
What Are Ontologies Good For?

Ian Horrocks

Oxford University, Oxford, UK,
Ian.Horrocks@comlab.ox.ac.uk,

http://web.comlab.ox.ac.uk/people/Ian.Horrocks/

Abstract. Ontology, in its original philosophical sense, is a fundamental
branch of metaphysics focusing on the study of existence; its objective
is to determine what entities and types of entities actually exist, and
thus to study the structure of the world. In contrast, in computer sci-
ence an ontology is an engineering artifact, usually a “conceptual model”
of (some aspect of) the world, typically formalised as a logical theory.
Formalising an ontology using a suitable logic opens up the possibility
of using automated reasoning to support both ontology design and de-
ployment. The value of such support has already been demonstrated in
medical applications, where it has been used to help repair and enrich
ontologies that play an important role in patient care.
Even with the aid of reasoning enabled tools, developing and maintain-
ing good quality ontologies is a difficult and costly task, and problems
related to the availability of good quality ontologies threaten to limit the
deployment of ontology based information systems. This has resulted in
ontology engineers increasingly looking to the philosophy community for
possible solutions, and in particular as a source of relevant expertise in
the organisation and formalisation of knowledge.

1 Introduction

Ontology, in its original philosophical sense, is a fundamental branch of meta-
physics focusing on the study of existence; its objective is to determine what
entities and types of entities actually exist, and thus to study the structure of
the world. The study of ontology can be traced back to the work of Plato and
Aristotle, and includes the development of hierarchical categorisations of differ-
ent kinds of entity and the features that distinguish them: the well known “tree
of Porphyry”, for example, identifies animals and plants as sub-categories of liv-
ing things distinguished by animals being sensitive, and plants being insensitive
(see Figure 1).

In contrast, in computer science an ontology is an engineering artifact, usu-
ally a so-called “conceptual model” of (some aspect of) the world; it introduces
vocabulary describing various aspects of the domain being modelled, and pro-
vides an explicit specification of the intended meaning of the vocabulary by
describing the relationships between different vocabulary terms. These relation-
ships do, however, invariably include classification based relationships not unlike
those used in Porphyry’s tree.



material immaterial

Body

Substance

Beast

Plant

Mineral

Human

Animal

Living

Spirit

Socrates Plato AristotleIndividuals:

Differentiae:

Subordinate genera:

animate

sensitive

rational

inanimate

insensitive

irrational

Differentiae:

Differentiae:

Differentiae:

Subordinate genera:

Proximate genera:

Species:

etc.

Supreme genus:

Fig. 1. Tree of Porphyry.

In a logic-based (formal) ontology, the vocabulary can be thought of as predi-
cates and constants. For example, Animal and Plant can be thought of as (unary)
predicates, and Socrates, Plato and Aristotle as constants. Relationships between
vocabulary terms can be specified using axioms, logical sentences such as

∀x[Human(x)→ Animal(x) ∧ Sensitive(x)]
Human(Socrates)

An ontology can be thought of simply as a set of such axioms—i.e., a logical
theory.

Viewing an ontology as a logical theory opens up the possibility of using au-
tomated reasoning to check, e.g., internal consistency (the theory does not entail
“false”), and other (non-) entailments. This is not just a theoretical possibility,
but is the raison d’être of many logic based ontology languages, in particular
those based on description logics—for these languages, sophisticated reasoning
tools have been developed and are in widespread use. Such tools can be used,
for example, to check for concept subsumption, i.e., an entailment of the form
O |= ∀x[C(x)→ D(x)] for an ontology O, and concepts C and D.

The (possible) existence of such tools was an important factor in the design
of the OWL ontology language [12] and its basis in description logics. OWL was
initially developed for use in the so-called Semantic Web; the availability of de-
scription logic based reasoning tools has, however, contributed to the increasingly
widespread use of OWL, not only in the Semantic Web per se, but as a popular
language for ontology development in fields as diverse as biology [22], medicine
[7], geography [8], geology [27], astronomy [5], agriculture [24] and defence [18].



