
Consequence-Based and Fixed-Parameter Tractable Reasoning in Description Logics

František Simančı́k and Boris Motik and Ian Horrocks

Department of Computer Science, University of Oxford, UK

Abstract

In this paper we investigate the consequence-based algorithms that are nowadays commonly used for subsumption reasoning
with description logic ontologies, presenting the following novel results. First, we present a very general consequence-based
reasoning algorithm that can be instantiated so as to capture the essential features of the known algorithms. Second, we use this
algorithm to develop a novel framework for a quantitative and parametric analysis of the complexity of subsumption reasoning
in description logic ontologies. Our approach is based on the notion of a decomposition—a graph-like structure that, roughly
speaking, summarizes the models relevant during ontology reasoning. We identify width and length as decomposition parameters
that determine the “level” of combinatorial reasoning. We prove that, when parameterized by a decomposition, our consequence-
based algorithm runs in time that is fixed-parameter tractable in width and length. Third, we briefly discuss how length and width
characterize the behavior of tableau algorithms. Fourth, we show that the width and length of existing ontologies are reasonably
small, which, we believe, explains the good performance of consequence-based algorithms in practice. We thus obtain a sound
foundation for a practical implementation of ontology reasoners, as well as a way to analyze the reasoners’ performance.

Keywords: description logics, parameterized complexity, treewidth

1. Introduction

An ontology describes an application domain in terms of concepts (i.e., the kinds of objects in the domain), roles (i.e., the
relationships between objects), and axioms (i.e., statements that formally describe concepts and roles). Axioms are logical state-
ments and can thus be automatically processed via reasoning. For example, an ontology describing the structure of a university
might use concepts Employee, Professor, and AssistantProfessor to represent employees, professors, and assistant professors,
respectively, and the university’s organizational hierarchy might be captured by axioms stating that Professor is a subconcept of
Employee, and that AssistantProfessor is a subconcept of Professor. An ontology reasoner can use such statements to conclude
that AssistantProfessor is also a subconcept of Employee. This is an example of subsumption reasoning (i.e., reasoning about the
hierarchy of ontology concepts), which is a central computational problem in ontology-based applications in areas as diverse as
biology [1], medicine [2], geography [3], astronomy [4], agriculture [5], and defense [6].

The Web Ontology Language (OWL) [7] and its successor OWL 2 [8, 9] are standard ontology languages developed by the
World Wide Web Consortium (W3C). Their logical underpinning is provided by description logics (DLs) [10]—a well-known
family of knowledge representation languages. Reasoning with expressive DLs can be quite complex, so for simplicity in this
paper we focus on the basic description logic ALCI that provides the fundamental constructs such as inverse roles, full Boolean
connectives on concepts, and existential and universal quantification; however, quantification is guarded [11], which ensures that
subsumption reasoning is decidable, albeit of high complexity (ExpTime-complete). The reason for this high complexity is the
size and number of relevant models [10, Ch. 3]: due to an interaction between existential and universal quantifiers, an ontology
may be satisfied only in models containing an exponential number of objects (an effect known as and-branching), and due to
disjunctions, an ontology may admit an exponential number of “relevant” models (an effect known as or-branching). State of
the art OWL reasoners, including Pellet [12], FaCT++ [13], and HermiT [14], are all based on variants of the tableau algorithm,
which try to construct a finite representation of a model of an ontology. The basic algorithm has been heavily optimized so as to
curb and- and or-branching in practice [10, Ch. 9], which allows DL reasoners to successfully process many large and nontrivial
ontologies. The performance of such reasoners is, however, relatively brittle, and there exist ontologies (for example the GALEN
ontology1) that none of these reasoners is able to process. Although there has been some work on identifying the qualitative
features of an ontology that may degrade the performance of a given reasoner [15], no existing method can provide a quantitative
measure of the “difficulty” of reasoning with a particular ontology.

In order to provide more robust performance of reasoning, one can reduce language expressivity so as to make reasoning
easier. By removing disjunctions one obtains the Horn family of DLs [16]. Horn ontologies can always be translated into

1http://opengalen.org/

Preprint submitted to Elsevier January 24, 2014

Horn clauses, which eliminates all or-branching; however, while this has been empirically shown to make reasoning easier [14],
reasoning with Horn-ALCI is still ExpTime-hard due to and-branching [17]. By further removing universal quantification and
inverse roles from Horn-ALCI one obtains the EL family of DLs [18], for which subsumption reasoning is tractable; similarly,
by removing universal quantification, qualified existential quantification, and conjunction from Horn-ALCI one obtains the DL-
Lite family of DLs [19, 20], for which subsumption reasoning is also tractable. Although Horn DLs have been successfully
applied in practice, many applications require inverse roles (which precludes the use of EL), qualified existential quantification
(which precludes the use of DL-Lite), or concept covering constraints (which requires disjunction and hence precludes the use
of Horn DLs altogether). Thus, improving reasoning performance by reducing expressivity is not always feasible.

An alternative is to explore new reasoning techniques that may be better adapted to practical ontologies. Consequence-based
algorithms [21, 22] have recently proved to be very effective in practice; for example, the CB reasoner is currently the only
reasoner that can process the GALEN ontology in its entirety [21], and the ELK reasoner has revolutionized the processing of
large EL ontologies such as SNOMED CT2 [23]. Intuitively, such algorithms can be seen as variants of resolution optimized to
reduce the number of clauses produced on typical ontologies. However, although consequence-based reasoners have been very
successful, it is still not possible to quantify the difficulty of reasoning with a specific ontology.

We believe that methods for the quantitative analysis of the difficulty of reasoning with a specific ontology O would have
major benefits in practice. On the one hand, users would be able to predict the effectiveness of reasoners on O, and analyze
performance problems if they did arise; and on the other hand, algorithm designers would gain a deeper understanding as to why
reasoning with practical ontologies is often easy notwithstanding the high worst case complexity of the problem, and could exploit
this understanding in order to design more robustly scalable reasoning algorithms. Crucially, this analysis must go beyond worst-
case complexity and consider the salient features of a specific ontology. One can frame this problem in terms of parameterized
complexity [24], which measures the difficulty of a computational problem not only w.r.t. the size n of a problem instance, but also
a parameter k that quantifies specific aspects of the instance. Of particular interest are fixed-parameter tractable (FPT) problems,
which can be solved in time f (k) · nc for a fixed constant c and a fixed computable function f ; such problems are interesting
because one can hope to solve large instances provided that the parameter remains “small.” For example, many hard graph-
theoretic problems (including graph homomorphism and 3-colorability) are FPT when the parameter is the graph’s treewidth
[25]—a measure of the graph’s similarity to a tree. Furthermore, the notion of treewidth has also been extended to propositional
formulae and has been used to obtain FPT results for propositional satisfiability [26]. A key question in parameterized complexity
is to identify natural parameters that accurately characterize the problem’s difficulty.

In this paper, we present what we believe to be the first framework for a quantitative, parameterized analysis of the complexity
of subsumption reasoning with ALCI. Via well-known reductions of role inclusions and role transitivity axioms, our approach
can also be applied to SHI ontologies, and so it covers a significant subset of OWL 2 DL (the latter further allows constructs such
as nominals and number restrictions). We characterize the difficulty of subsumption reasoning in DLs using a graph-like structure
called a decomposition. Furthermore, we present a family of reasoning algorithms based on decompositions that facilitate FPT
reasoning. Finally, we show how the good performance of consequence-based reasoners on several widely used ontologies can
be explained by an analysis of their decompositions. We next summarize the main contributions of our paper.

In Section 3 we introduce a general consequence-based framework for subsumption reasoning in ALCI and SHI, and then
we discuss possibilities for instantiating the framework using different initialization and expansion strategies. Our algorithms
are not only refutationally complete: they can actively derive queries (i.e., axioms of a specific form) that logically follow from
a given ontology. A specific instantiation of our framework captures the algorithm used in CB [21] and is closely related to
the algorithm used in ConDOR [22]. As well as capturing existing consequence-based approaches, our framework incorpo-
rates redundancy deletion and optimized inference rules that have the potential to further improve the practical performance of
consequence-based algorithms. Thus, we see our framework as an important contribution in its own right.

In Section 4 we introduce the central notion of a decomposition D of an ontology O and a set of queries Q. Roughly speaking,
D is a graph-like structure that “summarizes” the models of O relevant for answering the queries in Q; each vertex of D identifies
a propositional subproblem, and each edge of D identifies a pathway for the exchange of information between such subproblems.
We then show how to instantiate our consequence-based framework from Section 3 so that it can be applied to D, and we identify
the length and width of D as parameters that characterize the and- and or-branching encountered in this process. Finally, we
show that the algorithm can be implemented so that it is fixed-parameter tractable w.r.t. decomposition length and width.

In Section 4.3 we show that decompositions also explain to an extent the difficulty of tableau reasoning. In particular,
decomposition width bounds the size of sets of concepts annotating tableau vertices, so length and width bound the size of the
constructed model representations. We also point out, however, that tableau algorithms are not FPT because the way in which
they construct model representations may result in redundant computations.

In Section 4.4 we present an algorithm for computing a decomposition of O and Q. One would naturally want to compute a
decomposition of smallest length and width; however, in Section 7 we show that there is a tension between these two parameters

2http://ihtsdo.org/

2

by exhibiting a family of ontologies for which each decomposition of minimum width has exponential length. To address this
problem, our decomposition construction algorithm is parameterized by a collection of parameters called a control that imposes
an upper bound on decomposition length so that a unique decomposition of O and Q can be computed in polynomial time.

In Section 5 we further extend our results using ideas from reasoning with propositional problems of bounded treewidth.
More specifically, we present the notion of ε-refinement of a decomposition D which, roughly speaking, is obtained by replacing
each vertex of D with a tree decomposition of the propositional problem corresponding to the vertex. This can reduce the width
of a decomposition while increasing the length only by a linear factor, so it can reduce the complexity of reasoning. As for tree
decompositions, computing an ε-refinement of bounded width (if one exists) is FPT.

In Section 6 we present several soundness- and admissibility-preserving transformations for decompositions that can be used
to eliminate redundant information. In Section 7 we then establish bounds on the sizes of the decompositions of O and Q. For
the lower bound, we show that ontologies exist for which all decompositions of minimal width have exponential length; for the
upper bound, we use the transformations from Section 6 to show that O and Q always admit a decomposition of minimal width
with at most exponential length.

In Section 8 we investigate the width and length of several ontologies commonly used in practice. Our results show that
almost all ontologies admit a decomposition of length about twice the number of concepts in the ontology, and of width below
30. These results, we believe, explain the good performance of consequence-based reasoning algorithms in practice.

To the best of our knowledge, these are the first results on quantitative analysis and fixed-parameter complexity of ontology
reasoning. The only related work we are aware of is the analysis of conditions under which query answering for a given ontology
(independently of the DL language) becomes tractable w.r.t. data complexity [27]; however, these results are not quantitative
and they do not address the problem of subsumption reasoning. Thus, we believe that this paper provides a completely new
perspective on the problem of identifying the sources of complexity in ontology reasoning. Moreover, our results are amenable
to practical implementation, and we believe they can significantly improve the scalability and robustness of reasoners.

2. Preliminaries

In this section we recapitulate some well-known definitions and introduce the notation that we use in the rest of our paper.

2.1. Description Logics

Description logics ALCI and SHI are defined w.r.t. a fixed signature Σ = 〈ΣA,ΣT 〉, where ΣA and ΣT are disjoint sets of
atomic concepts and atomic roles, respectively.

An inverse role is an expression T− for T an atomic role. A role is an atomic role or an inverse role, and ΣR is the set of all
roles. For an atomic role T , let inv(T) ··= T− and inv(T−) ··= T .

