
Acyclicity Conditions and their Application to
Query Answering in Description Logics

Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens Kupke,
Despoina Magka, Boris Motik, and Zhe Wang

Department of Computer Science, Oxford University
Oxford, United Kingdom

Abstract

Answering conjunctive queries (CQs) over a set of
facts extended with existential rules is a fundamental
reasoning problem although undecidable due to non-
termination of the main reasoning algorithm used—the
chase. Several acyclicity conditions have been formu-
lated that ensure chase termination. In this paper, we
show that acyclicity can also be practically relevant
for description logic (DL) reasoning. Due to the high
complexity of answering CQs over DL ontologies, appli-
cations often solve this problem using materialisation,
in which ontology consequences are precomputed us-
ing variants of the chase. Due to the non-termination
problem, the execution of the algorithm is restricted
only to rules that fall within the OWL 2 RL profile,
which results in incomplete reasoning. After presenting
two novel acyclicity conditions (model-faithful acyclic-
ity (MFA) and model-summarising acyclicity (MSA)),
we investigate the practical applicability of these and
other acyclicity conditions for DL query answering.
Our experiments reveal that many existing ontolo-
gies are MSA and that materialisation is typically not
too large. Thus, our results suggest that principled,
materialisation-based reasoning for ontologies beyond
the OWL 2 RL profile may be practically feasible.

Introduction

Existential rules are positive, function-free first-order
implications that may contain existentially quantified
variables in the head. In databases, they are known
as dependencies (Abiteboul, Hull, and Vianu 1995) and
are used to capture a wide range of schema constraints;
they have, e.g., been used as declarative rules for data
transformation in data exchange—the problem of trans-
forming a database structured according to a source
schema into a database structured according to a tar-
get schema (Fagin et al. 2005). They are also the basis
for KR formalisms, such as datalog± (Cal̀ı, Gottlob,
and Pieris 2010; Cal̀ı et al. 2010).

Answering conjunctive queries (CQs) over a set of
facts extended with existential rules is a fundamental
reasoning problem in both database and KR settings.

Copyright c© 2011, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

This problem is undecidable (Beeri and Vardi 1981),
and it can be characterised using chase (Johnson and
Klug 1984; Maier, Mendelzon, and Sagiv 1979): a tech-
nique, closely related to hypertableau (Motik, Shearer,
and Horrocks 2009), that computes facts implied by
the rules in a forward-chaining manner, thus producing
a universal model in which the query is evaluated.

Rules with existentially quantified variables in the
head—which we call generating rules—may cause chase
to generate new individuals, and cycles involving gen-
erating rules may lead to non-termination; moreover,
determining whether chase terminates on a set of rules
is undecidable. Chase, however, has been used to iden-
tify decidable classes of existential rules, and this has
been done in two ways. In the first approach, rules
are restricted such that their (possibly infinite) uni-
versal models can be represented using finitary means;
this includes rules with universal models of bounded
treewidth (Baget et al. 2011) and guarded rules (Cal̀ı
et al. 2010). In the second approach, rules are checked
using an acyclicity condition that is sufficient (but not
necessary) to prove chase termination; roughly speak-
ing, acyclicity conditions analyse information flow be-
tween the rules to ensure that no cyclic applications
of generating rules are possible. Weak acyclicity (WA)
(Fagin et al. 2005) was one of the first notions, and
it was extended to safety (SF) (Meier, Schmidt, and
Lausen 2009), stratification (ST) (Deutsch, Nash, and
Remmel 2008), acyclicity of a graph of rule dependen-
cies (aGRD) (Baget, Mugnier, and Thomazo 2011)
joint acyclicity (JA) (Krötzsch and Rudolph 2011), and
super-weak acyclicity (SWA) (Marnette 2009).

Acyclicity conditions are relevant for at least two rea-
sons. First, unlike guarded rules, they do not restrict
the shape of the structures that the rules can axioma-
tise; rather, they ensure that the rules can axiomatise
only finite structures. Second, they ensure that the
chase result can be stored and manipulated as if it were
a database. This is important in data exchange, where
the goal is to materialise the resulting database.

In this paper, we show that acyclicity is also rele-
vant for description logics (DLs), the KR formalisms
underpinning the OWL 2 ontology language (Cuenca
Grau et al. 2008). CQ answering is a key reasoning

service in many DL applications, which has been stud-
ied for many DLs (Calvanese et al. 2007; Krötzsch,
Rudolph, and Hitzler 2007b; Glimm et al. 2008;
Ortiz, Calvanese, and Eiter 2008; Lutz, Toman, and
Wolter 2009; Pérez-Urbina, Motik, and Horrocks 2010;
Rudolph and Glimm 2010; Kontchakov et al. 2011).

Due to the high complexity of answering CQs over
expressive DLs, however, applications often solve this
problem using materialisation, in which ontology con-
sequences are precomputed using forward-chaining and
stored in a semantic data store; examples include Ora-
cle’s Semantic Data Store, Sesame, Jena, OWLim, and
DLE-Jena (Wu et al. 2008; Meditskos and Bassiliades
2008; Kiryakov, Ognyanov, and Manov 2005). This ap-
proach is possible if (i) the ontology is Horn (Hustadt,
Motik, and Sattler 2005), and (ii) forward-chaining is
guaranteed to terminate. In practice, condition (ii) is
achieved by computing the materialisation using only
inference rules corresponding to the part of the ontol-
ogy that is in the OWL 2 RL profile; this excludes
generating rules and so is terminating but incomplete
in general. Even if generating rules are partially sup-
ported, as is the case in systems such as OWLim and
Jena (Bishop and Bojanov 2011), this is typically rather
ad hoc, does not guarantee completeness, and may even
result in non-termination. Acyclicity conditions can be
used to address these issues: if a Horn DL ontology
is acyclic, a complete materialisation can be computed
without the risk of non-termination.

Motivated by the practical importance of chase ter-
mination, we explore the landscape of acyclicity condi-
tions, and present two novel conditions: model-faithful
acyclicity (MFA) and model-summarising acyclicity
(MSA). We then go investigate the practical applica-
bility of these and other acyclicity conditions for query
answering over DL ontologies.

Roughly speaking, our acyclicity conditions use a
particular model of the rules to analyse the implications
between existential quantifiers, which is why we call
them model based. In particular, MFA uses the actual
“canonical” model induced by the rules, which makes
it a very general condition. We prove that checking
whether a set of existential rules is MFA is 2ExpTime-
complete, and it becomes ExpTime-complete if the
predicates in the rules are of bounded arity. Due to
the high complexity of MFA checking, MFA may be un-
suitable for practical application, so we introduce MSA.
Intuitively, MSA can be understood as MFA in which
analysis is performed over models that “summarise”
(or overestimate) the actual models. Checking MSA
of existential rules can be realised via checking entail-
ment of ground atoms in datalog programs; we use this
close connection between MSA and datalog to prove
that checking MSA is ExpTime-complete for general
existential rules, and that it becomes coNP-complete if
the arity of rule predicates is bounded; finally, we show
that MSA is strictly more general than SWA—one of
the most general acyclicity conditions currently is use.