Applications of OWL are particularly prevalent in the life sciences, where it has
been used by the developers of several large biomedical ontologies, including the
Biological Pathways Exchange (BioPAX) ontology [21], the GALEN ontology
[20], the Foundational Model of Anatomy (FMA) [7], and the National Cancer
Institute thesaurus [10].

The importance of reasoning support was highlighted by [16], who described a
project in which the Medical Entities Dictionary (MED), a large ontology used
at the Columbia Presbyterian Medical Center, was checked using a reasoner.
This check revealed “systematic modelling errors”, and many missed concept
subsumptions, the combination of which “could have cost the hospital many
missing results in various decision support and infection control systems that
routinely use MED to screen patients”.

2 The Web Ontology Language OWL

The Web Ontology Language (OWL) [19] is currently by far the most widely
used ontology language. OWL was developed by a World Wide Web Consortium
(W3C) working group in order to extend the capabilities of the Resource De-
scription Framework (RDF), a language for representing basic information about
entities and relationships between them [12]. OWL exploited existing work on
langauges such as OIL [6] and DAML+OIL [11] and, like them, was based on a
description logic (DL).

Description logics (DLs) are a family of logic-based knowledge representation
formalisms; they are descendants of Semantic Networks [29] and KL-ONE [2].
These formalisms all adopt an object-oriented model, similar to the one used by
Plato and Aristotle, in which the domain is described in terms of individuals,
concepts (usually called classes in ontology languages), and roles (usually called
relationships or properties in ontology languages). Individuals, e.g., “Socrates”,
are the basic elements of the domain; concepts, e.g., “Human”, describe sets
of individuals having similar characteristics; and roles, e.g., “hasPupil” describe
relationships between pairs of individuals, such as “Socrates hasPupil Plato”.

As well as atomic concept names such as Human, DLs also allow for con-
cept descriptions to be composed from atomic concepts and roles. Moreover,
it is possible to assert that one concept (or concept description) is subsumed
by (is a sub-concept of), or is exactly equivalent to, another. This allows for
easy extension of the vocabulary by introducing new names as abreviations for
descriptions. For example, using standard DL notation, we might write:

HappyParent ≡ Parent u ∀hasChild.(Intelligent t Athletic)

This introduces the concept name HappyParent, and asserts that its instances
are just those individuals that are instances of Parent, and all of whose children
are instances of either Intelligent or Athletic.

Another distinguishing feature of DLs is that they are logics, and so have
a formal semantics. DLs can, in fact, be seen as decidable subsets of first-order
predicate logic, with individuals being equivalent to constants, (atomic) concepts



to unary predicates and (atomic) roles to binary predicates. Similarly, complex
concepts are equivalent to formulae with one free variable, and standard axioms
are equivalent to (bi-) implications with the free variable universally quantified
at the outer level. For example, the concept used above to describe a happy
parent is equivalent to the following formula

Parent(x) ∧ ∀y[hasChild(x, y)→ (Intelligent(y) ∨ Athletic(y))]

and the DL axiom introducing the concept name HappyParent is equivalent to
the following bi-implication:

∀x[HappyParent(x) ⇐⇒ Parent(x)∧∀y[hasChild(x, y)→ (Intelligent(y)∨Athletic(y))]]

As well as giving a precise and unambiguous meaning to descriptions of the
domain, the use of a logic, and in particular of a decidable logic, also allows for
the development of reasoning algorithms that can be used to answer complex
questions about the domain. An important aspect of DL research has been the
design of such algorithms, and their implementation in (highly optimised) rea-
soning systems that can be used by applications to help them “understand” the
knowledge captured in a DL based ontology.