The set of concepts is the smallest set that contains > (the top concept), ⊥ (the bottom concept), each atomic concept A, and
¬D (negation), D1 u D2 (conjunction), D1 t D2 (disjunction), ∃R.D (existential restriction), and ∀R.D (universal restriction) for
each role R and all concepts D, D1, and D2. We assume that {>,⊥} ∩ ΣA = ∅—that is, > and ⊥ are not atomic concepts. A literal
is a concept of the form A, ∃R.A, or ∀R.A, for A an atomic concept and R a role, and ΣL is the set of all literals. For L a set of
literals, L∃ is the subset of L containing all literals of the form ∃R.A.

Unless otherwise stated, certain letters of the alphabet (possibly with sub- and/or superscripts) are used consistently through-
out this paper as specified below, so we do not qualify these letters whenever no ambiguity can arise:

• letters A, B, and C denote atomic concepts,
• letter D denotes a concept,
• letter L denotes a literal,
• letter T denotes an atomic role,
• letters R and S denote roles,
• letter K denotes a conjunction of literals, and
• letter M denotes a disjunction of literals.

We identify conjunctions and disjunctions of literals with sets of literals (i.e., conjunctions and disjunctions of literals are un-
ordered and without repeated literals) and we use them in standard set operations; furthermore, we identify the empty conjunction
and the empty disjunction with > and ⊥, respectively. Conversely, for U a set of literals,

�
U and

⊔
U are the conjunction and

the disjunction, respectively, of the literals in U; furthermore, to simplify the notation, in some cases we will explicitly note that
we abbreviate

�
U as just U. The cardinality of a set N is written |N |.

An axiom is an expression of the form D1 v D2 (general concept inclusion), R1 v R2 (role inclusion), or Tra(R) (role transi-
tivity axiom). A SHI ontology O is a set of axioms. In this paper we consider only terminological reasoning, so we do not allow
for facts (aka ABoxes) in ontologies. The size of O, written ‖O‖, is the number of symbols in O.

3

Table 1: The Semantics of SHI

Interpretation of Roles and Concepts
(T−)I = {〈δ2, δ1〉 ∈ ∆I × ∆I | 〈δ1, δ2〉 ∈ TI}

>I = ∆I

⊥I = ∅

(¬D)I = ∆I \ DI

(D1 u D2)I = DI
1 ∩ DI

2

(D1 t D2)I = DI
1 ∪ DI

2

(∃R.D)I = {δ1 ∈ ∆I | ∃δ2.〈δ1, δ2〉 ∈ RI ∧ δ2 ∈ DI}

(∀R.D)I = {δ1 ∈ ∆I | ∀δ2.〈δ1, δ2〉 ∈ RI → δ2 ∈ DI}

Satisfaction of Axioms in an Interpretation
I |= D1 v D2 if (D1)I ⊆ (D2)I

I |= R1 v R2 if (R1)I ⊆ (R2)I

I |= Tra(R) if ∀δ1∀δ2∀δ3.〈δ1, δ2〉 ∈ RI ∧ 〈δ2, δ3〉 ∈ RI → 〈δ1, δ3〉 ∈ RI

Ontologies are interpreted using Tarski-style semantics. An interpretation I = 〈∆I , ·I〉 is a pair where ∆I is a nonempty set
called the domain, and ·I is a function that assigns a set AI ⊆ ∆I to each atomic concept A ∈ ΣA, and a set TI ⊆ ∆I × ∆I to
each atomic role T ∈ ΣT . Function ·I is extended to roles and concepts as shown in the upper part of Table 1. The satisfaction
of an axiom α in I, written I |= α, is defined as shown in the lower part of Table 1. Interpretation I is a model of an ontology
O, written I |= O, if I satisfies all axioms in O. An ontology is O satisfiable if a model of O exists; furthermore, O entails an
axiom α, written O |= α, if I |= α for each model I of O. Note that O is unsatisfiable if and only if O |= > v ⊥.

A clause is a general concept inclusion of the form
�m

i=1 Li v
⊔n

i=m+1 Li where 0 ≤ m ≤ n and each Li is a literal; the clause is
normal if each Li with 1 ≤ i ≤ m is an atomic concept; and the clause is a query if each Li with m + 1 ≤ i ≤ n is an atomic concept.
Conjunction K in a clause K v M is the antecedent, and disjunction M is the consequent. An ontology O is normalized if each
general concept inclusion in O is a normal clause. Each SHI ontology O can be transformed in linear time to a normalized SHI
ontology O′ such that O′ is a conservative extension of O. Several such transformations are well known (see, e.g., [21, 14]),
so we omit the details for brevity. Given a set of literals L, a clause K v M is over L if K ∪ M ⊆ L. A clause K′ v M′ is a
strengthening of a clause K v M if K′ ⊆ K and M′ ⊆ M;3 furthermore, K v M ∈̂ N means that a set of clauses N contains at
least one strengthening of K v M.

We consider several fragments of SHI, which, for simplicity, we define only for normalized ontologies. Let O be a normal-
ized SHI ontology. Due to normalization, O cannot contain axioms of the form ∃R.A u K v M, so the following definitions
of various fragments are not standard; however, it is straightforward to see that they correspond to the conventional definitions
used in the literature. Furthermore, note that ∃R.> is not a literal since we do not consider > to be an atomic concept; however,
one can always replace > with a fresh atomic concept A> and axiomatize the latter using a clause > v A>. Now O is Horn
if the consequent of each clause in O contains at most one literal; O is an ALCI ontology if each axiom in O is a general
concept inclusion; O is an EL ontology if O is a Horn-ALCI ontology, each role occurring in O in an existential restriction is
an atomic role, and each role occurring in O in a universal restriction is an inverse role; and O is a DL-Litehorn ontology if O is
a Horn-ALCI ontology and universal restrictions occur in O only in axioms of the form > v ∀R.B.

A normalized SHI ontology O can be transformed into a normalized ALCI ontology by eliminating all role inclusions
and role transitivity axioms. Towards this goal, let vO be the smallest reflexive and transitive binary relation on roles such
that R vO S and inv(R) vO inv(S) for each role inclusion R v S ∈ O; furthermore, for each role R and each atomic concept C
occurring in O, let AR,C and BR,C be fresh atomic concepts unique for R and C. The elimination proceeds in three steps: step 1
ensures that universal restrictions occur only in clauses of the form A v ∀R.C, step 2 encodes transitivity axioms using the well-
known “box pushing” method, and step 3 eliminates role inclusions by expanding the role hierarchy into universal restrictions.
We capture these steps by defining three ontologies obtained by transforming O as follows.

1. For each clause K v M ∈ O, ontology O1 contains the clause obtained from K v M by replacing each literal ∀R.C ∈ M
with AR,C; furthermore, for each literal ∀R.C occurring in a clause in O, ontology O1 contains the axiom AR,C v ∀R.C.

3Note that, by this definition, each clause is a strengthening of itself.

4

Table 2: Derivation Rules of the Hypertableau Algorithm

Hyp-rule

If A1 u . . . u Am v L1 t . . . t Ln ∈ O, and
an individual s ∈ ind(A0) exists that is not indirectly blocked such that
Ai(s) ∈ A0 for each 1 ≤ i ≤ m and L j(s) < A0 for each 1 ≤ j ≤ n,

then A1 ··= A0 ∪ {⊥} if n = 0; and A j ··= A0 ∪ {L j(s)} for 1 ≤ j ≤ n if n > 0.

∃-rule

If an individual s exists that is not blocked such that
∃R.A(s) ∈ A0 and
no individual t exists such that {R(s, t), A(t)} ⊆ A0,

then A1 ··= A0 ∪ {R(s, u), A(u)} for u a fresh successor of s.

∀+-rule
If individuals s and t exists that are not indirectly blocked such that

{∀R.B(s), R(s, t)} ⊆ A0 and B(t) < A0,
then A1 ··= A0 ∪ {B(t)}.

∀−-rule
If individuals s and t exists that are not indirectly blocked such that

{[∀inv(R).B](t), R(s, t)} ⊆ A0 and B(s) < A0,
then A1 ··= A0 ∪ {B(s)}.

2. Ontology O2 contains each clause in O1; furthermore, for each clause A v ∀R.C ∈ O1 and each role S such that S vO R
and either Tra(S) ∈ O or Tra(inv(S)) ∈ O, ontology O2 contains clauses

A v ∀S .BS ,C and BS ,C v ∀S .BS ,C and BS ,C v C.

3. Ontology O3 contains each clause in O2; furthermore, for each clause A v ∀R.C ∈ O2 and each role S such that S vO R,
ontology O3 contains clause A v ∀S .C.

For each clause K v M where K and M contain only atomic concepts, O |= K v M if and only if O3 |= K v M; this can be
proved using a straightforward adaptation of the proofs by Demri and de Nivelle [28].

The algorithms presented in this paper take a normalized ALCI ontology O and a set of queries Q, and they compute the
status of O |= K v M for each query K v M ∈ Q; hence, our algorithms compute functions rather than solving decision problems.
For our complexity results, however, we consider a related decision problem of determining whether O |= K v M holds for each
query K v M ∈ Q—that is, the decision problem checks the conjunction of all such entailments.

2.2. The Hypertableau Algorithm
Most OWL 2 DL reasoners are currently based on variants of tableau algorithms. To relate our techniques to the state of the

art in ontology reasoning, we next present a variant of the hypertableau algorithm by Motik et al. [14].
We assume the existence of a countably infinite set of named individuals. An individual is a finite string of the form a.i1. . . . in

where a is a named individual and i1. . . . in is a possibly empty sequence of integers. An individual of the form s.i is unnamed,
and it is a successor of individual s; predecessor is the inverse of successor; and ancestor and descendant are transitive closures
of predecessor and successor, respectively. An ABox A is a finite set of facts of the form ⊥, L(s), or R(s, t), for L a literal, R a
role, and s and t individuals; furthermore, ind(A) is the set of individuals occurring in A.

Termination of the algorithm is ensured via anywhere blocking; for ALCI, the single anywhere variant suffices. Let C be an
arbitrary strict order (i.e., an irreflexive and transitive relation) on the set of all individuals compatible with the ancestor relation
(i.e., s C t holds for all individuals s and t such that s is an ancestor of t). The label of an individual s in an ABox A is defined
as LA(s) = {L | L(s) ∈ A}. By induction on C, each individual s occurring in A is assigned a status as follows:

• s is directly blocked by an individual s′ in A if both s and s′ are unnamed, no ancestor of s′ is blocked, LA(s) = LA(s′),
and s′ C s;

• s is indirectly blocked if s is unnamed and some ancestor of s is directly blocked; and
• s is blocked if it is directly or indirectly blocked.

Given a normalized ALCI ontology O and an ABox A containing only named individuals, the hypertableau algorithm
constructs a derivation D = (V, E, ρ) for O and A, where V and E are the vertices and edges of a finite tree, and ρ labels each
vertex with an ABox. A vertex v ∈ V is closed if ⊥ ∈ ρ(v); otherwise, v is open. Labeling ρ must satisfy the following conditions:

• ρ(v0) = A for v0 the root of the tree;
• vertex v0 is a leaf if v0 is closed or no derivation rule from Table 2 is applicable to A0 = ρ(v0);

5

• in all other cases, the children v1, . . . , vn of vertex v0 are labeled by ABoxes A1, . . . ,An obtained by applying one (arbi-
trarily chosen) derivation rule from Table 2 to A0 = ρ(v0).

The algorithm is sound and complete: for each derivation D, we have that O ∪A is satisfiable if and only if D contains an open
leaf. Thus, checking whether O |= A v B holds can be solved using the hypertableau algorithm by constructing a derivation for
O ∪ {C v A, B uC v ⊥} and {C(a)} where C is a fresh atomic concept, and then checking whether each derivation leaf is closed.