Both of these conditions can be applied to general ex-

istential rules without equality. Equality can be incor-
porated via singularisation (Marnette 2009)—a tech-
nique that transforms the rules to encode the effects of
equality. Singularisation is orthogonal to acyclicity: af-
ter computing the transformed rules, one can use MFA,
MSA, or any acyclicty notion to check whether the re-
sult is acyclic; if so, chase with the original set of rules
will terminate. Unfortunately, singularisation is nonde-
terministic: some ways of transforming the rules may
produce acyclic rule sets, but not all ways will do so.
Thus, we refine singularisation to obtain an upper and
a lower bound for acyclicity. We also show that, when
used with JA, the lower bound coincides with WA.

Finally, we turn our attention to the theoretical and
practical questions of applying acyclicity to the prob-
lem of CQ answering over DLs. On the theoretical
side, we show that checking MFA and MSA of Horn-
SHIQ ontologies is PSpace- and PTime-complete, re-
spectively, and that CQs can be answered over acyclic
Horn-SHIQ ontologies in PSpace. The latter problem
is ExpTime-hard for general (i.e., not acyclic) Horn-
SHIQ ontologies (Ortiz, Rudolph, and Simkus 2011),
so acyclicity makes the problem easier. Furthermore,
Horn ontologies can be extended with arbitrary SWRL
rules (Horrocks and Patel-Schneider 2004) without af-
fecting neither decidability nor worst-case complexity,
provided that the union of the ontology and SWRL
rules is acyclic; this is in contrast to the general case,
where SWRL extensions lead to undecidability.

On the practical side, we explore the limits of reason-
ing with acyclic OWL 2 ontologies via materialisation.
We checked MFA, MSA, and JA of a library with 149
Horn ontologies; to estimate the impact of materialisa-
tion, we compared the size of the materialisation with
the number of facts in the original ontologies. Our ex-
periments revealed that many ontologies are MSA, and
that some complex ones are MSA but not JA. Materi-
alisation is typically not too large. Our results suggest
that principled, materialisation-based reasoning for on-
tologies beyond the OWL 2 RL profile may be feasible.
This paper is accompanied with an online technical re-
port containing all proofs.1

Preliminaries
We use the standard notions of constants, function sym-
bols, and predicate symbols, where the latter two are
associated with integer arity; ≈ is the equality predi-
cate. Variables, terms, substitutions, atoms, and first-
order formulae, sentences, interpretations (i.e., struc-
tures), and models are defined as usual. We abbreviate
with ~t a vector of terms t1, . . . , tn and define |~t| = n;
with ϕ(~x) we stress that ~x = x1, . . . , xn are the free vari-
ables of a formula ϕ, and ϕσ is the result of applying a
substitution σ to ϕ. A term, atom, or formula is ground
if it does not contain variables; a fact is a ground atom.
The depth dep(t) of a term t is defined as 0 if t is a con-
stant or a variable, and dep(t) = 1 + maxn

i=1 dep(ti) if

1http://www.cs.ox.ac.uk/isg/TR/acyclicity.pdf

t = f(~t). Satisfaction of a sentence ϕ in an interpreta-
tion I (written I |= ϕ), and entailment of a sentence ψ
from a sentence ϕ (written ϕ |= ψ), are defined as usual.
By a slight abuse of notation, we identify a conjunction
of atoms with a set of atoms. A term t′ is a subterm of
a term t if t′ = t or t = f(~t) and t′ is a subterm of some
ti ∈ ~t; if additionally t′ 6= t, then t′ is a proper subterm
of t. An atom P (~t) contains a term t if t ∈ ~t, and a set
of atoms I contains t if some atom in I contains t.

An instance is a finite set of function-free facts. An
existential rule (or just rule) is a sentence of the form

∀~x∀~z.[ϕ(~x, ~z)→ ∃~y.ψ(~x, ~y)] (1)

where ϕ(~x, ~z) and ψ(~x, ~y) are conjunctions of atoms,
and ~x, ~y, and ~z are pair-wise disjoint. Formula ϕ is
the body, formula ψ is the head, and quantifiers ∀~x∀~z
are often omitted. If ~y is empty, the rule is datalog. In
database theory, satisfaction and entailment are often
considered only w.r.t. finite interpretations under the
unique name assumption (UNA), where distinct con-
stants are interpreted as distinct elements; in contrast,
such assumptions are not customary in KR. Since we
study rules that can be satisfied in finite models, the re-
striction to finite satisfiability is immaterial; also, we do
not assume UNA, which can be axiomatised if needed.

A conjunctive query (CQ) is a formula Q(~x) of the
form ∃~y.ϕ(~x, ~y), where ϕ(~x, ~y) is a conjunction of atoms;
the query is Boolean if ~x is empty. A substitution θ
mapping ~x to constants is an answer to Q(~x) w.r.t. a
set of rules Σ and instance I if Σ ∪ I |= Q(~x)θ.

In first-order logic, ≈ is commonly assumed to have
a predefined interpretation. The semantics of ≈, how-
ever, can be axiomatised explicitly. Let Σ be a set of
rules; w.l.o.g. we assume that no rule in Σ contains ≈
in the body. Then, Σ≈ = ∅ if ≈ does not occur in Σ;
otherwise, Σ≈ contains the following rules:

→ x ≈ x (2)
x1 ≈ x2 → x2 ≈ x1 (3)

x1 ≈ x2 ∧ x2 ≈ x3 → x1 ≈ x3 (4)

P (~x) ∧ xi ≈ x′i → P (x1, . . . , x
′
i, . . . , xn) (5)

The consequences of Σ (where ≈ is treated as having
a well-defined interpretation) and Σ ∪ Σ≈ (where ≈ is
treated as an ordinary predicate) coincide.

Sometimes we use skolemisation to interpret rules
in Herbrand interpretations—possibly infinite sets of
ground atoms. In particular, the skolemisation of an
existential rule r of the form (1) is the rule

ϕ(~x, ~z)→ ψ(~x, ~y)θ (6)

where for each yi ∈ ~y we have θ(yi) = f i
r(~x) with f i

r
a function symbol globally unique for r and yi. The
skolemisation sk(Σ) of a set of rules Σ is obtained by
skolemising each rule in Σ. For each CQ Q(~x), instance
I, and substitution σ, we have Σ ∪ I |= Q(~x)σ if and
only if sk(Σ) ∪ Σ≈ ∪ I |= Q(~x)σ.

Answering CQs can be characterised using chase, and
we use the skolem chase variant (Marnette 2009). The

result of applying a skolemised rule r = ϕ→ ψ to a set
of ground atoms I is the smallest set r(I) that contains
ψσ for each substitution σ from variables in r to terms
in I such that ϕσ ⊆ I; furthermore, for Ω a set of rules,
Ω(I) =

⋃
r∈Ω r(I). Let I be a finite set of ground atoms,

and let Σ be a set of rules. Let Σ′ = sk(Σ) ∪ Σ≈, and
let Σ′f and Σ′n be the subsets of Σ′ containing rules
with and without function symbols, respectively. The
chase sequence for I and Σ is a sequence of sets of facts
I0
Σ, I

1
Σ, . . . where I0

Σ = I, and Ii
Σ for i > 0 is as follows:

• if Σ′n(Ii−1
Σ) 6⊆ Ii−1

Σ , then Ii
Σ = Ii−1

Σ ∪ Σ′n(Ii−1
Σ),

• otherwise Ii
Σ = Ii−1

Σ ∪ Σ′f (Ii−1
Σ).