A given DL is characterised by the set of constructors provided for build-
ing concept descriptions. These typically include at least intersection (u), union
(t) and complement (¬), as well as restricted forms of existential (∃) and uni-
versal (∀) quantification, which in OWL are called, respectively, someValues-
From and allValuesFrom restrictions. OWL is based on a very expressive DL
called SHOIN that also provides cardinality restrictions (>, 6) and enumer-
ated classes (called oneOf in OWL) [12, 13]. Cardinality restrictions allow, e.g.,
for the description of a concept such as people who have at least two children,
while enumerated classes allow for classes to be described by simply enumerating
their instance, e.g.,:

EUcountries ≡ {Austria, . . . ,UK}

SHOIN also provides for transitive roles, allowing us to state, e.g., that if y is
an ancestor of x and z is an ancestor of y, then z is also an ancestor of x, and
for inverse roles, allowing us to state, e.g., that if z is an ancestor of x, then x is
also an descendent of z. The constructors provided by OWL, and the equivalent
DL syntax, are summarised in Figure 2.

In DLs it is usual to separtate the set of statements that establish the vo-
cabulary to be used in describing the domain (what we might think of as the
schema) from the set of statements that describe some particular situation that
instantiates the schema (what we might think of as data); the former is called the
TBox (Terminology Box), and the latter the ABox (Assertion Box). An OWL
ontology is simply equivalent to a set of SHOIN TBox and ABox statements.
This mixing of schema and data is quite unusual (in fact ontologies are usu-
ally thought of as consisting only of the schema part), but does not affect the
meaning—from a logical perspective, SHOIN KBs and OWL ontologies are
just sets of axioms.



Constructor DL Syntax Example

intersectionOf C1 u . . . u Cn Human uMale
unionOf C1 t . . . t Cn Doctor t Lawyer
complementOf ¬C ¬Male
oneOf {x1 . . . xn} {john, mary}
allValuesFrom ∀P.C ∀hasChild.Doctor
someValuesFrom ∃r.C ∃hasChild.Lawyer
hasValue ∃r.{x} ∃citizenOf.{USA}
minCardinality (> n r) (> 2 hasChild)
maxCardinality (6 n r) (6 1 hasChild)
inverseOf r− hasChild−

Fig. 2. OWL constructors

<owl:Class>

<owl:intersectionOf rdf:parseType=" collection">

<owl:Class rdf:about="#Parent"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>

<owl:allValuesFrom>

<owl:unionOf rdf:parseType=" collection">

<owl:Class rdf:about="#Intelligent"/>

<owl:Class rdf:about="#Athletic"/>

</owl:unionOf>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

Fig. 3. An examle of OWL’s RDF syntax.



The main difference between OWL and SHOIN is that OWL ontologies
use an RDF based syntax intended to facilitate their use in the context of the
Semantic Web. This syntax is rather verbose, and not well suited for presentation
to human beings. Figure 3, for example, illustrates how the description of happy
parent given above would be written in OWL’s RDF syntax.

3 Ontologies and Databases

Fig. 4. An entity relationship schema.

Ontologies and ontology based information systems are closely related in
both form and function to databases and database systems: both support the
development of domain models that can be queried and updated. Figure 4, for
example, illustrates a database entity relationship (ER) schema that models
(a fragment of) a university domain in much the same way as the conceptual
(TBox) part of an ontology, and (some of) the information it captures could be
expressed using the following DL axioms:

Course v (6 1 Tby) u (> 1 Tby) u (∀Tby.Teacher) (A1)
∃Tby.> v Course (A2)
GradStudent v Student (A3)

where (A1) states that every course is taught by exactly one teacher, (A2) states
that only courses can be taught (i.e., being taught by something implies being
a course), and (A3) states that graduate students are a subclass of students.

Although there are clear analogies between databases and OWL ontologies,
there are also important differences. Unlike databases, OWL has a so-called
open world semantics in which missing information is treated as unknown rather
than false, and OWL axioms behave like inference rules rather than database
constraints. In the above axioms, for example, it is stated that only courses can
be taught; in OWL, if we know that IntroductionToAI is taught by Dave, this
leads to the implication that IntroductionToAI is a Course—if we were to query
the ontology for instances of Course, then IntroductionToAI would be part of the



answer. In a database setting the schema is interpreted as a set of constraints
on the data: adding the fact that IntroductionToAI is taught by Dave without
IntroductionToAI being already known to be a Course would lead to an invalid
database state, and such an update would therefore be rejected by a database
management system as a constraint violation.