Due to inverse roles, blocking is dynamic: an individual can change its blocking status more than once as the inference rules
are applied, which is why individuals can be indirectly blocked. This, in turn, ensures that the algorithm runs in N2ExpTime:
the algorithm nondeterministically constructs a tree of individuals that can have exponential depth and a linear branching factor.
Hence, although the number of nonblocked and directly blocked individuals is at most exponential, the number of indirectly
blocked individuals in the tree can be doubly exponential; Motik et al. [14] discuss these issues in more detail.

2.3. Fixed-Parameter Tractable Problems

We now recapitulate several definitions from parameterized complexity [24]. A parameterized problem is a set P ⊆ Σ∗ × N,
where Σ is a finite alphabet and N is the set of nonnegative integers. Each pair 〈x, k〉 ∈ Σ∗ × N is called a problem instance;
x is called the input; k called is the parameter; and ‖x‖ is the length of x. Problem P is fixed-parameter tractable (FPT) if
a computable function f : N→ N, a constant c, and an algorithm exist such that, given an arbitrary pair 〈x, k〉 ∈ Σ∗ × N, the
algorithm decides 〈x, k〉 ∈ P in at most f (k) · ‖x‖c steps. FPT is the class of all fixed-parameter tractable problems.

Some authors use an alternative definition of parameterized complexity. Just like a regular problem, a parameterized problem
P is defined as a subset of Σ∗. Furthermore, a parameterization is a function κ : Σ∗ → N. A problem P is fixed-parameter tractable
w.r.t. a parameterization κ if a computable function f : N→ N, a constant c, and an algorithm exist such that, for an arbitrary
x ∈ Σ∗, the algorithm decides x ∈ P in at most f (κ(x)) · ‖x‖c steps. The two definitions are clearly equivalent if, for each x ∈ Σ∗,
value κ(x) is computable in polynomial time. Furthermore, even if the latter is not the case, the two definitions coincide if a
computable function g and a constant d exist such that, for each fixed k, one can check whether κ(x) ≤ k holds using at most
g(k) · ‖x‖d steps; in other words, checking κ(x) ≤ k must be fixed-parameter tractable as well. The results we present in this paper
involve the computation of a tree decomposition of a fixed width, which satisfies the latter condition.

2.4. Tree Decompositions and Treewidth of Hypergraphs and Propositional Problems

We recapitulate the notions of tree decompositions and treewidth [25], which were extensively used to obtain FPT results
for a number of intractable graph-theoretic problems. For convenience, we extend these notions to hypergraphs by treating each
hyperedge as the clique of all of its vertices, but this does not alter the definitions in any significant way.

Given a finite set N of nodes, an N-hypergraph H is a subset of 2N ; the elements of H are called hyperedges. A tree
decomposition of H is a tuple T = 〈V , E ,L〉 where V and E are sets of vertices and edges, respectively, of an undirected tree, and
L : V → 2N is a labeling of vertices with subsets of N such that the following conditions hold:

(T1) for each hyperedge h ∈ H, a vertex v ∈ V exists such that h ⊆ L(v); and

(T2) for each element n ∈ N, the set {v ∈ V | n ∈ L(v)} is connected in E .

The width of T is wd(T) ··= maxv∈V |L(v)|, and the treewidth of H is the minimum width over all tree decompositions of H. In
related literature width is actually defined as wd(T) ··= maxv∈V |L(v)| − 1 in order to ensure that tree-like hypergraphs have width
one, but we drop the term −1 from our definition for uniformity with Section 4. For a fixed integer mwd, a tree decomposition of
width at most mwd can be computed in linear time [29]. This result was originally formulated for tree decompositions of graphs;
however, by treating hyperedges as cliques, this result can also be straightforwardly applied to our definitions.

Lemma 1 ([29]). Let H be an N-hypergraph, and let mwd be an integer. One can compute a tree decomposition of H of width at
most mwd, or determine that such a tree decomposition does not exist, in time O(f (mwd) · |N|) where f is a computable function.
The resulting tree decomposition has at most |H| vertices.

We next recapitulate how these notions can be used to obtain an FPT procedure for propositional satisfiability [26]. To unify
the notation throughout this paper, we write propositional clauses as implications K v M where K is a conjunction of atoms,
and M is a disjunction of atoms; furthermore, we consider a propositional interpretation J to be a set of atoms; finally, we write
J |= K v M if K ⊆ J implies M ∩ J , ∅.

Let N be a set of propositional clauses. Then, we define H as the hypergraph that contains a hyperedge K ∪ M ∈ H for
each clause K v M ∈ N . Furthermore, a tree decomposition and the treewidth of N are defined as a tree decomposition and the
treewidth, respectively, of H. Now assume that the treewidth of N is bounded by some integer mwd. The following procedure
checks the satisfiability of N and is fixed-parameter tractable w.r.t. mwd.

1. Compute a tree decomposition T = 〈V , E ,L〉 of H of width at most mwd. By Lemma 1, this step is FPT w.r.t. mwd.

6

2. Associate with each vertex v ∈ V a set Pv of propositional interpretations as follows: set Pv ··= 2L(v), and then eliminate
each J ∈ Pv for which a clause K v M ∈ N exists such that K ∪ M ⊆ L(v) and J 6|= K v M. Since |L(v)| ≤ mwd, this step
requires time polynomial in 2mwd and |N |, and is thus FPT w.r.t. mwd.

3. Using a bottom-up approach starting from the leaves of T , for each non-root vertex v and its parent v′, eliminate from Pv′

each J′ ∈ Pv′ for which no J ∈ Pv exists such that J ∩ L(v) ∩ L(v′) = J′ ∩ L(v) ∩ L(v′). We can achieve this by iterating
over all pairs of J′ ∈ Pv′ and J ∈ Pv; since T has at most |N | vertices by Lemma 1, this step is FPT w.r.t. mwd.

4. Set N is unsatisfiable if and only if Pr = ∅, where r is the root of T .

To see why this algorithm is correct, assume that Pr , ∅; we can then construct an interpretation J for N as follows. Select an
arbitrary propositional interpretation Jr ∈ Pr; since Jr has not been deleted in step 3, for v1, . . . , vk the children of r, we can select
interpretations Jv1 , . . . , Jvk such that Jr ∩ L(r) ∩ L(vi) = Jvi ∩ L(r) ∩ L(vi) holds for each 1 ≤ i ≤ k. By inductively repeating this
argument from the root to the leaves, we associate with each vertex v ∈ V an interpretation Jv, and then we define J =

⋃
v∈V Jv.

Now since T satisfies properties (T1) and (T2), it is straightforward to see that J |= N . The converse direction can be shown
analogously, and we omit it for the sake of brevity. Thus, the treewidth of N can be taken as an indicator of the “hardness” of
N , and it shows the size of the sets of atomic concepts that we need to consider to decide the satisfiability of N .

3. Consequence-Based Framework for ALCI

In this section we present our consequence-based framework for solving the following reasoning problem: given a normalized
ALCI ontology O and a finite set of queries Q, determine whether O |= K v M holds for each query K v M ∈ Q. Note that this
problem captures ontology classification, which involves only queries of the form A v B for A and B atomic concepts from O;
furthermore, by using the transformations from Section 2, the framework can also be applied to SHI ontologies. In Section 3.1
we discuss the intuitions behind our framework, in Section 3.2 we introduce the framework formally, in Section 3.3 we discuss
certain redundancy elimination techniques that can be used to optimize reasoning, and finally in Section 3.4 we discuss several
concrete instantiations of our framework.

3.1. Intuitions
In order to capture the essence of the known similar algorithms, our framework can be instantiated in many different ways by

varying several parameters. In this section we describe the framework at a high level, and we discuss possible parameterizations
in Sections 3.3 and 3.4. In the rest of this section, we fix the ontology O and the query q as specified in Example 2, and then we
show how one can prove that O |= q holds using our framework.

Example 2. Let O be the ontology consisting of clauses (1)–(10), and let q = A v G; one can readily verify that O |= q.

A v Ai for 1 ≤ i ≤ n (1)
Ai v Ci for 1 ≤ i ≤ n (2)
B v Bi for 1 ≤ i ≤ n (3)
Bi v Ci for 1 ≤ i ≤ n (4)

C1 u . . . uCn v C (5)

C v ∃R.B (6)
C v ∀R.D (7)

B u D v E t ∀R−.G (8)
E v ∀R−.F (9)

A u F v G (10)

Resolution decision procedures [30] can decide whether O |= A v G holds by transforming O into a set of clauses, adding
clauses A(a) and ¬G(a) obtained from the negation of the theorem A v G that is to be proved, and then saturating the result
using a suitable first-order resolution variant [31]. Such algorithms are typically worst-case optimal, and they can solve many
practically-relevant problems; however, on complex ontologies they can easily run into a combinatorial explosion [32]. In our
example, from clauses (2)–(5) resolution can derive 3n clauses of the form L1 u . . . u Ln v C with Li ∈ {Ai, Bi,Ci}, thus covering
all possible combinations of atomic concepts that might be relevant. In contrast, when applied to O, the hypertableau algorithm
from Section 2.2 does not run into this problem: the algorithm is initialized using the fact A(a), and then it derives Ai(a) and
Ci(a) for each 1 ≤ i ≤ n and C(a); thus, the algorithm does not consider the “irrelevant” combinations of Ai, Bi, and Ci.

The hypertableau algorithm can thus be seen as being more “goal directed” than resolution. However, as we discussed in
Section 2.2, the hypertableau algorithm can construct a very large tree of individuals most of which are indirectly blocked, and
can thus perform a lot of redundant computation since each indirectly-blocked individual is a “copy” of a nonblocked or a directly
blocked individual. Resolution is not susceptible to such problems: clauses introduced by resolution are universally quantified
and are (unlike individuals in the tableau algorithm) not localized to a specific part of a model. Resolution can thus describe all
relevant combinations of atomic concepts using exponentially many clauses, thereby avoiding redundant computation.

Our consequence-based algorithm can be understood as a hybrid between resolution and the hypertableau algorithm. It does
not explicitly construct a model; instead, it uses resolution to compute clauses that describe a model I of O refuting the relevant

7

v1

A

Initialization: > v A (11)
Hyper[1+11]: > v Ai for 1 ≤ i ≤ n (12)
Hyper[2+12]: > v Ci for 1 ≤ i ≤ n (13)
Hyper[5+13]: > v C (14)
Hyper[6+14]: > v ∃R.B (15)
Hyper[7+14]: > v ∀R.D (16)
Pred[15+17+26]: > v F tG (28)
Hyper[10+11+28]: > v G (30)

v2

B,D

Succ[15+16]: > v B (18)
Succ[15+16]: > v D (19)
Hyper[3+18]: > v Bi for 1 ≤ i ≤ n (20)
Hyper[4+20]: > v Ci for 1 ≤ i ≤ n (21)
Hyper[5+21]: > v C (22)
Hyper[6+22]: > v ∃R.B (23)
Hyper[7+22]: > v ∀R.D (24)
Hyper[8+18+19]: > v E t ∀R−.G (25)
Hyper[9+25]: > v ∀R−.F t ∀R−.G (26)
Pred[23+27+26]: > v F tG (29)

Succ[15+16]: ∃R.B (17)
Succ[23+24]: ∃R.B (27)

Figure 1: Example Inferences of the Consequence-Based Algorithm

queries in Q. The inferences of the algorithm are not localized to a part of I, which allows our algorithm to avoid redundant
computation: although there are many technical differences, our algorithm is somewhat related to the tableau algorithms with
caching [33, 34]. To be goal oriented, our algorithm constructs a context structure—a graph-like structure whose vertices are
called contexts. Intuitively, each context describes one or more elements in the model I, and the edges between contexts capture
the relations between the corresponding elements of I. Each context v is associated with a set core(v) of core atomic concepts.
Intuitively, the concepts in core(v) hold for each element of I that corresponds to v; hence, core(v) determines the “type” of v and
the corresponding model elements. Furthermore, each context v is associated with a set of clauses S(v) that, as in propositional
resolution, describe the domain elements in I that correspond to v. Each clause K v M ∈ S(v) is “relative” to core(v) and should
be interpreted as core(v) u K v M. In other words, the concepts in core(v) hold in all model elements corresponding to v, so we
drop core(v) from the clauses in S(v) for the sake of clarity. We next demonstrate how to use the derivation rules in Table 3 on
page 13 to prove O |= A v G. We will construct the context structure shown in Figure 1; each context is shown as a circle, the
core of each context is shown above the circle, the clauses belonging to the context are shown below the circle, and the numbers
next to the clauses correspond to the order of inference rule applications.