The chase of I and Σ is defined as I∞Σ =
⋃

i I
i
Σ; note

that I∞Σ can be infinite. Chase can be used as a
‘database’ for answering CQs: a substitution σ is an
answer to Q over Σ and I iff I∞Σ |= Qσ. Chase of I and
Σ terminates if i ≥ 0 exists such that Ii

Σ = Ij
Σ for each

j ≥ i; chase of Σ terminates universally if the chase of
I and Σ terminates for each I. If the skolem chase of I
and Σ terminates, then the nonoblivious chase (Fagin
et al. 2005), and the core chase (Deutsch, Nash, and
Remmel 2008) of I and Σ terminate as well; hence, our
results are applicable to all these chase variants.

The critical instance I∗Σ for rules Σ contains all facts
constructed using all predicates in Σ, all constants in
the body of a rule in Σ, and a fresh constant ∗. If the
skolem chase for I∗Σ and Σ terminates, then the skolem
chase of Σ terminates universally (Marnette 2009).

Universal chase termination is undecidable, and vari-
ous sufficient acyclicity conditions have been proposed.
In the following, let Σ be a set of rules where w.l.o.g. no
variable occurs in more than one rule. A position is an
expression of the form P |i where P is an n-ary predicate
and 1 ≤ i ≤ n. Given a rule r of the form (1) and a vari-
able w, the set PosB(w) of body positions of w consists of
all positions P |i for which P (t1, . . . , tn) ∈ ϕ(~x, ~z) exists
with ti = w. The set PosH(w) is defined analogously.

Weak acyclicity (WA) was proposed by Fagin et al.
(2005), and it is applicable to rules with ≈. The WA
dependency graph DΣ for Σ is defined as follows. Ver-
tices of DΣ are positions. Graph DΣ contains, for
each r ∈ Σ of the form (1), each variable x, and
each P |i ∈ PosB(x), a regular edge from P |i to each
Q|j ∈ PosH(x) such that Q 6= ≈ and, for each y ∈ ~y
and each Q|j ∈ PosH(y) such that Q 6= ≈, a special edge
from P |i to Q|j . Set Σ is WA if DΣ does not contain
a cycle going through a special edge. Atoms involving
equality are effectively ignored by WA.

Joint acyclicity (JA) is a generalisation of WA
(Krötzsch and Rudolph 2011) applicable to equality-
free rules. For an existentially quantified variable y
in Σ, let Move(y) be the smallest set of positions
such that PosH(y) ⊆ Move(y), and PosH(x) ⊆ Move(y)
for each universally quantified variable x with
PosB(x) ⊆ Move(y). The JA dependency graph of Σ
is as follows. The vertices are the existentially quanti-
fied variables in Σ. The graph has an edge from each

y to each y′ such that the rule in which y′ occurs also
contains a universally quantified variable x such that
PosB(x) ⊆ Move(y) and PosH(x) 6= ∅. Set Σ is JA if its
JA dependency graph does not contain a cycle.

Super-weak acyclicity (SWA) (Marnette 2009) is
more general than JA on rules in which a variable oc-
curs more than once in a body atom. Since such rules
are not obtained from DL knowledge bases, we omit the
somewhat technical definition of SWA.

Spezzano and Greco (2010) suggest a rule rewriting
framework for chase termination. A set of rules Σ is
rewritten into a set of rules Σ′ and, subsequently, Σ′
is checked for some existing notions of acyclicity (e.g.
weak acyclicity). Since this rewriting technique is or-
thogonal to the aforementioned termination conditions
and can be combined with any acyclicity condition we
do not examine it in more detail.

Model-Faithful Acyclicity
Ensuring (universal) chase termination can often be
beneficial, and even necessary if the chase result is to be
physically stored and manipulated as a database. Con-
ditions such as JA, however, do not guarantee chase
termination on certain commonly occurring rules.
Example 1. Let Σ be the set of rules (7)–(9).

r1 = A(x)→ ∃y1.R(x, y1) ∧B(y1) (7)
r2 = R(x, z) ∧B(z)→ A(x) (8)
r3 = B(x)→ ∃y2.R(x, y2) ∧ C(y2) (9)

Note that Move(y1) = {R|2, B|1, R|1, A|1}; hence, the
JA dependency graph has a cyclic edge from y1 to itself.
Chase of Σ, however, terminates universally: Assume
that f and g are used to skolemize r1 and r3. Given a
fact A(a), rule r1 derives R(a, f(a)) and B(f(a)), and
rule r3 derives R(f(a), g(f(a))) and C(g(f(a))); after
this, rule r2 is not applicable to R(f(a), g(f(a))) since
variable z in r2 cannot be matched to B(g(f(a))), and
so the chase terminates.

Note that rules r1 and r2 encode the DL axiom
A ≡ ∃R.B, and rule r3 encodes B v ∃R.C; such axioms
abound in OWL ontologies. To enable applications of
chase termination outlined in the introduction, we next
propose a less restrictive acyclicity condition.

Acyclicity conditions try to estimate whether apply-
ing chase to a rule can produce facts that can (possibly
by applying chase to other rules) repeatedly trigger the
same rule. The key difference between various condi-
tions is how rule applicability is determined. For ex-
ample, JA and SWA consider each variable in a rule in
isolation and do not check satisfaction of all body atoms
at once; hence, they overestimate rule applicability. For
example, rule (8) is not applicable to the facts generated
by rule (9), but this can be determined only by consider-
ing variables x and z in rule (8) simultaneously. More
precise chase termination guarantees can be obtained
by tracking rule applicability more ‘faithfully’.

A simple solution is to be completely precise about
rule applicability: one can run the skolem chase and

then use sufficient checks to identify cyclic computa-
tions. Clearly, no sufficient, necessary, and computable
condition for the latter can be given, so we must adopt
a practical approach; for example, we can ‘raise the
alarm’ and stop the run if the chase derives a term
f(~t) where f occurs in ~t. This condition can be fur-
ther refined; for example, one could stop only if f oc-
curs nested in a term some fixed number of times. The
choice of the appropriate condition is thus application
dependent; however, as our experiments show, checking
only for one level of nesting suffices in many cases. In
particular, no term f(~t) with f occurring in ~t is gener-
ated when running chase of Σ in Example 1.

Meier, Schmidt, and Lausen (2009) proposed a re-
lated idea, where the chase is extended to keep track of
a monitor graph, which is used to track rule dependen-
cies and then to stop the chase if certain conditions are
satisfied. This approach uses a variant of the chase that
is don’t-know nondeterministic: while all possible chase
applications produce a model, not all applications will
terminate, which can make acyclicity checking difficult.

In contrast, our notion of acyclicity is independent
from any concrete notion of chase. The given rules Σ are
transformed into a new set of rules Σ′, which tracks rule
dependencies using fresh predicates; then, Σ is identi-
fied as being acyclic if Σ′ entails a special nullary pred-
icate C. Since acyclicity is defined via entailment, it
can be decided using any sound and complete theorem
proving procedure for existential rules. Acyclicity guar-
antees termination of skolem chase, which then guaran-
tees termination of nonoblivious and core chase as well.