In contrast to databases, OWL also makes no unique name assumption
(UNA). For example, from axiom (A1) we know that a course can be taught
by only one teacher, so additionally asserting that IntroductionToAI is taught by
David would lead to the implication that Dave and David are two names for the
same individual. In a database setting this would again be treated as a constraint
violation. Note that in OWL it is possible to assert (or infer) that two different
names do not refer to the same individual; if such an assertion were made about
Dave and David, then asserting that IntroductionToAI is taught by both Dave
and David would make the ontology inconsistent. Unlike database management
systems, ontology tools typically don’t reject updates that result in the ontology
becoming wholly or partly inconsistent, they simply provide a suitable warning.

The treatment of schema and constraints in a database setting means that
they can be ignored at query time—in a valid database instance all the schema
constraints must already be satisfied. This makes query answering very efficient:
in order to determine if IntroductionToAI is in the answer to a query for courses, it
is sufficient to check if this fact is explicitly present in the database. In OWL, the
schema plays a much more important role, and is actively considered at query
time. This can be very powerful, and makes it possible to answer conceptual
as well as extensional queries—for example, we can ask not only if Dave is a
Teacher, but if it is the case that anybody teaching a Course must be a Teacher.
It does, however, make query answering much more difficult (at least in the worst
case): in order to determine if Dave is in the answer to a query for teachers, it
is necessary to check if Dave would be an instance of Teacher in every possible
state of the world that is consistent with the axioms in the ontology. Query
answering in OWL is thus analogous to theorem proving, and a query answer is
often referred to as an entailment.

4 Ontology Reasoning

The design and implementation of reasoning systems is an important aspect of
DL research and, as mentioned above, the availability of such reasoning systems
was one of the motivations for basing OWL on a DL. This is because reasoning
can be used in tools that support both the design of high quality ontologies, and
the deployment of ontologies in applications.

4.1 Reasoning at design time

Ontologies are often large and complex: the well known SNOMED clinical terms
ontology includes, for example, more than 400,000 class names [25]. Building and
maintaining such ontologies is very costly and time consuming, and providing



tools and services to support this “ontology engineering” process is of crucial
importance to both the cost and the quality of the resulting ontology. State
of the art ontology development tools, such as SWOOP [14], Protégé 4 [17],
and TopBraid Composer (see http://www.topbraidcomposer.com/), use a DL
reasoner, such as FaCT++ [28], Racer [9] or Pellet [23], to provide feedback to
the user about the logical implications of their design. This typically includes
(at least) warnings about inconsistencies and redundancies.

An inconsistent (sometimes called unsatisfiable) class is one whose descrip-
tion is “over-constrained”, with the result that it can never have any instances.
This is typically an unintended feature of the design—why introduce a name for
a class that can never have any instances—and may be due to subtle interac-
tions between axioms. It is, therefore, very useful to be able to detect such classes
and bring them to the attention of the ontology engineer. For example, during
the development of an OWL ontology at the NASA Jet Propulsion Laboratory,
the class “OceanCrustLayer” was found to be inconsistent. This was discovered
(with the help of debugging tools) to be the result of its being defined to be both
a region and a layer, one of which (layer) was a 2-dimensional object and the
other a 3-dimensional object, where the axioms describing 2-dimensional and
3-dimensional objects ensured that these two classes were disjoint (had no in-
stances in common). The inconsistency thus highlighted a fundamental error in
the design of the ontology, discovering and repairing which obviously improved
the quality of the ontology.