To avoid the drawbacks outlined earlier, our algorithm does not perform inferences between the clauses in O; instead, each
inference involves either a single set of clauses S(v) and possibly the ontology O, or a pair of sets of clauses S(v) and S(u). To
initiate the inference process, we initialize the algorithm according to the target query. Since our goal is to prove O |= A v G, we
introduce a single context v1 with core(v1) = {A}, and we add clause (11) to S(v1). Intuitively, this says that the model I must
contain at least one element in which A holds, which is similar to initializing the hypertableau algorithm by A(a). We then use the
Hyper rule to derive clauses (12)–(16). Since only A is assumed to hold in context v1, we derive only a linear number of clauses:
no Bi holds in v1, so we do not derive clauses with irrelevant combinations of atomic concepts. These inferences are analogous
to the inferences of the Hyp-rule in the hypertableau algorithm, with the difference that the conclusions are not localized: they
hold for each element of I that corresponds to v1.

Clause (15) says that the elements in I corresponding to v1 must have a successor in which B holds. To satisfy this require-
ment, we use the Succ rule to introduce context v2 and add the edge (17) from v1 to v2; the edge is labeled with the concept ∃R.B
that it satisfies. The Succ rule combines the ∃-rule and the ∀+-rule from the hypertableau algorithm by means of sets of atomic
concepts Bk and Bp. Set Bk contains atomic concepts known to hold in v2 due to universal restrictions—that is, those concepts
L for which > v ∀R.L has been derived in v1. In our example, clause (16) ensures that D holds in v2, and so we have Bk = {D}.
Thus, set {B} ∪ Bk = {B,D} provides us with an “upper bound” on the core of the new context: both B and D necessarily hold
in context v2, but we can use an arbitrary subset of {B,D} as the core of v2. Choosing smaller cores might reduce the number of
contexts because it allows us to reuse the same context to satisfy different applications of the Succ rule, but it might also increase
the number of clauses per context as the latter is then “less precise.” The decision which subset to use is determined by a strategy,
which is supplied as parameter to our algorithm. In this example we use the eager strategy that always uses the maximal subset
and thus sets core(v2) = {B,D}; however, we discuss other reasonable strategies and the tradeoffs involved in the choice of a core
in more detail in Section 3.4. The Succ rule also initializes S(v2) with clauses (18) and (19) specifying that B and D hold in each
element of I that is represented by context v2. Set Bp contains atomic concepts that can possibly hold in v2 due to universal
restrictions—that is, those concepts L for which K v M t ∀R.L has been derived in v1 for some K and M. Thus, set {B} ∪ Bp

provides us with an “upper bound” on the concepts that might need to be considered in v2. Since (16) is the only clause in S(v1)
containing a universal restriction, in our example we have Bp = Bk = {D}. Sets Bk and Bp need not coincide in general, and the
Succ rule adds a clause of the form L v L for each concept L from Bp that is not in the core of the new context.

8

We next use the Hyper rule to derive clauses (20)–(26) in S(v2). As in the hypertableau algorithm, since only B holds in
context v2, we do not derive a clause involving Ai. Now clause (23) requires an edge labeled with ∃R.B; due to clause (24),
the core of the target context can be any subset of {B,D}; and due to the eager strategy, the core of the target context will be
{B,D}. But then, there is no need to introduce a fresh context: our eager strategy can instruct the Succ rule to reuse the existing
context v2 since we already have core(v2) = {B,D}. Consequently, we introduce edge (27) using the Succ rule. This “reuse” of v2
is similar to blocking in the hypertableau algorithm, but is actually much more effective in eliminating redundant computations.
First, we never need more than exponentially many contexts, whereas the hypertableau algorithm can constructs trees of doubly
exponential size. Second, the clauses belonging to each context are not localized to a specific place in I, and so our algorithm
draws the inferences for a particular core only once. In contrast, to ensure that the labels of s and s′ coincide and thus ensure
the blocking condition, the hypertableau algorithm must draw the same conclusions for s and s′; furthermore, an individual can
directly block exponentially many other individuals, so the potential for redundant work is even higher.

Clause (26) says that each element in I corresponding to a predecessor of an element represented by v2 must satisfy F or
G; hence, we apply the Pred rule to edge (17) and clauses (15) and (26) to derive clause (28). Furthermore, we also apply the
Pred rule to edge (27) and thus derive clause (29). The Pred rule essentially “pulls” the information from the successor to the
predecessor; however, unlike the ∀−-rule in the hypertableau algorithm, it simultaneously deals with several universal restrictions.

Finally, we use the Hyper rule to derive clause (30), at which point no further inferences are possible. Since all clauses are
“relative” to the core of the corresponding context, clause (30) actually corresponds to A v G, so we have proved O |= A v G. In
fact, due to (30), we know that O |= K v M for each query K v M such that A v G is a strengthening of K v M. Our algorithm
is thus not just refutationally complete: for each query K v M such that O |= K v M, it derives at least one strengthening of
K v M in each context that covers (cf. Definition 4) the query.

We finish this section with a note that unrestricted application of the Hyper rule can be very prolific, so we use the ordered
resolution variant [31]: we parameterize our algorithm with an ordering on literals, and, for each clause K v M ∈ S(v), we apply
the inference rules only to literals that are maximal in M w.r.t. the ordering. The Pred rule, however, introduces a complication:
clause (26), which is needed for the Pred rule, can be derived from (25) only if ∀R−.G is smaller than E in the ordering. Therefore,
we use an ordering ≺v per context v; furthermore, if v has an incoming edge labeled with ∃R.A, then ≺v must be R-admissible
(cf. Definition 3)—that is, each literal of the form ∀inv(R).B must be smallest in ≺v. These restrictions ensure that all clauses that
can participate in the Pred rule, such as (26), are derived in S(v) and so the rule can be applied. Please note that orderings are
optional: the trivial empty ordering (i.e., the ordering under which all literals are incomparable) is R-admissible for each role R,
and it can therefore be used in each context. Moreover, orderings are not necessary for the fixed-parameter tractability results we
present in Sections 4 and 5: these hold even if each context uses the trivial empty ordering.

3.2. Formalizing the Consequence-Based Framework
In this section we formalize the intuitions that we discussed in Section 3.1. Recall that in Section 2.1 we introduced ΣL as the

set of all literals, and Σ∃L as the set of all existential restrictions over the signature Σ = 〈ΣA,ΣT 〉. Moreover, recall that we often
treat conjunctions and disjunctions of literals as sets of their respective conjuncts and disjuncts. We first introduce the notion of
a literal ordering, which we will use later to restrict applicability of our inference rules.

Definition 3. A literal ordering ≺ is a strict partial order (i.e., an irreflexive and transitive relation) on the set ΣL of all literals. A
literal L ∈ ΣL is ≺-minimal if no literal L′ ∈ ΣL exists such that L′ ≺ L; moreover, a set of literals N is ≺-minimal if each literal
in N is ≺-minimal. A literal L ∈ ΣL is ≺-maximal w.r.t. a set of literals N, written L ⊀ N, if no literal L′ ∈ N exists such that
L ≺ L′. Given a role R, ordering ≺ is R-admissible if each literal of the form ∀inv(R).A is ≺-minimal.

By Definition 3, a literal ordering ≺ is a partial order so two literals can be incomparable w.r.t. ≺. Thus, a literal L being
maximal in some set of literals N does not imply that L′ ≺ L holds for each literal L′ ∈ N; instead, this only means that no literal
in N is larger than L w.r.t. ≺, which we reflect by using notation L ⊀ N for the notion of maximality.

Throughout the rest of this paper we fix a “global” countably infinite set of contexts X. Sets X, ΣL, and Σ∃L provide us with
building blocks for the following definition of a context structure.

Definition 4. A context structure is a tuple D = 〈V , E , core,≺〉, where V ⊆ X is a finite set of contexts, E ⊆ V × V × Σ∃L is a finite
set of edges labeled by existential restrictions, function core : V → 2ΣL labels each context with a finite set of literals, and function
≺ assigns to each context v ∈ V a literal ordering ≺v. Such D is admissible if, for each edge 〈v, u,∃R.A〉 ∈ E , the literal ordering
≺u is R-admissible. Furthermore, D is over a set of literals L if all literals in D are contained in L. Finally, given a context v, set
core(v) is often treated as the conjunction of its atomic concepts, thus allowing core(v) to occur in concepts and axioms.

Let v ∈ V be an arbitrary context of D; then, v is trivial if core(v) = ∅ and ≺v = ∅. In addition, let K v M be an arbitrary
query; then, v is sound for K v M if core(v) ⊆ K; v is complete for K v M if M is ≺v-minimal; and v covers K v M if v is both
sound and complete for K v M.

A clause system, which we formalize next, assigns a set of clauses S(v) to each context v. As we discussed in Section 3.1,
our consequence-based algorithm produces a context structure D and a clause system S. The clauses in each set S(v) will be

9

“relative” to core(v)—that is, for each clause K′ v M′ ∈ S(v), we will have O |= core(v) u K′ v M′. Moreover, we will be able to
use S to decide query entailment: for each query K v M and each context v covering K v M initialized so that K v L ∈̂ S(v) holds
for each literal L ∈ K, we will have O |= K v M if and only if K v M ∈̂ S(v). The notion of context soundness in Definition 4
ensures that query K v M is compatible with the intended reading of the clauses in S(v), and the notion of context completeness
ensures that ordering ≺v does not prevent the derivation of a strengthening of K v M in such S(v).

Definition 5. A clause system for a context structure D = 〈V , E , core,≺〉 is a function S that assigns to each context v ∈ V a finite
set of clauses S(v).

To simplify the presentation, in the rest of this section we fix a normalized ALCI ontology O and a finite set of queries
Q—that is, we assume that all subsequent definitions and theorems in this section are implicitly parameterized with O and Q.
Furthermore, we fix L to be the set of literals occurring in O ∪Q; since O and Q are finite sets, set L is finite as well.

As we explained in Section 3.1, our algorithm is based on the inference rules shown in Table 3. The Hyper, Succ, and Pred
rules are responsible for completeness, and we discussed the intuitions behind these rules in Section 3.1. The Elim rule supports
redundancy elimination and is not needed for completeness or the complexity results in Sections 4 and 5. We discuss the intuitions
underlying the Elim rule in more detail in Section 3.3; however, in order to present the soundness, completeness, and termination
proofs in one place, we introduce the rule here. The completeness of our algorithm is guaranteed by Theorem 6, the proof of
which is given in Appendix A. The theorem essentially says that, given a context structure D and a clause system S saturated
under the the Hyper, Pred, and Succ rules, we can read off the consequences of the form K v M from the sets S(v) provided
that K v M is a query, the context v is complete (cf. Definition 4) for K v M, and set S(v) is appropriately initialized. The
initialization is similar to asserting L(a) for each literal L ∈ K at the beginning of a hypertableau test of O |= K v M. Please note
that Theorem 6 depends on the Succ rule being not applicable, and so the exact definition of strategy used in the postcondition
of the Succ rule is not relevant for completeness. In the rest of this section we discuss how to initialize the sets S(v) and how to
satisfy the precondition of the Succ rule to obtain a sound and complete algorithm.