We call our new acyclicity notion model-faithful
acyclicity because it estimates rule application pre-
cisely, by examining the actual model of Σ.
Definition 2. For each rule r = ϕ(~x, ~z)→ ∃~y.ψ(~x, ~y)
and each variable yi ∈ ~y, let Fi

r be a fresh unary pred-
icate unique for r and yi; also, let S and D be fresh
binary predicates and let C be a fresh nullary predicate.
Then, MFA(r) is the following rule:

ϕ(~x, ~z)→ ∃~y.[ψ(~x, ~y) ∧
∧

yi∈~y

[Fi
r(yi) ∧

∧
xj∈~x

S(xj , yi)]]

For Σ a set of rules, MFA(Σ) is the smallest set that
contains MFA(r) for each rule r ∈ Σ, rules (10)–(11),
and rule (12) instantiated for each predicate Fi

r:

S(x1, x2)→ D(x1, x2) (10)
D(x1, x2) ∧ S(x2, x3)→ D(x1, x3) (11)

Fi
r(x1) ∧ D(x1, x2) ∧ Fi

r(x2)→ C (12)

Set Σ is model-faithful acyclic (MFA) w.r.t. an in-
stance I if I ∪MFA(Σ) 6|= C; furthermore, Σ is univer-
sally MFA2 if Σ is MFA w.r.t. I∗Σ.

MFA is defined as a semantic, rather than a syntac-
tic condition, and entailment I ∪MFA(Σ) 6|= C can be
checked using sound and complete first-order calculus.

2In the rest of this paper we typically omit ‘universally’.

In the following section we show that MFA is strictly
more general than SWA. We next show that MFA char-
acterises derivations of skolem chase in a particular way.
Definition 3. A term t is cyclic if some f(~s) is a sub-
term of t, and some f(~u) is a proper subterm of f(~s).
Proposition 4. A set of rules Σ is not MFA w.r.t. an
instance I iff I∞MFA(Σ) contains a cyclic term.

This characterisation immediately implies termina-
tion of skolem chase of MFA rules in 2ExpTime. The
latter already holds if the rules are WA; hence, CQ an-
swering for MFA rules is not harder than for WA.
Proposition 5. If a set of rules Σ is MFA w.r.t. an in-
stance I, then the skolem chase for I and Σ terminates
in double exponential time.

Proposition 5 implies that answering a BCQ over
MFA rules is in 2ExpTime; furthermore, Cal̀ı, Gottlob,
and Pieris (2010) provide the matching lower bound for
WA rules. We next prove that checking MFA w.r.t. a
specific instance I is in 2ExpTime, and that checking
universal MFA is 2ExpTime-hard. These results pro-
vide tight bounds for both problems.
Theorem 6. For Σ a set of rules, deciding whether
Σ is MFA w.r.t. an instance I is in 2ExpTime, and
deciding whether Σ is universally MFA is 2ExpTime-
hard. Both results hold even if the arity of predicates in
Σ is bounded.

The results of Theorem 6 are somewhat discouraging:
acyclicity according to existing criteria can be checked
in PTime or in NP. We consider MFA to be an “up-
per bound” of practically useful acyclicity conditions.
We see two possibilities for improving these results. In
the following section, we introduce an approximation of
MFA that is easier to check; our evaluation shows that
this condition often coincides with MFA in practice. In
the rest of this section, we show that the complexity is
lower for rules of the following shape.
Definition 7. A rule r of the form (1) is an ∃-1 rule
if ~y is empty or ~x contains at most one variable.

As discussed later on, ∃-1 rules capture (extensions
of) Horn DLs. We next show that BCQ answering and
MFA checking for ∃-1 rules is easier than for the general
rules. The following theorem provides the upper bound;
the lower bounds are given later on for a smaller class
of rules that capture DLs.
Theorem 8. Let Σ be a set of ∃-1 rules, and let I be
an instance. Checking whether Σ is MFA w.r.t. I is in
ExpTime. Furthermore, if Σ is MFA, then answering
a BCQ over Σ and I is in ExpTime as well.

Model-Summarising Acyclicity
The high cost of checking MFA of Σ is due to the
fact that the arity of function symbols in sk(Σ) is un-
bounded, and that the depth of cyclic terms can be lin-
ear in Σ. To obtain an acyclicity condition that is eas-
ier to check, we must coarsen the structure used for the

analysis of cycles. Thus, we define model-summarising
acyclicity, which “summarises” the models of Σ by
reusing the same constant to satisfy an existential quan-
tifier, instead of introducing deeper terms.
Definition 9. Let S, D, and Fi

r be as in Definition 2;
furthermore, for each rule r = ϕ(~x, ~z)→ ∃~y.ψ(~x, ~y) and
each variable yi ∈ ~y, let ci

r be a fresh constant unique
for r and yi. Then, MSA(r) is the following rule, where
θ is a substitution that maps each variable yi ∈ ~y to ci

r:

ϕ(~x, ~z)→ ψ(~x, ~y)θ ∧
∧

yi∈~y

[Fi
r(yi)θ ∧

∧
xj∈~x

S(xj , yi)θ]

For Σ a set of rules, MSA(Σ) is the smallest set that
contains MSA(r) for each rule r ∈ Σ, rules (10)–(11),
and rule (12) instantiated for each predicate Fi

r. Set
Σ is model-summarising acyclic (MSA) w.r.t. an in-
stance I if I ∪MSA(Σ) 6|= C; furthermore, Σ is univer-
sally MSA if Σ is MSA w.r.t. I∗Σ.

Note that MSA(Σ) is a set of datalog rules; hence,
MSA can be checked using any datalog engine. This
connection with datalog provides the complexity up-
per bound of checking MSA: the following theorem fol-
lows from the well known complexity results of check-
ing entailment of a ground atom in a datalog program
(Dantsin et al. 2001). The complexity of reasoning in
datalog is O(nv) where v is the max. number of vari-
ables in a rule and n is the size of Σ; hence, we expect
MSA checking to be feasible if the rules in Σ are ‘short’.
Theorem 10. For Σ a set of rules, deciding whether
Σ is MSA w.r.t. an instance I is in ExpTime, and de-
ciding whether Σ is universally MSA is ExpTime-hard.
The two problems are in coNP and coNP-hard, respec-
tively, if the arity of the predicates in Σ is bounded.

We finish this section by proving strict inclusion rela-
tionships between MFA, MSA, and SWA. In particular,
Theorem 11 and Example 12 show that that MFA is
strictly more general than MSA.
Theorem 11. If a set of rules Σ is MSA (w.r.t. an
instance I), then Σ is MFA (w.r.t. I) as well.
Example 12. Let Σ be the set of rules (13)–(16).

A(x)→ ∃y.R(x, y) ∧B(y) (13)
B(x)→ ∃y.S(x, y) ∧ T (y, x) (14)

A(z) ∧ S(z, x)→ C(x) (15)
C(z) ∧ T (z, x)→ A(x) (16)

Σ is universally MFA, but not universally MSA. ♦

We now show that MSA is more general than SWA,
and thus also more general than JA. The converse does
not hold: the set Σ in Example 1 is MSA, but not SWA.
Theorem 13. If a set of equality-free rules Σ is SWA,
then Σ is universally MSA as well.

Handing Equality via Singularisation
JA and SWA can be applied to rules with equality pro-
vided that the rule set contains rules (2)–(5). In both

cases, however, rules (2) and (5) lead to a cycle as soon
as the rule set contains an existential quantifier. MFA
and MSA are slightly more robust but still fail to cap-
ture many practically relevant rule sets.
Example 14. Consider the following set of rules.

A(x) ∧B(x)→ ∃y.[R(x, y) ∧B(y)] (17)
R(z, x1) ∧R(z, x2)→ x1 ≈ x2 (18)

On these rules and the critical instance, the skolem
chase derives the following infinite set of facts.