It is also possible that the descriptions in the ontology mean that two classes
necessarily have exactly the same set of instances, i.e., that they are alternative
names for the same class. This may be desirable in some situations, e.g., to
capture the fact that “Myocardial infarction” and “Heart attack” mean the same
thing. It could, however, also be the inadvertent result of interactions between
descriptions, and so it is also useful to be able to alert users to the presence of
such “synonyms”. For example, when developing a medical terminology ontology
a domain expert added the following two axioms:

AspirinTablet ≡ ∃hasForm.Tablet
AspirinTablet v AspirinDrug

intending to capture the information that aspirin tablets are just those aspirin
drugs that have the form of a tablet. Instead, these axioms had the effect of
making every kind of tablet be an aspirin tablet. This was immediately corrected
when the reasoner alerted the domain expert to the unexpected equivalence
between Tablet and AsprinTablet.

In addition to checking for inconsistencies and synonyms, ontology develop-
ment tools usually check for implicit subsumption relationships, and update the
class hierarchy accordingly. This is also a very useful design aid: it allows on-
tology developers to focus on class descriptions, leaving the computation of the
class hierarchy to the reasoner, and it can also be used by developers to check if
the hierarchy induced by the class descriptions is consistent with their intuition.
This may not be the case when, for example, errors in the ontology result in unex-
pected subsumption inferences, or “under-constrained” class descriptions result



in expected inferences not being found. The latter case is extremely common,
as it is easy to inadvertently omit axioms that express “obvious” information.
For example, an ontology engineer may expect the class of patients who have
a fracture of both the tibia and the fibula to be a subClassOf “patient with
multiple fractures”; however, this may not be the case if the ontology doesn’t
include (explicitly or implicitly) the information that the tibia and fibula are
different bones. Failure to find the expected subsumption relationship will alert
the engineer to the missing DisjointClasses axiom.

Recent work has also shown how reasoning can be used to support modular
design [4] and module extraction [3], important techniques for working with large
ontologies. When developing a large ontology such as SNOMED, it is useful if
not essential to divide the ontology into modules, e.g., to facilitate parallel work
by a team of ontology developers. Reasoning techniques can be used to alert
the developers to unanticipated and/or undesirable interactions between the
various modules. Similarly, it may be desirable to extract from a large ontology
a smaller module containing all the information relevant to some subset of the
domain, e.g., heart disease—the resulting small(er) ontology will be easier for
humans to understand and easier for applications to use. Reasoning can be used
to compute a module that is as small as possible while still containing all the
necessary information.

Fig. 5. An explanation from Protégé 4

Finally, in order to maximise the benefit of reasoning services, tools should
be able to explain inferences: without this facility, users may find it difficult to
repair errors in the ontology and may even start to doubt the correctness of in-
ferences. Explanation typically involves computing a (hopefully small) subset of
the ontology that still entails the inference in question, and if necessary present-
ing the user with a chain of reasoning steps [15]. Figure 5, for example, shows an
explanation, produced by the Protégé 4 ontology development tool, of the above
mentioned inference with respect to the inconsistency of OceanCrustLayer.



4.2 Reasoning in deployment

Reasoning is also important when ontologies are deployed in applications—it
is needed, e.g., in order to answer structural queries about the domain and to
retrieve data. For example, biologists use ontologies such as the Gene Ontology
(GO) and the Biological Pathways Exchange ontology (BioPAX) to annotate
data from gene sequencing experiments so as to be able to answer complex
queries such as “what DNA binding products interact with insulin receptors”.
Answering this query requires a reasoner not only to identify individuals that
are (perhaps only implicitly) instances of DNA binding products and of insulin
receptors, but also to identify which pairs of individuals are (perhaps only im-
plicitly) related via the interactsWith property.

It is easy to imagine that, with large ontologies, query answering may be a
very complex task. The use of DL reasoners allows OWL ontology applications
to answer complex queries, and to provide guarantees about the correctness
of the result. This is obviously of crucial importance when ontologies are used
in safety critical applications such as medicine; it is, however, also important
if ontology based systems are to be used as components in larger applications,
such as the Semantic Web, where the correct functioning of automated processes
may depend on their being able to (correctly) answer such queries.