Theorem 6 (Completeness). Let D = 〈V , E , core,≺〉 be an admissible context structure, and let S be a clause system for D such
that the Hyper, Pred, and Succ rules from Table 3 are not applicable to D and S. Then, K v M ∈̂ S(v) holds for each query
K v M and each context v ∈ V that satisfy all of the following three conditions:

• O |= K v M,
• context v is complete for query K v M, and
• K v L ∈̂ S(v) for each literal L ∈ K.

As we discussed in Section 3.1, our framework is parameterized by a function strategy, which we formalize in Definition 7.
Intuitively, when the Succ rule identifies a context v and an existential restriction ∃R.A for which the rule’s precondition is
not satisfied, strategy(∃R.A,Bk,D) returns a triple 〈u, core′,≺′〉 that specifies how to modify D and S so that the precondition
becomes satisfied. The strategy has two options. First, the strategy can decide to extend D by returning a fresh context u; in
such a case, u is added to D, and core′ and ≺′ specify how to initialize core(u) and ≺u. Second, the strategy can decide to reuse
a context u that is already a part of D; if so, then ordering ≺u is intersected with ≺′ to ensure R-admissibility, but also preserve
admissibility for all other roles. Definition 7 requires each strategy to be bounded: if the signature is finite, then the strategy
should return only finitely many different results on all possible inputs. Please note that a finite signature does not necessarily
bound the size of D, so the number of different arguments (and return values) for strategy is not bounded. Bounded strategies
can thus introduce only finitely many fresh contexts, which ensures termination.

Definition 7. An expansion strategy is a function strategy computable in polynomial time that takes an existential restriction
∃R.A, a set of atomic concepts Bk, and a context structure D = 〈V , E , core,≺〉. The result of strategy(∃R.A,Bk,D) is a triple
〈u, core′,≺′〉 where

• core′ is a subset of {A} ∪ Bk,
• ≺′ is an R-admissible literal ordering, and
• either u ∈ X \ V is a fresh context, or u ∈ V is a context in D such that core(u) = core′.

Each expansion strategy must be bounded, which is the case if, for each finite set of literals L, the number |strategy|L of different
values that strategy can return for all possible arguments over L is finite.

We next define when a context structure D and a clause system S are sound for O. Recall that, for a context v, clause
K v M in S(v) is “relative” to core(v)—that is, the clause should be interpreted as core(v) u K v M. Soundness for a clause
simply means that O |= core(v) u K v M should hold for each clause K v M ∈ S(v). To understand the notion of soundness for a
context structure, consider an arbitrary edge 〈v, u,∃R.A〉 in D. As we explained in Section 3.1, the Pred rule “pulls” information
from S(u) into S(v); however, the clauses in S(v) and S(u) are “relative” to core(v) and core(u), respectively, so core(u) and

10

core(v) must be related as specified in Definition 8 to make the Pred rule sound. Please remember that core(u) and core(v) should
be understood as conjunctions of the respective sets of atomic concepts.

Definition 8. A context structure D = 〈V , E , core,≺〉 is sound for O if O |= core(v) u ∃R.A v ∃R.[core(u) u A] holds for each
edge 〈v, u,∃R.A〉 ∈ E . Furthermore, a clause system S is sound for O if O |= core(v) u K v M holds for each context v ∈ V and
each clause K v M ∈ S(v).

Proposition 9 shows that the inference rules in Table 3 preserve admissibility and soundness of a context structure and a
clause system. The former follows immediately from Definition 7, and the proof of the latter is analogous to the soundness proof
for first-order resolution [31]: we show that each clause introduced by an inference rule is a logical consequence of O.

Proposition 9 (Soundness). Let D1 = 〈V , E , core,≺〉 be a context structure, let S1 be a clause system for D1, and let D2 and S2
be the context structure and the clause system, respectively, obtained by applying an inference rule from Table 3 to D1 and S1. If
D1 is admissible, then D2 is admissible. Furthermore, if both D1 and S1 are sound for O, then both D2 and S2 are sound for O.

Proof. Assume that D1 is admissible and that the Succ rule is applied to D1 as shown in Table 3. By Definition 7, literal ordering
≺′ is R-admissible; furthermore, for arbitrary literal orderings ≺1 and ≺2 that are R- and S -admissible, respectively, set ≺1 ∩ ≺2
is a literal ordering that is both R- and S -admissible. Therefore, regardless of whether context u is fresh or not, D2 is admissible.
Now assume that both D1 and S1 are sound; we next show that both D2 and S2 are sound as well. To this end, let I = 〈∆I , ·I〉 be
an arbitrary model of O, and consider all possible inference rules that derive a clause in S2 or modify D2.

(Hyper rule) Assume that the rule is applied as in Table 3; we will show that O |= core(v) u
�n

i=1 Ki v M t
⊔n

i=1 Mi. To this
end, consider an arbitrary element δ ∈ ∆I such that δ ∈ (core(v) u

�n
i=1 Ki)I . Now S1 is sound for O so, for each 1 ≤ i ≤ n,

we have O |= core(v) u Ki v Mi t Ai, which implies δ ∈ (Mi t Ai)I . If δ ∈ MI
i for some 1 ≤ i ≤ n, then clearly δ ∈ (

⊔n
i=1 Mi)I .

Otherwise, we have δ ∈ (
�n

i=1 Ai)I , but then
�n

i=1 Ai v M ∈ O implies δ ∈ MI . In either case, we have δ ∈ (M t
⊔n

i=1 Mi)I .
Since δ was chosen arbitrarily, I satisfies the conclusion of the rule, as required.

(Pred rule) Assume that the rule is applied as in Table 3; we will show that O |= core(v) u
�n

i=0 Ki v
⊔n

i=0 Mi t
⊔m

j=1 C j. To
this end, consider an arbitrary element δ ∈ ∆I such that δ ∈ (core(v) u

�n
i=0 Ki)I . As in the previous case, if δ ∈ MI

i for some
0 ≤ i ≤ n, then clearly δ ∈ (

⊔n
i=0 Mi)I . Otherwise, as S1 is sound for O, we have δ ∈ (∃R.A)I and δ ∈ (∀R.Bi)I for each 1 ≤ i ≤ n.

Since 〈v, u,∃R.A〉 ∈ E and D1 is sound, we have O |= core(v) u ∃R.A v ∃R.[core(u) u A]; therefore, since δ ∈ [core(v) u ∃R.A]I ,
we have δ ∈ (∃R.[core(u) u A])I . Hence, an element γ ∈ ∆I exists such that 〈δ, γ〉 ∈ RI and γ ∈ [core(u) u A u

�n
i=1 Bi]I . But

then, due to either of the two alternative premises of the rule, we also have γ ∈ [
⊔m

j=1 ∀inv(R).C j]I ; thus, δ ∈ (
⊔m

j=1 C j)I holds.
Since δ was chosen arbitrarily, I satisfies the conclusion of the rule, as required.

(Succ rule) Assume that the rule is applied as in Table 3; in the rest of this proof, we consider set Bk to be equivalent to
the conjunction of the atomic concepts contained in it. Each clause introduced by the rule is of the form L v L, so clearly
I |= core(u) u L v L. We next show that the new edge 〈v, u,∃R.A〉 introduced by the rule satisfies the axiom from Definition 8.
For each atomic concept B ∈ Bk, we have > v ∀R.B ∈ S(v) by the rule preconditions, so O |= core(v) v ∀R.B since S1 is sound
for O; but then, we have O |= core(v) u ∃R.A v ∃R.[A u Bk]. Furthermore, since core(u) = core′ ⊆ A u Bk holds, we also have
O |= core(v) u ∃R.A v ∃R.[core(u) u A], as required.

The following notion of a covering mapping maps each query q ∈ Q to a context in a context structure. Intuitively, our
algorithm will use such a mapping to find for each query q ∈ Q a context that can be used to verify O |= q.

Definition 10. Let D = 〈V , E , core,≺〉 be a context structure. A covering mapping from Q to D is a function ϑ : Q→ V such
that each query q ∈ Q is covered in the context ϑ(q).

We are finally ready to formally define our consequence-based reasoning algorithm. Apart from O and Q, the algorithm is
parameterized by an expansion strategy strategy, a context structure D with no edges, and a covering mapping ϑ. By passing
D and ϑ as arguments, the algorithm’s users can decide how to initialize the contexts necessary for checking the queries in Q;
we discuss reasonable possibilities in Section 3.4.1. Since the algorithm is given a context structure without edges, D is trivially
sound for O; by inductively applying Proposition 9, the resulting clause system is sound for O. Furthermore, the algorithm is
complete because steps 1 and 2 satisfy the preconditions of Theorem 6.

Algorithm 11. The consequence-based reasoning algorithm for ALCI takes O, Q, a context structure D = 〈V , E , core,≺〉 over
L with E = ∅, an expansion strategy strategy, and a covering mapping ϑ from Q to D. The algorithm (nondeterministically)
extends D and computes a clause system S for the extended context structure as follows.

1. Set S(v) ··= {> v L | L ∈ core(v)} for each context v ∈ V .

2. For each query K v M ∈ Q, let v ··= ϑ(K v M); then, for each literal L ∈ K \ core(v), add L v L to S(v).

3. Exhaustively apply the inference rules from Table 3.

11

Please note that Algorithm 11 is nondeterministic: the conclusion of an inference rule is added to S(v) only if S(v) does
not contain a strengthening of the conclusion, and the order of inference rule application is not predetermined; therefore, the
resulting D and S are not unique. This, however, is don’t-care nondeterminism: any order of inference rule applications suffices
for soundness and completeness.

In Proposition 13 we formalize the soundness and completeness argument outlined earlier. Towards this goal, in Lemma 12
we show that the Elim rule never deletes the “relevant” consequences derived by our algorithm: whenever a clause K v M is
deleted from some set S(v), after deletion the set still contains a strengthening of the deleted clause.

Lemma 12. If, at some point in the execution of Algorithm 11, K v M ∈̂ S(v) holds for some clause K v M and context v, then
K v M ∈̂ S(v) holds at all future points as well.

Proof. The proof is by a straightforward induction on the application of the rules. In particular, rules Hyper, Pred, and Succ just
add clauses, so their application clearly preserves this property. Furthermore, the Elim rule removes a clause K2 v M2 from S(v)
only if K1 v M1 ∈ S(v) where K1 v M1 is a strengthening of K2 v M2; since the strengthening relation on clauses is transitive,
an application of the Elim rule clearly preserves this property as well.

Proposition 13. Let S be a clause system obtained by applying Algorithm 11 to O, Q, a context structure D, an expansion
strategy strategy, and a covering mapping ϑ. Then, for each query q ∈ Q, we have O |= q if and only if q ∈̂ S(ϑ(q)).

Proof. Consider an arbitrary query K v M ∈ Q and let v ··= ϑ(K v M). Context v covers K v M, so v is sound for K v M and
thus core(v) ⊆ K holds by Definition 4, and v is also complete for K v M.

Assume that K v M ∈̂ S(v), so a clause K′ v M′ ∈ S(v) exists such that K′ ⊆ K and M′ ⊆ M. For each clause > v L added
to some S(u) in step 1, we have O |= core(u) v L since L ∈ core(u); furthermore, for each clause L v L added to S(u) in step 2,
we clearly have O |= core(u) u L v L; finally, Algorithm 11 is applied to a sound context structure, so D and S are sound for O
by Proposition 9, and O |= core(v) u K′ v M′ holds. Finally, K′ ∪ core(v) ⊆ K and M′ ⊆ M imply O |= K v M, as required.