R(∗, f(∗)) B(f(∗)) ∗ ≈ f(∗) A(f(∗))
R(f(∗), f(f(∗))) B(f(f(∗))) . . . ♦

Example 14 shows that equalities between terms tend
to proliferate during chase, which can lead to non-
termination. Interestingly, the rules in the example are
WA. This is because WA is sufficient for termination of
the nonoblivious chase—a version of chase that expands
an existential quantifier only if necessary. Already JA
is more general than WA on rules without equality, so
nonoblivious chase does not seem to provide an advan-
tage over skolem chase w.r.t. termination on such rules;
however, Example 14 shows that this is not the case for
rules with equality.

Marnette (2009) proposed a solution to this prob-
lem based on a technique called singularisation. The
idea is to only partially axiomatise ≈ as being reflexive,
symmetric, and transitive, but without the replacement
property cf. rule (5). A set of rules Σ is modified in a
way to take into account the lack of the replacement
rules. This latter step is nondeterministic: there are
many ways to modify Σ and, while some modifications
will lead to chase termination, not all will do so.

We recapitulate the definition of singularisation. A
marking Mr of a rule r of the form (1) is a mapping from
each w ∈ ~x ∪ ~z to a single occurrence of w in ϕ; all other
variable occurrences are unmarked and all constants are
also unmarked. A marking M of Σ has exactly one
marking Mr for each r ∈ Σ. The singularisation of Σ
under M is the set Sing(Σ,M) containing
• for each r ∈ Σ, a rule obtained by replacing each un-

marked occurrence of a body term t in r with a fresh
variable z′ and adding t ≈ z′ to the body, and

• rules (2), (3), (4).
Note that Sing(Σ,M) is unique up to the renaming of
the fresh variables. We write x̂ to denote the marked
occurrence of x in a rule. The properties of singulari-
sation can be summarised as follows: for an arbitrary
set of rules Σ, a marking M for Σ, an instance I, and
a fact P (~c), we have I ∪ Σ ∪ Σ≈ |= P (~c) if and only if

I ∪ Sing(Σ,M) |= ∃~y.[P (~y) ∧
∧

yi∈~y

yi ≈ ci].

Example 15. Singularisation of the marked rule (19)
produces rule (20). Note that singularisation is applied
‘globally’ to all rules, even to those without equality.

A(x̂) ∧B(x) ∧R(x, ẑ)→ C(x) (19)

A(x) ∧B(x1) ∧R(x2, z) ∧
x ≈ x1 ∧ x ≈ x2 → C(x) (20)

The absence of rules (5) often allows the skolem chase
to terminate on Sing(Σ,M); however, this may depend
on the selected marking.
Example 16. Rule (17) from Example 14 admits the
following two markings:

A(x̂) ∧B(x)→ ∃y.[R(x, y) ∧B(y)] (21)
A(x) ∧B(x̂)→ ∃y.[R(x, y) ∧B(y)] (22)

The skolem chase does not universally terminate for the
singularisation obtained from (22); in contrast, the sin-
gularisation obtained from (21) is JA. ♦

We use MFA∃ and MFA∀ to denote the classes of
rule sets that are in MFA for some singularisation and
for all singularisations, respectively; notions MSA∃,
MSA∀, JA∃, and JA∀ are defined analogously. Clearly,
X∀ ⊆ X∃ for each X ∈ {MFA,MSA, JA}, and Exam-
ple 16 shows this inclusion to be proper.
Theorem 17. JA∀ = WA.

Checking all possible markings may not be feasible
(there are exponentially many in the total number of
variables occurring more than once in a rule body).
Theorem 17 shows that JA∀ can be decided using WA.
For the other cases, the following lemma shows how to
reduce the number of markings.
Lemma 18. Let M and M ′ be markings for Σ that
agree on all variables that occur in both body and head,
but not necessarily on the variables that occur only in
the body of a rule. Then Sing(Σ,M) is JA/MSA/MFA
if and only if Sing(Σ,M ′) is JA/MSA/MFA.

Despite this optimisation, the number of markings to
check is still exponential; hence, we next describe a use-
ful approximation. Let Sing∪(Σ) =

⋃
M∈M Sing(Σ,M),

whereM is a set of all markings for Σ that agree on all
variables occurring only in the body of a rule in Σ. By
Lemma 18, it is irrelevant how the markings of body
variables are defined in M. Let MFA∪ be the class
containing rule sets Σ for which Sing∪(Σ) is in MFA;
MSA∪ and JA∪ are defined analogously. As the follow-
ing theorem shows, Sing∪(Σ) provides a ‘lower bound’
on the result attainable via singularisation.
Theorem 19. For each X ∈ {MFA,MSA, JA}, we
have that X∪ ⊆ X∀. The size of

⋃
M∈M Sing(Σ,M)

is exponential in the maximal number of variables that
occur more than once in the body of any one rule in Σ,
and it is linear in the number of rules in Σ.

This result is of particular interest when dealing with
rules that are obtained from DLs, where each rule has
at most one variable that occurs in the head as well as
multiple times in the body. On such rule sets, the size
of Sing∪(Σ) is linear in the size of Σ. For the general
case, we can obtain the same complexity bounds despite
the exponential increase in the number of rules:
Theorem 20. Deciding whether Σ is in MFA∪ (MFA∃,
MFA∀) is 2ExpTime-complete. Deciding whether Σ is
in MSA∪ (MSA∃, MSA∀) is ExpTime-complete.

Acyclicity of DL Ontologies
We now turn our attention to applying acyclicity condi-
tions to DL ontologies. DLs are KR formalisms that un-
derpin the Web Ontology Language (OWL). DL ontolo-
gies are constructed from atomic concepts (i.e., unary
predicates), atomic roles (i.e., binary predicates), and
individuals (i.e., constants). Special atomic concepts
> and ⊥ denote universal truth and falsehood, respec-
tively. For R an atomic role, R− is an inverse role;
inverse roles can be used in atoms: R−(t1, t2) is an ab-
breviation forR(t2, t1). A role is an atomic or an inverse
role. DLs provide a rich set of constructors for building
concepts (first-order formulae with one free variable)
from atomic concepts and roles. DL ontologies consist
of axioms about concepts and roles; these correspond
to first-order sentences. For simplicity, we consider only
normalised ontologies, in which concepts are not nested.
This is w.l.o.g., as each ontology can be normalised us-
ing a linear algorithm, and the normalised ontology is
a conservative extension of the original one. In this
paper, we consider only Horn DLs; ontologies in such
DLs have at most one minimal Herbrand model, which
is a prerequisite for materialisation-based reasoning—
the main motivation for applying acyclicity to DLs.

A normalised Horn-SRIQ TBox T consists of ax-
ioms shown in the left-hand side of Table 1; in the table,
A, B, and C are atomic concepts (including possibly
> and ⊥), R, S, T are (not necessarily atomic) roles,
and n is a positive integer. To guarantee decidability
of reasoning, T must satisfy certain global conditions
(Kutz, Horrocks, and Sattler 2006), which we omit for
brevity. Roughly speaking, only so-called simple roles
are allowed to occur in axioms of Type 2, and axioms
of Type 6 must be regular according to a particular
condition; the latter condition ensures that axioms of
Type 6 can be represented as a nondeterministic finite
automaton. Apart from Horn-SRIQ, we also consider
Horn-SRI TBoxes, which do not contain rules of Type
2, as well as Horn-SHIQ TBoxes, where R = S = T in
all rules of Type 6; all Horn-SHIQ TBoxes are regular.