5 Ontology Applications

The availability of tools and reasoning systems such as those mentioned in
Section 3 has contributed to the increasingly widespread use of OWL. Ap-
plications of OWL are particularly prevalent in the life sciences where it has
been used by the developers of several large biomedical ontologies, including
the SNOMED, GO and BioPAX ontologies mentioned above, the Foundational
Model of Anatomy (FMA) [7] and the National Cancer Institute thesaurus [10].

Many ontologies are the result of collaborative efforts within a given commu-
nity, and are developed with the aim of facilitating information sharing and ex-
change. Some ontologies are even commercially developed and subject to a licence
fee. In most cases, an ontology focuses on a particular domain, although there
are some well known “foundational” or “upper” ontologies, such as DOLCE1 and
SUMO,2 whose coverage is more general; their aim is, however, mainly to provide
a carefully formalised basis for the development of domain specific ontologies.

Many OWL ontologies are now available on the web—an OWL ontology is
identified by a URI, and the ontology should, in principle, be available at that
location. There are also several well known ontology libraries, and even ontol-
ogy search engines such as SWOOGLE,3 that can be used to locate ontologies.
In practice, however, applications are invariably built around a predetermined

1 http://www.loa-cnr.it/DOLCE.html
2 http://www.ontologyportal.org/
3 http://swoogle.umbc.edu/



ontology or set of ontologies that are well understood and known to provide
suitable coverage of the relevant domains.

The importance of reasoning support in ontology applications was highlighted
by recent work on the MED ontology in which potentially critical errors were
discovered (see Section 1). Similarly, an extended version of the SNOMED ontol-
ogy was checked using an OWL reasoner, and a number of missing subClassOf
relationships found. This ontology is being used by the UK National Health Ser-
vice (NHS) to provide “A single and comprehensive system of terms, centrally
maintained and updated for use in all NHS organisations and in research”, and
as a key component of their multi-billion pound “Connecting for Health” IT
programme. An important feature of this system is that it can be extended to
provide more detailed coverage if needed by specialised applications. For exam-
ple, a specialist allergy clinic may need to distinguish allergies caused by different
kinds of nut, and so may add new terms to the ontology such as AlmondAllergy:

AlmondAllergy ≡ Allergy u ∃causedBy.Almond

Using a reasoner to insert this new term into the ontology will ensure that it is
recognised as a subClassOf NutAllergy. This is clearly of crucial importance in
order to ensure that patients with an AlmondAllergy are correctly identified in
the national records system as patients having a NutAllergy.

Ontologies are also widely used to facilitate the sharing and integration of
information. The Neurocommons project,4 for example, aims to provide a plat-
form for sharing and integrating knowledge in the neuroscience domain. A key
component is an ontology of annotations that will be used to integrate avail-
able knowledge on the web, including major neuroscience databases. Similarly,
the OBO Foundry5 is a library of ontologies designed to facilitate information
sharing and integration in the biomedical domain.

In information integration applications the ontology can play several roles:
it can provide a formally defined and extensible vocabulary for use in semantic
annotations, it can be used to describe the structure of existing sources and the
information that they store, and it can provide a detailed model of the domain
against which queries can be formulated. Such queries can be answered by using
semantic annotations and structural knowledge to retrieve and combine infor-
mation from multiple sources [26]. It should be noted that the use of ontologies
in information integration is far from new, and has already been the subject of
extensive research within the database community [1].

6 Discussion

Ontology, in its original philosophical sense, is a fundamental branch of meta-
physics focusing on the study of existence; its objective is to determine what
4 http://sciencecommons.org/projects/data/
5 http://www.obofoundry.org/



entities and types of entities actually exist, and thus to study the structure of
the world. In contrast, in computer science an ontology is an engineering artifact,
usually a “conceptual model” of (some aspect of) the world, typically formalised
as a logical theory.