Conversely, assume that O |= K v M. Consider an arbitrary literal L ∈ K; if L ∈ core(v), then> v L is added to S(v) in step 1,
and if L ∈ K \ core(v), then L v L is added to S(v) in step 2; in either case, we have that K v L ∈̂ S(v) holds after step 2, and
Lemma 12 ensures that this property is preserved during the algorithm’s execution. But then, since v is complete for K v M, we
have K v M ∈̂ S(v) by Theorem 6, as required.

Finally, we determine the complexity of our algorithm.

Proposition 14 (Termination). When applied to O, Q, a context structure D = 〈V , E , core,≺〉, an expansion strategy strategy,
and a covering mapping ϑ, Algorithm 11 terminates in time polynomial in 4|L|

2
, |strategy|L + |V |, and ‖O‖ + ‖Q‖.

Proof. When applied to arguments over L, the result of the expansion strategy is clearly over L as well; therefore, the context
structure and the clause system computed using Algorithm 11 are over L. The number of different clauses over L is bounded
by c = 2|L| · 2|L| = 4|L| since each literal from L can independently occur in the clause antecedent and/or the clause consequent.
Algorithm 11 is applied to a context structure with |V | contexts, and the expansion strategy can introduce at most |strategy|L
additional contexts; hence, the total number of contexts introduced in the algorithm is bounded by m = |strategy|L + |V |.

We call all objects needed to apply an inference rule from Table 3 premises; for the Succ rule, this includes set Bp. We next
show that, for the Hyper, Pred, and Succ rules, the number of different premises is polynomial in c|L|, m, and ‖O‖ + ‖Q‖; recall
that |L| ≤ ‖O‖ + ‖Q‖. For the Hyper rule, context v ∈ V can be chosen in at most m ways, clause

�
i Ai v M ∈ O can be chosen

in at most |O| ways, and each of the n ≤ |L| clauses Ki v Mi t Ai ∈ S(v) can be chosen in at most c ways, so there are at most
c|L| ways of choosing such a set of clauses. For the Pred rule, edge 〈v, u,∃R.A〉 ∈ E can be chosen in at most m2 · |L| ways, clause
A u
�

i Bi v
⊔

j ∀inv(R).C j ∈ S(u) or
�

i Bi v
⊔

j ∀inv(R).C j ∈ S(u) can be chosen in at most c ways, and each of the n + 1 ≤ |L|
clauses K0 v M0 t ∃R.A ∈ S(v) and Ki v Mi t ∀R.Bi ∈ S(v) can be chosen in at most c ways, so there are at most c|L| ways of
choosing such a set of clauses. For the Succ rule, context v ∈ V can be chosen in at most m ways, literal ∃R.A can be chosen in
at most |L| ways, clause K v M t ∃R.A ∈ S(v) can be chosen in at most c ways, and there are at most 2|L| different sets Bp.

Each rule in Table 3 adds a clause K v M to some S(v) only if K v M 6∈̂ S(v); thus, due to Lemma 12, each such K v M can
be added to some S(v) at most once; but then, the Elim rule can eliminate such K v M from S(v) at most once as well. Thus,
no inference rule is applied twice to the same premises, so the number of inference rule applications is bounded by a number
that is polynomial in c|L|, m, and ‖O‖ + ‖Q‖. Moreover, strategy is computable in polynomial time, so each inference rule can be
applied to fixed premises in polynomial time. Consequently, the algorithm can be implemented so that it runs in time polynomial
in c|L|, m, and ‖O‖ + ‖Q‖.

3.3. Redundancy Elimination

Resolution can often derive redundant clauses—that is, clauses that are not necessary for a proof. Such clauses can give rise
to a large number of other redundant clauses, so it is beneficial to detect and eliminate redundant clauses whenever possible. To

12

Table 3: Consequence-based inference rules for ALCI

H
yp

er

If
�n

i=1 Ai v M ∈ O,
Ki v Mi t Ai ∈ S(v) with Ai ⊀v Mi for 1 ≤ i ≤ n,
and
�n

i=1 Ki v M t
⊔n

i=1 Mi 6∈̂ S(v),
then add

�n
i=1 Ki v M t

⊔n
i=1 Mi to S(v).

Pr
ed

If 〈v, u,∃R.A〉 ∈ E ,
A u
�n

i=1 Bi v
⊔m

j=1 ∀inv(R).C j ∈ S(u) or
�n

i=1 Bi v
⊔m

j=1 ∀inv(R).C j ∈ S(u),
K0 v M0 t ∃R.A ∈ S(v) with ∃R.A ⊀v M0,
Ki v Mi t ∀R.Bi ∈ S(v) with ∀R.Bi ⊀v Mi for 1 ≤ i ≤ n,
and
�n

i=0 Ki v
⊔n

i=0 Mi t
⊔m

j=1 C j 6∈̂ S(v),
then add

�n
i=0 Ki v

⊔n
i=0 Mi t

⊔m
j=1 C j to S(v).

Su
cc

If K v M t ∃R.A ∈ S(v) with ∃R.A ⊀v M, and
for Bp ··= {B | K′ v M′ t ∀R.B ∈ S(v) and ∀R.B ⊀v M′},
no edge 〈v, u,∃R.A〉 ∈ E exists such that L v L ∈̂ S(u) for each L ∈ {A} ∪ Bp,

then let 〈u, core′,≺′〉 ··= strategy(∃R.A,Bk,D) where Bk ··= {B | > v ∀R.B ∈ S(v)};
if u ∈ V , then let ≺u ··= ≺u ∩ ≺

′, and
otherwise let V ··= V ∪ {u}, core(u) ··= core′, ≺u ··= ≺

′, and S(u) ··= {> v L | L ∈ core(u)};
add 〈v, u,∃R.A〉 to E ; and
for each L ∈ [{A} ∪ Bp] \ core(v) such that L v L 6∈̂ S(u), add L v L to S(u).

El
im

If K1 v M1 ∈ S(v),
K2 v M2 ∈ S(v), and
K1 v M1 is a strengthening of K2 v M2 and the two clauses are distinct,

then remove K2 v M2 from S(v).

this end, modern first-order theorem provers employ a number of redundancy elimination rules that eliminate or simplify certain
clauses; Weidenbach [35] presents an overview of these techniques. Inspired by redundancy elimination in first-order theorem
provers, we equipped our consequence-based framework with analogous possibilities, which we discuss in this section. Please
note that redundancy elimination is optional: it may optimize the theorem proving process but is not needed for completeness.
Similarly, the complexity of the algorithms that we present in Sections 4 and 5 is independent from any redundancy elimination
techniques, but redundancy elimination can still improve the performance of these algorithms in practice.

First, the completeness Theorem 6 only requires each set of clauses S(v) to contain a strengthening of each conclusion
obtained by applying the inference rules from Table 3; therefore, our inference rules derive a conclusion in S(v) only if S(v) does
not already contain a strengthening of the conclusion. This is analogous to forward subsumption in first-order theorem proving:
a newly derived clause is kept only if the clause is not redundant given the clauses derived thus far.

Second, the Elim rule deletes a clause K2 v M2 from S(v) if S(v) contains a clause K1 v M1 such that K1 v M1 is a strength-
ening of K2 v M2 and the two clauses are distinct. Note that K2 v M2 can be derived before K1 v M1, in which case the technique
described in the previous paragraph will not eliminate K2 v M2, and so K2 v M2 can potentially participate in further redundant
inferences. The Elim rule is thus analogous to backward subsumption in first-order theorem proving.

In the rest of this section we discuss certain aspects of our redundancy elimination techniques. We first consider syntactic
tautologies, which are clauses of the form K u L v M t L with either K or M (or both) nonempty; note that this definition
excludes clauses of the form L v L, which are needed for completeness in Theorem 6 and are thus not redundant. The following
proposition straightforwardly implies that our algorithm never derives syntactic tautologies; in practice this means that, whenever
a possible consequence of the inference rule is a syntactic tautology, one can eagerly eliminate the clause (without checking
whether the target clause set contains a strengthening of the consequence clause).

Proposition 15. If, at some point in the execution of Algorithm 11, K v M ∈̂ S(v) holds for some clause K v M and context v,
then L v L ∈̂ S(v) also holds at this point for each literal L ∈ K.

Proof. The proof is by induction on the application of inference rules. Each clause introduced in steps 1 and 2 of Algorithm 11
or by the Succ rule obviously satisfies this property. Furthermore, an application of the Elim rule preserves this property by
Lemma 12. Now consider an application of the Hyper or the Pred rule as shown in Table 3; then, for each literal L occurring in

13

the antecedent of the conclusion, integer i exists such that L ∈ Ki; but then, the premise corresponding to Ki satisfies this property
by the induction assumption, so L v L ∈̂ S(v) holds.

The Elim rule can also be used to define more powerful redundancy elimination rules. Assume that, for some context v,
set S(v) contains clauses K1 v M1 t L and K2 u L v M2 with K1 ⊆ K2 and M1 ⊆ M2. Clause K1 u K2 v M1 t M2 is equal to
K2 v M2 and it is a logical consequence of S(v); now even though clause K2 v M2 is not derived by an inference rule from
Table 3 (in particular, note that the Hyper rule does not derive this clause), extending S(v) with this clause is sound. Thus, if we
add K2 v M2 to S(v), we can delete clause K2 u L v M2 from S(v) using the Elim rule; essentially, we thus obtain a simplification
rule that eliminates L from clause K2 u L v M2. Analogously, if the clauses satisfy K2 ⊆ K1 and M2 ⊆ M1, then we can eliminate
L from clause K1 v M1 t L. This is closely related to the contextual literal cutting rule used in the first-order prover E [36].

Redundancy elimination may be difficult to implement fully in practice: even with complex index structures, checking
whether some S(v) contains a strengthening of some clause may be inefficient. Please note, however, that both forms of redun-
dancy elimination are optional—that is, they are not needed for completeness. Therefore, instead of ∈̂, one can use ∈ to check rule
applicability. Furthermore, one does not need to apply ∈̂ and the Elim rule exhaustively; for example, one can restrict redundancy
checking to clauses of the form > v A and L v L and index the latter using a hash table. Finally, an advanced implementation can
“switch on” redundancy elimination only if set S(v) grows beyond a certain size. In most cases, however, eliminating syntactic
tautologies should not cause any noticeable overhead.

3.4. Instantiating the Consequence-Based Framework

We next discuss ways of instantiating our consequence-based framework presented in Section 3.2. In particular, in Sec-
tion 3.4.1 we discuss possibilities for initializing the context structure and the covering mapping that are given to Algorithm 11.
Then, in Section 3.4.2 we discuss possible expansion strategies.

3.4.1. Initializing the Context Structure and the Covering Mapping
Algorithm 11 takes as input a context structure D without any edges and a covering mapping ϑ, and so the initialization of D

and ϑ is deferred to the algorithm’s users. We next discuss several reasonable approaches to initialization.
The first possibility is to introduce just one trivial (cf. Definition 4) context v0. In such a case, step 2 of Algorithm 11

initializes S(v0) with many clauses L v L; this may give rise to a large number of inferences at context v0, and may be further
exacerbated by the fact that ≺v0 is empty. Hence, such an approach is unlikely to be efficient apart from in very simple cases.

The second possibility is to introduce a separate context vq = ϑ(q) for each query q = K v M ∈ Q, define core(vq) ··= K, and
define ≺vq such that M is ≺vq -minimal and the remaining literals are ordered arbitrarily. This has the opposite effect from the first
approach: step 2 of Algorithm 11 initializes each set S(vq) with the least possible number of clauses L v L, and ordering ≺vq is
as fine-grained as possible, which maximally reduces the number of inferences at context vq. The main drawback, however, is
that the number of contexts needed is linear in the size of Q.

The third possibility is to introduce a context vK for each conjunction K occurring in the antecedent of some query in Q,
define core(vK) ··= K, and define ≺vK so that each literal occurring in the consequent of some query in Q is ≺vK -minimal while all
remaining literals are ordered arbitrarily. We thus strike a balance between the number of contexts and the inferences performed.