Each Horn-SRIQ axiom corresponds to an existen-
tial rule as shown in Table 1. A minor difference is that
axioms in Table 1 can contain ⊥ in the head, which can
make a TBox T unsatisfiable w.r.t. an instance I. This
can be handled by considering ⊥ to be just another
atomic concept, without special meaning. Technically,
this ensures that I ∪ T is satisfiable in a model that can
be constructed by skolem chase; however, we consider
I ∪ T to be unsatisfiable if I ∪ T |= ∃y.⊥(y). We con-
sider a substitution θ to be an answer to a CQ Q(~x)
w.r.t. a T and I if I ∪ T |= ∃y.⊥(y) or T ∪ I |= Q(~x)θ.
Due to this close correspondence between DL axioms
and existential rules, in the rest of this paper we iden-
tify a TBox T with the corresponding set of rules.

We next investigate the complexity of BCQ answer-
ing over acyclic DL TBoxes. For the membership, note
that all rules in Table 1 are ∃-1 rules; thus, Theorem 8
gives us an ExpTime upper bound. We next prove a
matching lower bound for WA Horn-SRI rules. Intu-

itively, axioms of Type 6 allow us to axiomatise non-
tree-like structures; although regularity ensures that
axioms of Type 6 can be represented by a nondeter-
ministic finite automaton, this automaton can be expo-
nential, which may require one to examine all nodes in
an exponential model of a Horn-SRI TBox. Further-
more, by Theorem 8, if we extend acyclic Horn-SRIQ
rules Σ1 with arbitrary SWRL rules Σ2, reasoning stays
ExpTime-complete, provided that Σ1 ∪ Σ2 is acyclic;
this is in contrast to general TBoxes for which SWRL
extensions lead to undecidability. Thus, applications
that need expressivity beyond what is available in OWL
can benefit from the required expressivity without run-
ning into undecidability as long as the resulting ontol-
ogy is acyclic.
Theorem 21. Let T be a WA Horn-SRI TBox, let
I be an instance, and let F be a fact. Then, checking
whether I ∪ T |= F is ExpTime-hard.

Note that Theorem 21 applies to Horn-SRI and thus
does not rely on a particular treatment of equality.

The proof of Theorem 21 can be adapted to obtain
the lower bound for checking MFA of Horn-SRI rules.
Proposition 22. Checking whether a Horn-SRI TBox
is universally MFA is ExpTime-hard.

As we show next, however, the complexity or query
answering drops to PSpace for MFA Horn-SHIQ on-
tologies. In contrast, checking entailment of a single
fact is ExpTime-hard in the general (i.e., not acyclic)
case (Krötzsch, Rudolph, and Hitzler 2007a). This drop
in complexity is due to the fact that, if R = S = T in
all rules of Type 6, the automaton describing roles is
of polynomial size. Thus, although acyclic TBoxes can
axiomatise existence of polynomially deep and expo-
nentially large structures, these structures are tree-like,
which allows us to explore the structures one path at a
time using the well-known tracing technique. The main
difficulty in the membership proof of the following the-
orem is due to the fact that queries can contain transi-
tive roles, so one cannot roll a query up into a concept.
Since the TBox is Horn, however, one can guess places
in the model to which the query maps. Given one such
guess, one can ground the query and check entailment
of each ground query atom individually, while taking
transitive roles into account. Furthermore, note that
the proof of PSpace-hardness of concept satisfiability
checking by Baader et al. (2007) is not applicable to
Horn ontologies since it uses concepts with disjunctions.
Theorem 23. Let T be Horn-SHIQ TBox, let I be an
instance such that T is MFA w.r.t. I, and let Q be a
BCQ. Then, deciding I ∪ T |= Q is PSpace-complete.

Although the proof of Theorem 23 takes into account
ontology rules with equality (i.e., rules of Type 2), it
assumes that equality is axiomatised by Σ≈ and hence
it does not directly apply to singularised Horn-SHIQ
rules. We conjuecture, however, that the result in the
theorem holds regardless of singularisation.

The restriction to Horn-SHIQ rules also makes
checking MFA easier. Roughly speaking, checking MFA

1. A v ∃R.B A(x)→ ∃y.[R(x, y) ∧B(y)]
2. A v ≤ 1R.B A(z) ∧R(z, x1) ∧B(x1) ∧R(z, x2) ∧B(x2)→ x1 ≈ x2

3. A uB v C A(x) ∧B(x)→ C(x)
4. A v ∀R.B A(z) ∧R(z, x)→ B(x)
5. R v S R(x1, x2)→ S(x1, x2)
6. R ◦ S v T R(x1, z) ∧ S(z, x2)→ T (x1, x2)

Table 1: Axioms of normalised Horn-SRIQ ontologies and corresponding rules

w.r.t. an instance can be done by a minor variation of
the query answering algorithm.
Theorem 24. Let T be Horn-SHIQ TBox, and let I
be an instance. Then, deciding whether T is MFA w.r.t.
I is in PSpace, and deciding whether T is universally
MFA is PSpace-hard.

Finally, MSA provides us with a tractable condition
for Horn-SHIQ rules. Intuitively, all rules in MSA(T)
have a bounded number of variables and all predicates
in MSA(T) are of bounded arity, which eliminates all
sources of intractability in datalog reasoning.
Theorem 25. Let T be Horn-SHIQ TBox, and let I
be an instance. Then, deciding whether T is MSA w.r.t.
I is in PTime, and deciding whether T is universally
MSA is PTime-hard.

This result also holds for singularised rules.

Experiments
We have evaluated the applicability of various acyclic-
ity conditions in practice. First, we implemented MFA,
MSA, JA, and WA checkers, and used them to check
acyclicity of a large corpus of Horn ontologies. Our
goal was to determine whether a substantial portion
of these ontologies are acyclic and could thus be used
with (suitably extended) materialisation-based reason-
ers. Second, we computed the materialisation of the
acyclic Horn ontologies and compared the size of the
materialisation with the size of the original ABox. The
goal of these tests was to see whether materialisation-
based reasoning is practically feasible.

Tests were performed on the Oxford Super Computer
HAL system with 8 2.8GHz processors and 16GB RAM.
We used a repository of 149 OWL ontologies whose
TBox axioms can be transformed into existential rules.
These ontologies include many of those in the Gardiner
corpus (Gardiner, Tsarkov, and Horrocks 2006), the
LUBM ontology, and a number of ontologies from the
Open Biomedical Ontology (OBO) corpus. All test on-
tologies are available online.3

Acyclicity Tests
We implemented all acyclicity checks by adapting the
HermiT reasoner. HermiT was used to transform an on-
tology into DL-clauses—formulae quite close to existen-
tial rules. DL-clauses were then preprocessed: at-least

3http://www.hermit-reasoner.com/2011/acyclicity/
TestCorpus.zip

G-rules Total MSA JA WA
ontologies without equality

< 100 21 19 19 19
100–1K 33 30 30 23
1K–5K 18 14 14 12
5K–12K 9 8 6 6

12K–160K 7 5 3 3
ontologies with equality

< 100 49 45 45 45
100–1K 0 0 0 0
1K–5K 2 0 0 0
5K–12K 5 3 0 0

12K–160K 5 0 0 0

Table 2: Results of acyclicity tests

number restrictions in rule heads were replaced with ex-
istential quantification, atoms involving datatypes were
eliminated, and DL-clauses with empty head were re-
moved; datatypes and empty heads merely cause in-
consistencies, and do not contribute to chase non-
termination. If the DL-clauses contained equality, we
check X∪ instead of X for each X ∈ {MFA,MSA, JA}
as a ‘lower-bound’ for acyclicity. To obtain an ‘upper
bound’ for acyclicity, we checked whether the ontology
was already cyclic when ignoring the rules containing
equality. These steps produced a set of existential rules,
which were further modified as required to encode the
desired ayclicity check. Finally, HermiT was used to
test universal acyclicity of the ontology by checking log-
ical entailment w.r.t. the critical instance.

