominals, the ABox must be taken
into account when classifying the ontology. The completion graph caching opti-
mization [13] can be used to avoid repeating the same reasoning steps over the
ABox for each independent subsumption test; however, HermiT does not yet
implement this optimization, which may explain its worse performance. HermiT
completes each subsumption test quite quickly (on the order of 30ms), suggesting
that HermiT should achieve performance levels comparable to other reasoners
once completion graph caching is implemented.

Different versions of GALEN have commonly been used for testing perfor-
mance of DL reasoners. The full version of the ontology (called GALEN-full)



HermiT System Description 11

cannot be processed by any of the reasoners. To simplify the ontology, we ex-
tracted a module (called GALEN-module1) from GALEN-full using the tech-
niques from [4]. Although the module is much smaller than the full ontology,
no reasoner was able to classify it either. Similarly, no reasoner could classify
FMA-constitutional part. Our analysis has shown that, due to a large number
of cyclic axioms, on these ontologies reasoners construct extremely large ABoxes
and eventually exhaust all available memory. To alleviate this problem, we are
currently developing a reasoning technique in which the ∃-rule is modified such
that it nondeterministically tries to reuse individuals from the ABox generated
thus far. Our initial experiments have shown very promising results [8].

Because of the failure of DL reasoners to process GALEN-full, various simpli-
fied versions of GALEN have often been used in practice. GALEN-horrocks and
Not-GALEN are two versions found in the Gardiner suite, GALEN-original is a
version of GALEN from roughly 10 years ago, and GALEN-doctored has been
obtained from GALEN-original by removing about a 100 “difficult” axioms. As
Table 1 shows, these ontologies are still challenging for state-of-the-art reason-
ers. HermiT, however, can classify them quite efficiently; in fact, HermiT is the
only reasoner that can classify GALEN-original. All the other reasoners, includ-
ing HermiT-Anc, quickly run out of memory on GALEN-original; this suggests
that, by drastically reducing the sizes of generated ABoxes, anywhere blocking
can mean the difference between success and failure on complex ontologies.

On ontologies that can be processed by both HermiT and HermiT-Anc, both
reasoners show comparable performance, suggesting that the ABoxes generated
on these ontologies are not particularly large. On some of these ontologies (e.g.,
BP XP OBOL and OWL Guide Food), Pellet and FaCT++ perform significantly
more slowly; this suggests that the increase in HermiT’s performance is mainly
due to the hypertableau rule application strategy and reduced nondeterminism.
Thus, while the hypertableau strategy may not be as important as anywhere
blocking in determining the practical limits of DL reasoners, it can still lead to
significant performance improvements in practice.

4 Conclusions and Future Directions

We have described HermiT, a new reasoner for SHOIQ+ (and OWL) based
on novel algorithms and optimizations. HermiT shows significant performance
advantages over other reasoners across a wide range of real-world ontologies. In
several cases, HermiT is able to classify ontologies that no other reasoner can
process. HermiT also includes support for some non-standard ontology features,
such as description graphs.

We intend to continue to develop HermiT to track the emerging OWL 2.0
standard, including extended datatype support. We expect the performance of
HermiT to continue to improve as we refine our optimization techniques, in-
cluding the development of heuristics to maximize the benefit of our “individual
reuse” technique.



12 Rob Shearer, Boris Motik, and Ian Horrocks

In our future work, we intend to extend the ABox reasoning capabilities
of HermiT with both a more expressive ABox query interface as well as new
optimization techniques which allow reasoning with extremely large ABoxes.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2nd edition, August 2007.

2. F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, and E. Franconi. An Empirical
Analysis of Optimization Techniques for Terminological Representation systems or:
“Making KRIS Get a Move on”. Applied Intelligence, 4(2):109–132, 1994.

3. T. Gardiner, I. Horrocks, and D. Tsarkov. Automated Benchmarking of Description
Logic Reasoners. In Proc. of the 2006 Description Logic Workshop (DL 2006),
volume 189 of CEUR Workshop Proceedings, 2006.

4. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular Reuse of On-
tologies: Theory and Practice. Journal of Artificial Intelligence Research, 31:273–
318, 2008.

5. I. Horrocks and U. Sattler. A Tableau Decision Procedure for SHOIQ. Journal
of Automated Reasoning, 39(3):249–276, 2007.

6. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the De-
scription Logic SHIQ. In D. MacAllester, editor, Proc. of the 17th Int. Conf. on
Automated Deduction (CADE-17), volume 1831 of LNAI, pages 482–496, Pitts-
burgh, USA, June 17–20 2000. Springer.

7. A. K. Hudek and G. Weddell. Binary Absorption in Tableaux-Based Reasoning
for Description Logics. In B. Parsia, U. Sattler, and D. Toman, editors, Proc. of
the 2006 Int. Workshop on Description Logics (DL 2006), volume 189 of CEUR
Workshop Proceedings, Windermere, UK, May 30-June 1 2006.

8. B. Motik and I. Horrocks. Individual Reuse in Description Logic Reasoning. In
Proc. of the 4th Int. Joint Conf. on Automated Reasoning (IJCAR 2008), Sydney,
Australia, August 10–15 2008. Springer. To appear.

9. Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, and Ulirke Sattler. Repre-
senting Structured Objects using Description Graphs. In Proc. of the 11th Int.
Joint Conf. on Principles of Knowledge Representation and Reasoning (KR 2008),
Sydney, Australia, August 16–19 2008. AAAI Press. To appear.

10. Boris Motik, Bernardo Cuenca Grau, and Ulrike Sattler. Structured Objects in
OWL: Representation and Reasoning. In Jinpeng Huai, Robin Chen, Hsiao-Wuen
Hon, Yunhao Liu, Wei-Ying Ma, Andrew Tomkins, and Xiaodong Zhang, editors,
Proc. of the 17th Int. World Wide Web Conference (WWW 2008), pages 555–564,
Beijing, China, April 21–25 2008. ACM Press.

11. B. Parsia and E. Sirin. Pellet: An OWL-DL Reasoner. Poster, In Proc. of the 3rd
Int. Semantic Web Conference (ISWC 2004), Hiroshima, Japan, November 7–11,
2004.

12. A. L. Rector and J. Rogers. Ontological and Practical Issues in Using a Descrip-
tion Logic to Represent Medical Concept Systems: Experience from GALEN. In
P. Barahona, F. Bry, E. Franconi, N. Henze, and U. Sattler, editors, Tutorial Lec-
tures of the 2nd Int. Summer School 2006, volume 4126 of LNCS, pages 197–231,
Lisbon, Portugal, September 4–8 2006. Springer.



HermiT System Description 13

13. E. Sirin, B. Cuenca Grau, and B. Parsia. From Wine to Water: Optimizing De-
scription Logic Reasoning for Nominals. In P. Doherty, J. Mylopoulos, and C. A.
Welty, editors, Proc. of the 10th Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning (KR 2006), pages 90–99, Lake District, UK, June 2–5 2006.
AAAI Press.

14. D. Tsarkov and I. Horrocks. Efficient Reasoning with Range and Domain Con-
straints. In V. Haarslev and R. Möller, editors, Proc. of the 2004 Int. Workshop
on Description Logics (DL 2004), volume 104 of CEUR Workshop Proceedings,
Whistler, BC, Canada, June 6–8 2004.

15. D. Tsarkov and I. Horrocks. Ordering Heuristics for Description Logic Reasoning.
In L. Pack Kaelbling and A. Saffiotti, editors, Proc. of the 19th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2005), pages 609–614, Edinburgh, UK, July 30–
August 5 2005. Morgan Kaufmann Publishers.

16. D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System De-
scription. In Proc. of the 3rd Int. Joint Conf. on Automated Reasoning (IJCAR
2006), volume 4130 of LNAI, pages 292–297, Seattle, WA, USA, August 17–20
2006. Springer.