Description logic reasoners are often used to classify an ontology O, in which case Q contains A v B for all pairs of atomic
concepts A and B. The second possibility then requires a quadratic number of contexts, which can be prohibitively large even on
ontologies of moderate size. In contrast, the third possibility requires all atomic concepts in O to be minimal, which essentially
“turns off” most ordering constraints. To address the former problem in hypertableau-based reasoners, Glimm et al. [37] devel-
oped a classification algorithm that gathers information about known and possible subsumptions from the ABoxes encountered
during the algorithm’s execution in order to reduce the number of pairs of atomic concepts for which O |= A v B needs to be
checked. This algorithm can be adapted to the consequence-based framework as well. In particular, let S be a clause system
produced by Algorithm 11 such that > v ⊥ 6∈̂ S(v) holds for each context v—that is, O is satisfiable. Then, if a context v exists
such that core(v) ⊆ {A} and A v B ∈̂ S(v), by the soundness of our algorithm we have that O |= A v B—in other words, subsump-
tion A v B is known. Furthermore, Proposition 16, shown below, tells us how to identify subsumptions that are not possible. By
tightly integrating the consequence-based algorithm with the appropriately modified classification algorithm, we can extend Q
as needed, thus considerably reducing the size of this set. Furthermore, whenever the classification algorithm adds a query A v B
to Q, we have two options: we can introduce a fresh context vAvB; or we can introduce or reuse context vA, keeping in mind that,
whenever we reuse an existing context, we must refine the literal ordering ≺vA so that B becomes ≺vA -minimal.

Proposition 16. Let S be a clause system obtained by applying Algorithm 11 to a normalized ALCI ontology O and a finite set
of queries Q. Then, O 6|= A v B holds for all atomic concepts A and B for which there exists a context v such that A v A ∈̂ S(v),
A v B 6∈̂ S(v), and no clause of the form K v M t B ∈ S(v) exists that satisfies K ⊆ {A} and B ⊀v M.

14

Proof. The proof of this proposition relies on the proof of Theorem 6 presented in Appendix A, the notion of pre-models
introduced in Appendix A.1, and the symbol ` introduced in Appendix A.4.

Let S, A, B, and v be as specified in the proposition. Then, A v B 6∈̂ S(v) clearly implies A v ⊥ 6∈̂ S(v); moreover, ⊥ is
empty and therefore ≺v-minimal; together with A v A ∈̂ S(v), these observations imply v 0 A v ⊥. Thus, the construction of a
pre-model I = 〈∆, E, J〉 in Appendix A.4 introduces an element δv

Av⊥ ∈ ∆ whose literal interpretation J(δv
Av⊥) is constructed as

specified in Appendix A.2. Now consider an arbitrary clause K v M t B ∈ S(v): by our assumption, at least one of K ⊆ {A} or
B ⊀v M does not hold; thus, the conditions of Lemma 64 are not satisfied, and so clause K v M t B is not productive. Since this
holds for all clauses in S(v) with B in the consequent, we have B < J(δv

Av⊥). Furthermore, due to A v A ∈̂ S(v) and Lemma 65,
we have A ∈ J(δv

Av⊥). Thus, we have I 6|= A v B, and so O 6|= A v B holds by Corollary 61 and Claim 72.

3.4.2. Expansion Strategies
In this section we discuss reasonable expansion strategies. We use the ontology O and query q defined in the following

example to demonstrate how the choice of strategy affects the inferences of our algorithm.

Example 17. Let O be the ontology containing axioms (31)–(38), and let q = A v E. Clearly, O |= q holds due to (31)–(33).

A v ∃R.B (31)
A v ∀R.C1 (32)

B uC1 v ∀R−.E (33)

A v ∃S .B (34)
A v D t ∀S .C2 (35)

A u B v ∃T.F1 (36)
C1 uC2 v C (37)

B uC v ∃T.F2 (38)

The simplest possibility is to always reuse the trivial context v0; thus, we define trivial(∃R.A,Bk,D) = 〈v0, ∅, ∅〉. This strategy
makes most sense if the trivial context v0 is also used for initialization. The inferences of our algorithm on O with the trivial
strategy are shown in Figure 2. As one can see, the algorithm is prolific: inferences (47)–(57) are not needed in order to derive
(46). Thus, such an algorithm resembles various resolution-based decision procedures for DLs [31].

To reduce the number of irrelevant inferences, we can use a cautious approach and introduce a context vA for each atomic
concept A; thus, we define cautious(∃R.A,Bk,D) = 〈vA, {A},≺〉, where ≺ is an arbitrary R-admissible ordering. The number of
contexts is then limited to the number of atomic concepts occurring in O and Q. Please remember that, whenever context vA

is reused, its literal ordering must be refined so that it stays admissible for each relevant role. As one can see in Figure 3, the
cautious approach considerably reduces the inferences of our algorithm; for example, it does not derive clauses containing ∃T.F1.
Nevertheless, since we reuse context vB to satisfy existential restrictions (59) and (66), the algorithm derives clause (70), which
then leads to the derivation of (71) and the introduction of context vF2 .

We can further reduce the number of irrelevant inferences by adopting an eager approach and introducing a context vA for
each set of atomic concepts A; thus, we define eager(∃R.A,Bk,D) = 〈v{A}∪Bk , {A} ∪ Bk,≺〉, where ≺ is an arbitrary R-admissible
ordering. As one can see in Figure 4, the algorithm now does not even derive clauses containing ∃T.F2 and is considerably
more efficient than in the previous two cases. In general, however, the eager strategy can be problematic because the number of
introduced contexts can be exponential in the number of atomic concepts occurring in O and Q.

One can refine all of the strategies discussed above by using a different context per role R. For example, the cautious strategy
can be refined to use a context vR

A for each atomic concept A and role R; thus, we define cautiousR(∃R.A,Bk,D) = 〈vR
A, {A},≺〉,

where ≺ is an arbitrary R-admissible ordering. A benefit of the refined cautious strategy is that context vR
A is reused only to satisfy

existential restrictions of the form ∃R.A, so the literal ordering used in the context never needs to be refined.
The cautious and the eager strategies appear to be most natural, striking a different balance between the number of contexts

and the number of inferences in each context. In Section 8 we investigate the effectiveness of these strategies in practice. Our
results suggest that, in most practical cases, the eager strategy may be most appropriate because it does not introduce too many
contexts; however, we also identified cases in which the cautious strategy is more appropriate. This suggests that a hybrid
approach may be useful: one uses the eager strategy until some predetermined number of contexts is introduced, after which one
switches to the cautious strategy.

Although the eager strategy can, in general, introduce an exponential number of contexts, as we argue next, on EL and
DL-Litehorn ontologies the eager strategy introduces only linearly many contexts. First, if O is an EL ontology, then all exis-
tential restrictions in O contain only atomic roles, and all universal restrictions in O contain only inverse roles; hence, the Succ
rule is applicable only with Bk = ∅, and so the eager strategy coincides with the cautious strategy. Thus, similarly to existing
EL reasoning algorithms [23, 18], the eager strategy introduces only one context for each atomic concept. Second, if O is a
DL-Litehorn ontology, then all universal restrictions occur in O only in axioms of the form > v ∀R.B; hence, if we apply the
Hyper rule before the Succ rule, then all clauses > v ∀R.A will be eagerly derived in each context, and so the Succ rule will be
applicable to an existential restriction ∃R.A only with Bk = {B | > v ∀R.B ∈ O}; since this set is uniquely identified by ∃R.A,
the eager strategy will introduce at most one context for each existential restriction. Furthermore, if all existential restrictions
occurring in O are of the form ∃R.A> as discussed in Section 2.1, then, similarly to existing DL-Litehorn reasoning algorithms
[19, 20], the eager strategy will introduce at most one context for each role occurring in an existential restriction.

15

v0

Initialization: A v A (39)
Hyper[31+39]: A v ∃R.B (40)
Hyper[32+39]: A v ∀R.C1 (41)
Succ[40+41]: B v B (43)
Succ[40+41]: C1 v C1 (44)
Hyper[33+43+44]: B uC1 v ∀R−.E (45)
Pred[40+41+45]: A v E (46)
Hyper[34+39]: A v ∃S .B (47)
Hyper[35+39]: A v D t ∀S .C2 (48)
Succ[47+48]: C2 v C2 (50)
Hyper[36+39+43]: A u B v ∃T.F1 (51)
Succ[51]: F1 v F1 (53)
Hyper[37+44+50]: C1 uC2 v C (54)
Hyper[38+43+44+50]: B uC1 uC2 v ∃T.F2 (55)
Succ[55]: F2 v F2 (57)

Succ[40+41]: ∃R.B (42)

Succ[47+48]: ∃S .B (49) Succ[51]: ∃T.F1 (52)

Succ[55]: ∃T.F2 (56)

Figure 2: Inferences with the Trivial Strategy

vA

A

Initialization: > v A (58)
Hyper[31+58]: > v ∃R.B (59)
Hyper[32+58]: > v ∀R.C1 (60)
Pred[59+60+64]: > v E (65)
Hyper[34+58]: > v ∃S .B (66)
Hyper[35+58]: > v D t ∀S .C2 (67)

vB

B

Succ[59+60]: > v B (62)
Succ[59+60]: C1 v C1 (63)
Hyper[33+62+63]: C1 v ∀R−.E (64)
Succ[66+67]: C2 v C2 (69)
Hyper[37+63+69]: C1 uC2 v C (70)
Hyper[38+62+70]: C1 uC2 v ∃T.F2 (71)

vF2

F2

Succ[71]: F2 v F2 (73)

Succ[59+60]: ∃R.B (61)

Succ[66+67]: ∃S .B (68)

Succ[71]: ∃T.F2 (72)

Figure 3: Inferences with the Cautious Strategy

v{A}

A

Initialization: > v A (74)
Hyper[31+74]: > v ∃R.B (75)
Hyper[32+74]: > v ∀R.C1 (76)
Pred[75+80]: > v E (81)
Hyper[34+74]: > v ∃S .B (82)
Hyper[35+74]: > v D t ∀S .C2 (83)

v{B,C1}

B,C1

Succ[75+76]: > v B (78)
Succ[75+76]: > v C1 (79)
Hyper[33+78+79]: > v ∀R−.E (80)

v{B}

B

Succ[75+83]: > v B (85)
Succ[82+83]: C2 v C2 (86)

Succ[75+76]: ∃R.B (77) Succ[82+83]: ∃S .B (84)

Figure 4: Inferences with the Eager Strategy

16

Finally, we relate the above strategies to existing consequence-based algorithms. Kazakov [21] considers only the eager
strategy. Simančı́k et al. [22] present their algorithm with the eager strategy, but their “context partitioning” optimizations can be
seen as providing more cautious strategies; moreover, their ConDOR reasoner implements only the refined cautious strategy.

4. Analyzing And-Branching Using ε-Free Decompositions

In the rest of this paper we develop our framework for a parametric analysis of the complexity of reasoning. As we mentioned
in the introduction, and-branching and or-branching are two main sources of complexity [10]. In this section we focus on
quantifying the effects of and-branching, whereas in Section 5 we turn our attention to or-branching.

4.1. Intuitions
Let O and q be as specified in Example 17, and let L be the set of all literals occurring in O and q; note that |L| = 13. Propo-

sition 14 provides us with an estimate of the complexity of deciding O |= q: we can introduce at most 2|L| = 213 contexts using
the eager strategy, and each set S(v) can contain at most 4|L| = 413 clauses, so the algorithm runs in time exponential in |L| = 13.
This, however, is a crude estimate because both the number of contexts and the sizes of sets S(v) are vastly overestimated.