Each acyclicity test was given a 500s timeout. The
MSA test exceeded this limit on 2 ontologies, whereas
the MFA test exceeded it on 26 ontologies. Of the
149 ontologies tested, 124 (83%) were MSA. Moreover,
MFA and MSA are indistinguishable w.r.t. the test
ontologies—that is, all MFA ontologies were found to
be MSA as well (the converse holds per Theorem 11).
Results are shown in Table 2. Given the large num-
ber of test ontologies, we cannot show results for each
ontology. Instead, ontologies are grouped by number
of generating rules (G-rules); for each group, the table
shows the number of ontologies (Total) and the number
of ontologies found to be MSA, JA, and WA.

Note that 7 large OBO ontologies were MSA but not
JA; thus, MSA may be especially useful on large and

G-rules Eq DL C P A
biological process xp self.imports.owl
10980 yes SRIF 22375 183 47454

go xp regulation.owl
11187 no SH 27883 5 50941

biological process xp cell.imports.owl
11274 yes SRIF 24309 293 50386

cellular component xp go.imports.owl
11473 no SR 35236 8 64026

biological . . . cellular component.imports.owl
11798 yes SRIF 25337 187 52759

go xp regulation.imports.owl
23844 no SR 34293 8 104473

biological . . . multi organism process.imports.owl
24678 no SR 34410 21 104873

Table 3: MSA but not JA ontologies

complex ontologies. Table 3 shows for each of these
ontologies the number of generating rules (G-rules), if
it uses equality (Eq), expressivity (DL), and the number
of classes (C), properties (P), and axioms (A).

Materialisation Tests
To estimate the practicability of materialisation in
acyclic ontologies, we measured the maximal depth of
function symbol nesting in terms generated by skolem
chase. This measure, which we call ontology depth, is
of interest as it can be used to establish a bound on the
size of the chase. Our tests revealed that most ontolo-
gies have small depths: out of the 124 MSA ontologies,
83 (66.9%) have depths less than 5; 13 (10.5%) have
depths from 5 to 9; 24 (19.4%) have depths from 10 to
19; 2 (1.6%) have depths from 20 to 49; and 2 (1.6%)
have depths from 50 to 80. This suggests that the ma-
terialisation of these ontologies might not be too large.

We also computed the materialisation of several
acyclic ontologies. Since our implementation is only
prototypical, our primary goal was not to evaluate the
performance of materialisation, but rather to estimate
the increase in ABox size. Although this increase may
not be perfectly linear, we believe that it can be esti-
mated by examining moderately-sized ABoxes. Most
of our test ontologies, however, do not have substantial
ABoxes; ontologies are often made available as general
vocabularies, whereas ABoxes are application-specific
and are thus usually not made publicly available. Be-
cause of that, we ran two kinds of experiments.

First, we computed the materialisation of two ontolo-
gies with nontrivial ABoxes: LUBM with one univer-
sity and the ‘kmi-basic-portal’ ontology.4 The TBox
of LUBM contains 8 generating rules and has depth 1;
the ABox before materialisation contains 100, 543 facts.
Materialisation required only 1 second, and it produced

4http://kmi.open.ac.uk/semanticweb/ontologies/
owl/kmi-basic-portal-ontology.owl

Depth # time gen. size mat. size
max avg max avg max avg

< 5 82 69 0.9 27 2 35 5
5–9 13 68 11 37 11 41 13

10–80 14 549 101 281 51 283 53

Table 4: Materialisation times (in seconds) and sizes

150, 530 new facts (47, 798 were added by generating
rules). The ‘kmi-basic-portal’ ontology has 10 generat-
ing rules and has depth 2; the ABox contains 179 facts.
Materialisation required only 0.01 seconds, and it added
975 new facts (with 151 added by generating rules).

Second, for each of the 124 ontologies identified as
MSA we computed an ABox by instantiating each class
and property with fresh individuals. We then com-
puted the materialisation and measured the generated
size (number of facts introduced by generating rules,
divided by the facts in the initial ABox), the mate-
rialisation size (facts in the materialisation, divided
by facts in the initial ABox), and the materialisation
time. Since most generating rules in these ontologies
had singleton body atoms (i.e., they are of the form
A(x)→ ∃R.C(x)), these measures should provide a rea-
sonable estimate of the increase in ABox size caused by
materialisation. Of the 124 ontologies tested, 15 ex-
ceeded the 1, 000s time limit for materialisation. The
results for the other 109 ontologies are shown in Table 4.
Ontologies are grouped by depth; each group shows the
number of ontologies (#), and materialisation times,
generated sizes, and materialisation sizes.

Thus, materialisation seems practically feasible for
many ontologies: for the 82 ontologies with depth
less than 5, materialisation increases the ontology
size by a factor of 5. This suggests that principled,
materialisation-based reasoning for ontologies beyond
the OWL 2 RL profile may be feasible, especially for
ontologies with relatively small depths.

Conclusion

In this paper, we have studied the problem of CQ an-
swering over acyclic existential rules. We have proposed
two novel acyclicity conditions that are sufficient to en-
sure chase termination and which generalise all existing
acyclicity conditions that we know of.

We have then studied the problem of CQ answering
over acyclic DL ontologies. Acyclicity provides several
compelling benefits for DL query answering. First, the
CQ answering problem over Horn ontologies becomes
computationally easier; second, under acyclicity condi-
tions it is possible to extend Horn ontologies with arbi-
trary SWRL rules without affecting neither decidabil-
ity nor worst-case complexity; finally, acyclicity enables
principled extensions of ontology materialisation-based
reasoners; furthermore, since many existing ontologies
turn out to be acyclic, our results open the door for
practical CQ answering beyond the OWL 2 RL profile.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Founda-
tions of Databases. Addison-Wesley.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2007. The Description
Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, 2nd edition.
Baget, J.-F.; Leclère, M.; Mugnier, M.-L.; and Salvat,
E. 2011. On rules with existential variables: Walk-
ing the decidability line. Artificial Intelligence 175(9–
10):1620–1654.
Baget, J.-F.; Mugnier, M.-L.; and Thomazo, M. 2011.
Towards farsighted dependencies for existential rules. In
Rudolph, S., and Gutierrez, C., eds., Proc. of the 5th
Int. Conf. on Web Reasoning and Rule Systems (RR
2011), volume 6902 of LNCS, 30–45. Springer.
Beeri, C., and Vardi, M. Y. 1981. The implication
problem for data dependencies. In Proc. of the 8th
Colloquium on Automata, Languages and Programming
(ICALP 1981), 73–85.
Bishop, B., and Bojanov, S. 2011. Implementing OWL
2 RL and OWL 2 QL rule-sets for OWLIM. In Du-
montier, M., and Courtot, M., eds., Proc. of the OWL:
Experiences and Directions Workshop (OWLED 2011),
volume 796 of CEUR WS Proceedings.
Cal̀ı, A.; Gottlob, G.; Lukasiewicz, T.; Marnette, B.;
and Pieris, A. 2010. Datalog+/-: A family of logical
knowledge representation and query languages for new
applications. In Proc. of LICS, 228–242.
Cal̀ı, A.; Gottlob, G.; and Pieris, A. 2010. Query an-
swering under non-guarded rules in Datalog+/-. In Hit-
zler, P., and Lukasiewicz, T., eds., Proc. of the 4th Int.
Conf. on Web Reasoning and Rule Systems (RR 2010),
volume 6333 of LNCS, 1–17. Springer.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini,
M.; and Rosati, R. 2007. Tractable reasoning and ef-
ficient query answering in description logics: The DL-
Lite family. J. Automated Reasoning 39(3):385–429.
Cuenca Grau, B.; Horrocks, I.; Motik, B.; Parsia, B.;
Patel-Schneider, P.; and Sattler, U. 2008. OWL 2: The
next step for OWL. J. Web Semantics (JWS) 6(4):309–
322.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A.
2001. Complexity and expressive power of logic pro-
gramming. ACM Comput. Surv. 33(3):374–425.
Deutsch, A.; Nash, A.; and Remmel, J. B. 2008.
The chase revisited. In Proc. of the 27th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS 2008), 149–158.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L.
2005. Data exchange: semantics and query answering.
Theoretical Computer Science 336(1):89–124.
Gardiner, T.; Tsarkov, D.; and Horrocks, I. 2006.
Framework for an automated comparison of description
logic reasoners. In Cruz, I. F.; Decker, S.; Allemang,
D.; Preist, C.; Schwabe, D.; Mika, P.; Uschold, M.;