Formalising ontologies using logic opens up the possibility of using automated
reasoning to aid both their design and deployment. The availability of reasoning
tools was an important factor in the design of the OWL ontology language and
its basis in description logics and has contributed to the increasingly widespread
use of OWL, not only in the Semantic Web per se, but as a popular language
for ontology development in diverse application areas. The value of reasoning
support has already been demonstrated in medical applications, where it has
been used to help repair and enrich ontologies that play an important role in
patient care.

The benefits of ontologies and ontology reasoning come at a cost, however.
Even with the aid of reasoning enabled tools, developing and maintaining good
quality ontologies is a difficult and costly task. Moreover, compared to more
established database systems, query answering in an ontology based informa-
tion system is likely to be much more difficult, and in the worst case could be
highly intractable. The use of ontologies is, therefore, perhaps best suited to ap-
plications where the schema plays an important role, where it is not reasonable
to assume that complete information about the domain is available, and where
information has high value.

Although reasoning enabled tools are a boon to ontology engineers, the de-
sign of good quality ontologies is still a difficult and time consuming task, and
problems related to the availability of good quality ontologies threaten to limit
the deployment of ontology based information systems. This problem can be
tackled to some extent by extending the range and capability of ontology en-
gineering tools, and this is a very active research area. However, tools alone
cannot compensate for a lack of understanding of and expertise in “knowledge
engineering”. This has resulted in ontology engineers increasingly looking to the
philosophy community for possible solutions, and in particular as a source of
relevant expertise in the organisation and formalisation of knowledge. The re-
sults of such collaborations are already becoming evident in, for example, the
design of foundational ontologies such as DOLCE and SUMO, and in ambitious
ontology development projects such as the OBO foundry.

References

1. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies
for database schema integration. ACM Computing Surveys 18(4), 323–364 (1986)

2. Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge repre-
sentation system. Cognitive Science 9(2), 171–216 (1985)

3. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount:
Extracting modules from ontologies. In: Proc. of the Sixteenth International World
Wide Web Conference (WWW 2007) (2007), download/2007/CHKS07a.pdf



4. Cuenca Grau, B., Kazakov, Y., Horrocks, I., Sattler, U.: A logical framework for
modular integration of ontologies. In: Proc. of the 20th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2007). pp. 298–303 (2007), download/2007/CKHS07a.pdf

5. Derriere, S., Richard, A., Preite-Martinez, A.: An ontology of astronomical object
types for the virtual observatory. Proc. of Special Session 3 of the 26th meeting of
the IAU: Virtual Observatory in Action: New Science, New Technology, and Next
Generation Facilities (2006)

6. Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D., Patel-Schneider, P.F.:
OIL: An ontology infrastructure for the semantic web. IEEE Intelligent Systems
16(2), 38–45 (2001), download/2001/IEEE-IS01.pdf

7. Golbreich, C., Zhang, S., Bodenreider, O.: The foundational model of anatomy in
OWL: Experience and perspectives. J. of Web Semantics 4(3), 181–195 (2006)

8. Goodwin, J.: Experiences of using OWL at the ordnance survey. In: Proc. of the
First OWL Experiences and Directions Workshop. CEUR Workshop Proceedings,
vol. 188. CEUR (http://ceur-ws.org/) (2005)

9. Haarslev, V., Möller, R.: RACER system description. In: Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2001). Lecture Notes in Artificial Intelli-
gence, vol. 2083, pp. 701–705. Springer (2001)

10. Hartel, F.W., de Coronado, S., Dionne, R., Fragoso, G., Golbeck, J.: Modeling a
description logic vocabulary for cancer research. Journal of Biomedical Informatics
38(2), 114–129 (2005)

11. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: Reviewing the design of
DAML+OIL: An ontology language for the semantic web. In: Proc. of the 18th
Nat. Conf. on Artificial Intelligence (AAAI 2002). pp. 792–797. AAAI Press (2002),
download/2002/AAAI02IHorrocks.pdf

12. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics 1(1), 7–26
(2003), download/2003/HoPH03a.pdf

13. Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: Proc.
of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005). pp. 448–453
(2005), download/2005/HoSa05a.pdf

14. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B., Hendler, J.: SWOOP: a web
ontology editing browser. J. of Web Semantics 4(2) (2005)

15. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging unsatisfiable classes
in OWL ontologies. J. of Web Semantics 3(4), 243–366 (2005), http://www.

mindswap.org/papers/debugging-jws.pdf

16. Kershenbaum, A., Fokoue, A., Patel, C., Welty, C., Schonberg, E., Cimino, J.,
Ma, L., Srinivas, K., Schloss, R., Murdock, J.W.: A view of OWL from the
field: Use cases and experiences. In: Proc. of the Second OWL Experiences and
Directions Workshop. CEUR Workshop Proceedings, vol. 216. CEUR (http:
//ceur-ws.org/) (2006)

17. Knublauch, H., Fergerson, R., Noy, N., Musen, M.: The Protégé OWL Plugin: An
open development environment for semantic web applications. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) Proc. of the 3rd International Semantic
Web Conference (ISWC 2004). Lecture Notes in Computer Science, vol. 3298, pp.
229–243. Springer (2004)

18. Lacy, L., Aviles, G., Fraser, K., Gerber, W., Mulvehill, A., Gaskill, R.: Experiences
using OWL in military applications. In: Proc. of the First OWL Experiences and
Directions Workshop. CEUR Workshop Proceedings, vol. 188. CEUR (http://
ceur-ws.org/) (2005)



19. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language
semantics and abstract syntax. W3C Recommendation (10 February 2004),
http://www.w3.org/TR/owl-semantics/, available at http://www.w3.org/TR/

owl-semantics/

20. Rector, A., Rogers, J.: Ontological and practical issues in using a description logic
to represent medical concept systems: Experience from GALEN. In: Reasoning
Web, Second International Summer School, Tutorial Lectures. LNCS, vol. 4126,
pp. 197–231. SV (2006)

21. Ruttenberg, A., Rees, J., Luciano, J.: Experience using OWL DL for the exchange
of biological pathway information. In: Proc. of the First OWL Experiences and
Directions Workshop. CEUR Workshop Proceedings, vol. 188. CEUR (http://
ceur-ws.org/) (2005)

22. Sidhu, A., Dillon, T., Chang, E., Sidhu, B.S.: Protein ontology development using
OWL. In: Proc. of the First OWL Experiences and Directions Workshop. CEUR
Workshop Proceedings, vol. 188. CEUR (http://ceur-ws.org/) (2005)

23. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A prac-
tical OWL-DL reasoner. J. of Web Semantics 5(2), 51–53 (2007), http://www.

mindswap.org/papers/PelletJWS.pdf

24. Soergel, D., Lauser, B., Liang, A., Fisseha, F., Keizer, J., Katz, S.: Reengineering
thesauri for new applications: The AGROVOC example. J. of Digital Information
4(4) (2004)

25. Spackman, K.: Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with SNOMED-RT. J. of the Amer. Med.
Informatics Ass. (2000), fall Symposium Special Issue

26. Stevens, R., Baker, P., Bechhofer, S., Ng, G., Jacoby, A., Paton, N.W., Goble,
C.A., Brass, A.: Tambis: Transparent access to multiple bioinformatics information
sources. Bioinformatics 16(2), 184–186 (2000)

27. Semantic web for earth and environmental terminology (SWEET). Jet Propulsion
Laboratory, California Institute of Technology (2006), http://sweet.jpl.nasa.
gov/

28. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006). Lecture
Notes in Artificial Intelligence, vol. 4130, pp. 292–297. Springer (2006), download/
2006/TsHo06a.pdf

29. Woods, W.A.: What’s in a link: Foundations for semantic networks. In: Brachman,
R.J., Levesque, H.J. (eds.) Readings in Knowledge Representation, pp. 217–241.
Morgan Kaufmann Publishers, San Francisco, California (1985), previously pub-
lished in D. G. Bobrow and A. M. Collins, editors, Representation and Under-
standing: Studies in Cognitive Science, pages 35-82. New York Academic Press,
1975.