and Aroyo, L., eds., Proc. of the 5th Int. Semantic Web
Conf. (ISWC 2006), volume 4273 of LNCS, 654–667.
Springer.
Glimm, B.; Lutz, C.; Horrocks, I.; and Sattler, U. 2008.
Conjunctive query answering for the description logic
shiq. J. Artif. Intell. Res. (JAIR) 31:157–204.
Horrocks, I., and Patel-Schneider, P. F. 2004. A pro-
posal for an OWL rules language. In Proc. of the 13th
Int. World Wide Web Conf. (WWW 2004), 723–731.
ACM Press.
Hustadt, U.; Motik, B.; and Sattler, U. 2005. Data
complexity of reasoning in very expressive description
logics. In Kaelbling, L., and Saffiotti, A., eds., Proc.
of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2005), 466–471. Professional Book Center.
Johnson, D. S., and Klug, A. C. 1984. Testing contain-
ment of conjunctive queries under functional and inclu-
sion dependencies. J. Comput. Syst. Sci. 28(1):167–189.
Kiryakov, A.; Ognyanov, D.; and Manov, D. 2005.
OWLIM: A pragmatic semantic repository for OWL.
In Dean, M.; Guo, Y.; Jun, W.; Kaschek, R.; Krish-
naswamy, S.; Pan, Z.; and Sheng, Q. Z., eds., WISE
Workshops, 182–192.
Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and
Zakharyaschev, M. 2011. The combined approach to
ontology-based data access. In Walsh, T., ed., Proc.
of the 22nd Int. Joint Conf. on Artificial Intelligence
(IJCAI 2011), 2656–2661. AAAI Press/IJCAI.
Krötzsch, M., and Rudolph, S. 2011. Extending decid-
able existential rules by joining acyclicity and guarded-
ness. In Walsh, T., ed., Proc. of the 22nd Int. Joint
Conf. on Artificial Intelligence (IJCAI 2011), 963–968.
AAAI Press/IJCAI.
Krötzsch, M.; Rudolph, S.; and Hitzler, P. 2007a. Com-
plexity boundaries for Horn description logics. In Proc.
of the 22nd National Conf. on Artificial Intelligence
(AAAI 2007), 452–457. AAAI Press.
Krötzsch, M.; Rudolph, S.; and Hitzler, P. 2007b. Con-
junctive queries for a tractable fragment of OWL 1.1.
In Aberer, K.; Choi, K.-S.; Noy, N.; Allemang, D.;
Lee, K.-I.; Nixon, L.; Golbeck, J.; Mika, P.; Maynard,
D.; Mizoguchi, R.; Schreiber, G.; and Cudré-Mauroux,
P., eds., Proc. of the 6th Int. Semantic Web Confer-
ence. (ISWC 2007), volume 4825 of LNCS, 310–323.
Springer.
Kutz, O.; Horrocks, I.; and Sattler, U. 2006. The Even
More Irresistible SROIQ. In Doherty, P.; Mylopou-
los, J.; and Welty, C. A., eds., Proc. of the 10th Int.
Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2006), 68–78. AAAI Press.
Lutz, C.; Toman, D.; and Wolter, F. 2009. Conjunc-
tive query answering in the description logic EL using a
relational database system. In Boutilier, C., ed., Proc.
of the 21st Int. Joint Conf. on Artificial Intelligence
(IJCAI 2009). IJCAI.
Maier, D.; Mendelzon, A. O.; and Sagiv, Y. 1979. Test-

ing implications of data dependencies. ACM Trans.
Database Syst. 4(4):455–469.
Marnette, B. 2009. Generalized schema-mappings:
from termination to tractability. In Proc. of the
28th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS 2009), 13–22.
Meditskos, G., and Bassiliades, N. 2008. Combin-
ing a DL reasoner and a rule engine for improving
entailment-based OWL reasoning. In Sheth, A.; Staab,
S.; Dean, M.; Paolucci, M.; Maynard, D.; Finin, T.; and
Thirunarayan, K., eds., Proc. of the 7th Int. Semantic
Web Conf. (ISWC 2008), volume 5318 of LNCS, 277–
292. Springer.
Meier, M.; Schmidt, M.; and Lausen, G. 2009. On
chase termination beyond stratification. Proceedings of
VLDB 2009 2(1):970–981.
Motik, B.; Shearer, R.; and Horrocks, I. 2009. Hyper-
tableau reasoning for description logics. J. Artif. Intell.
Res. (JAIR) 36:165–228.
Ortiz, M.; Calvanese, D.; and Eiter, T. 2008. Data
complexity of query answering in expressive description
logics via tableaux. J. Automated Reasoning 41(1):61–
98.
Ortiz, M.; Rudolph, S.; and Simkus, M. 2011. Query
answering in the Horn fragments of the description log-
ics SHOIQ and SROIQ. In Walsh, T., ed., Proc.
of the 22nd Int. Joint Conf. on Artificial Intelligence
(IJCAI 2011), 1039–1044.
Pérez-Urbina, H.; Motik, B.; and Horrocks, I. 2010.
Tractable query answering and rewriting under descrip-
tion logic constraints. J. Applied Logic 8(2):186–209.
Rudolph, S., and Glimm, B. 2010. Nominals, inverses,
counting, and conjunctive queries or: Why infinity is
your friend! J. Artif. Intell. Res. (JAIR) 39:429–481.
Spezzano, F., and Greco, S. 2010. Chase termination:
A constraints rewriting approach. Proceedings of VLDB
2010 3(1):93–104.
Wu, Z.; Eadon, G.; Das, S.; Chong, E. I.; Kolovski,
V.; Annamalai, M.; and Srinivasan, J. 2008. Im-
plementing an inference engine for RDFS/OWL con-
structs and user-defined rules in Oracle. In Proc. of the
2008 IEEE 24th Int. Conf. on Data Engineering (ICDE
2008), 1239–1248. IEEE Computer Society.