To obtain a better estimate of these values, in this section we extend the notion of a context structure to a decomposition of an
ontology and a set of queries; since decompositions are proper extensions of context structures, one can apply our consequence-
based algorithm to a decomposition by only slightly adapting the algorithm’s initialization phase. The high-level principle behind
our decompositions is similar to tree decompositions: both aim to identify sets of literals whose subsets can be relevant during
reasoning. For example, given a vertex v in a tree decomposition, set L(v) determines the propositional variables that should
be considered in “local” propositional interpretation associated with v, and so the number of such interpretations is bounded by
2|L(v)|. Our notion of decomposition aims for a similar goal: each context in a decomposition will describe the clauses that the
consequence-based algorithm can derive, which will then determine the worst-case complexity of the algorithm. Towards this
goal, please remember that there are two sources of complexity in description logic reasoning [10]: existential and universal
quantification cause and-branching, and disjunction causes or-branching. The latter corresponds to or-branching in propositional
logic and can be characterized using tree decompositions; however, the former is unique to description logics and requires
completely new techniques. Our decompositions therefore consist of two kinds of edges: ∃R.A-edges are defined as in context
structures and capture information propagation due to and-branching, and ε-edges capture information propagation due to or-
branching. In the rest of this section we focus on and-branching, so the decompositions we shall consider will be ε-free (i.e.,
they will not contain ε-edges). Please note that ε-free decompositions are completely different from and do not generalize tree
decompositions. In Section 5 we then show how ε-edges can be used to capture or-branching.

As we discussed in Section 3.1, each context in a context structure describes one or more domain elements in a model of
O. A context structure can thus be seen as decomposing a description logic reasoning problem into several of interconnected
propositional problems; given such a representation, the Hyper rule then locally solves each propositional subproblem, and the
Pred and Succ rules handle the connections between subproblems. An ε-free decomposition D for O and q can in similar vein be
understood as breaking up the problem of checking O |= q into several interconnected propositional problems, but with several
differences. First, a context structure is constructed during reasoning, and so it cannot provide us with an a priori complexity
estimate. In contrast, D is independent from any reasoning and contains “sufficiently many” contexts (i.e., all contexts needed
by the Succ rule). Second, each context v in D is associated with three sets of literals core(v), knw(v), and poss(v) that describe
the clauses one can derive in S(v). Set core(v) serves the same purpose as in context structures. Furthermore, set knw(v) contains
the known literals—that is, for each literal L ∈ knw(v), our algorithm will derive > v L in S(v). Finally, set poss(v) contains the
possible literals—that is, each clause K v M ∈ S(v) will satisfy K ∪ M ⊆ poss(v). Clearly, all core literals are known, and all
known literals are possible, so D should satisfy core(v) ⊆ knw(v) ⊆ poss(v) for each context v.

To ensure that each clause obtained by applying our consequence-based algorithm to D is a logical consequence of O, we
require D to be sound: in addition to the condition on ∃R.A-edges from Definition 8, the known literals in each context of D must
logically follow from the context’s core—that is, O |= core(v) v L should hold for each context v in D and each literal L ∈ knw(v).
Furthermore, to ensure completeness of our algorithm, we require D to be admissible: roughly speaking, this notion requires D
to contain all contexts that might be needed during our algorithm’s execution, and sets core(v), knw(v), and poss(v) to correctly
describe the types of clauses that our algorithm can derive in S(v). This will ensure that (i) the Succ rule is never applicable,
and (ii) each clause in S(v) is of the form > v L with L ∈ knw(v), or of the form K v M with K ∪ M ⊆ poss(v) \ knw(v). These
observations allow us to capture the complexity of our algorithm using the following two parameters: decomposition length
ln(D), defined as the number of contexts in D, captures the combinatorial difficulty due to (i); and decomposition width wd(D),
defined as the maximum cardinality of poss(v) \ knw(v), captures the combinatorial difficulty due to (ii). We show that, when
applied to D, our consequence-based algorithm runs in time polynomial in ln(D) and 4wd(D)2

; the latter factor is due to the fact
that each set S(v) can contain at most |knw(v)| + 4|poss(v)\knw(v)| clauses.

An ontology and a set of queries can admit infinitely many sound, admissible, and ε-free decompositions, so a decomposition
D with least ln(D) and wd(D) would provide us with a “general” difficulty of reasoning with a particular ontology and a set

17

vA

A
∃R.B, ∀R.C1, ∃S .B

D, E, ∀S .C2

vB

B

C1, C2, C, ∀R−.E, ∃T.F2

vF2

F2

∃R.B

∃S .B

∃T.F2

(a) Cautious Strategy

v{A}

A
∃R.B, ∀R.C1, E, ∃S .B

D, ∀S .C2

v{B,C1}

B, C1

∀R−.E

v{B}

B
C2

∃R.B ∃S .B

(b) Eager Strategy

Figure 5: Examples of ε-Free Decompositions

of queries. This would be analogous to propositional satisfiability, where the treewidth of a propositional problem is defined
as the smallest width over all tree decompositions of the problem. However, identifying such D is difficult for two reasons.
First, checking semantic conditions in the definition of soundness requires reasoning, so verifying decomposition soundness can
be as hard as the reasoning problem whose complexity we aim to analyze. Second, ontologies and queries exist for which all
decompositions of minimal width have exponential length; we prove this claim for general (i.e., not only ε-free) decompositions,
so we postpone the formal treatment of this property until Section 7. Hence, minimizing width can increase length and vice
versa, which essentially prevents us from obtaining a “general” characterization of reasoning difficulty.

As a possible solution to these challenges, in Section 4.4 we present a practical algorithm that can construct in polynomial
time an ε-free decomposition of O and Q. To address the first issue, our algorithm approximates the entailment relation used
in the definition of soundness. Thus, for some context v, set knw(v) approximates the set of literals entailed by core(v), and for
each literal in knw(v) the relevant entailment can be established in polynomial time. To address the second issue, the algorithm
is given a set of parameters C called a control that consists of an expansion strategy, an integer mln that imposes a bound on
decomposition length, and two other parameters that determinize the decomposition construction process. For each C, the ε-
free decomposition of O and Q that is deterministically constructed by our algorithm is called the C-decomposition of O and
Q. Parameter mln bounds the length of the C-decomposition, which determines the decomposition width. Thus, the width and
length of a C-decomposition provide us with an account of the reasoning difficulty relative to C.

To illustrate these ideas, Figure 5 shows two ε-free decompositions of O and q from Example 17 on page 15 obtained
using the cautious and the eager expansion strategy. We use the same notation as for context structures, but show sets core(v),
knw(v) \ core(v), and poss(v) \ knw(v) in a table below each context.

The ε-free decomposition D1 constructed from O and q using the cautions strategy is shown in Figure 5a. Since our goal is to
check the entailment of q = A v E, we introduce context vA and add A to core(vA), thus capturing the fact that the consequence-
based algorithm initializes S(vA) with (58). But then, from clauses (31), (32), and (34), the consequence-based algorithm can
derive (59), (60), and (66); to reflect this, we add literals ∃R.B, ∀R.C1, and ∃S .B to knw(vA). Furthermore, using clause (35),
the consequence-based algorithm will derive (67); however, the consequent of the clause contains a disjunction, so neither of the
literals is derived deterministically, and therefore we add D and ∀S .C2 to poss(vA). Next, we must satisfy existential restrictions
∃R.B and ∃S .B; since we use the cautious strategy, we introduce a single context vB, add the two edges from vA to vB, and
initialize core(vB) to B; furthermore, due to universal restrictions ∀R.C1 ∈ knw(vA) ⊆ poss(vA) and ∀S .C2 ∈ poss(vA), we add C1
and C2 to poss(vB). Note that, due to the reuse of vB, we cannot add C1 to knw(vB): not all domain elements represented by vB

necessarily satisfy C1. We now continue our estimation for vB: literal ∀R−.E is possible due to (33), concept C is possible due
to (37), and literal ∃T.F2 is possible due to (38). Moreover, since ∀R−.E ∈ poss(vB), literal E is possible for vA. Note that the
consequence-based algorithm derives (65); however, ∀R−.E is not in knw(vB) due to context reuse, so we do not have sufficient
information to add E to knw(vA); in other words, knw(vA) provides us only with a lower bound on “truly” known literals. Finally,
we introduce context vF2 to satisfy ∃T.F2 ∈ poss(vB) and thus obtain an admissible ε-free decomposition. Clearly, wd(D1) = 5
and ln(D1) = 3 so, when applied to D1, our inference rules can derive 3 · 45 clauses, which is a much more accurate estimate.

The ε-free decomposition D2 constructed from O and q using the eager strategy is shown in Figure 5b. The main difference
compared to the previous case is that, due to the eager strategy, we now use distinct contexts, v{B,C1} and v{B}, to satisfy existential
restrictions ∃R.B and ∃S .B at context v{A}. Since literal ∀R.C1 is known at v{A}, we can now add C1 to the core of v{B,C1}, which in
turn allows us to make E known at v{A}. Furthermore, literal ∃T.F2 is now not possible at v{B}. In this case, we have wd(D2) = 2
and ln(D1) = 3 so, when applied to D2, our inference rules can derive at most 3 · 42 clauses; thus, we have obtained an even better
estimate of the running time of our consequence-based algorithm.

Reasoning with Horn-ALCI ontologies is generally easier in practice: such ontologies admit a single canonical model, which
eliminates all or-branching; however, due to and-branching, reasoning is still ExpTime-hard [17]. This is reflected in our notions
of decompositions. In particular, if control C uses the eager expansion strategy and allows for “sufficiently many” contexts,
the C-decomposition D of a Horn ontology O has zero width. Then, all possible literals in D are also known, no or-branching
is required, and so D contains a complete solution to the reasoning problem. By reducing the maximum number of contexts

18

in C, however, we can “trade off” and-branching for or-branching. Then, D does not necessarily have zero width, so further
reasoning is needed; moreover, when applied to D, our consequence-based algorithm derives only Horn clauses, and the size of
the antecedent of each clause is bounded by wd(D). Furthermore, as we discussed in Section 3.4.2, if O is an EL or a DL-Litehorn

ontology, the eager strategy introduces only linearly many contexts. Therefore, if C uses the eager strategy, the C-decomposition
of O has zero width and linear length, thus explaining the tractability of subsumption reasoning in EL and DL-Litehorn.

It is instructive to consider the case when O and Q contain only propositional clauses—that is, if all literals in O and Q
are atomic concepts. Then, for each admissible ε-decomposition D of O and Q, the ∃R.A-edges are not needed and can be
removed, but the decomposition may still contain multiple contexts that are used to (dis)prove entailment of different queries in
Q. Thus, only the Hyper rule is used when the consequence-based calculus is applied to D, which essentially amount to solving
the propositional problem(s) using hyperresolution. However, since knw(v) contains literals that deterministically follow from O
for each context v, hyperresolution is restricted to the unknown literals.

Please note that neither redundancy elimination not literal orderings are needed to obtain our complexity results: the results
hold even if each context is associated with the empty literal ordering, and if no redundant clauses are eliminated. We leave a
study of whether redundancy elimination and literal orderings can provide us with a tighter complexity bound for future work.

4.2. Formalization

Throughout this section we fix a normalized ALCI ontology O and a finite set of queries Q; furthermore, we let L be
the set of literals that occur in O ∪Q, and we let ε be a special symbol not occurring in L. We next formalize the notion
of decompositions and then generalize the notion of context structure soundness to decompositions. In order to simplify the
presentation, Definitions 18 and 19 both consider ε-edges that are used only in Section 5 for the analysis of or-branching;
however, in this section we subsequently consider only decompositions without ε-edges.

Definition 18. A decomposition of O and Q is a tuple D = 〈V , E , core, knw, poss,≺, ϑ〉 where V ⊆ X is a finite set of con-
texts, set E ⊆ V × V × (L∃ ∪ {ε}) contains edges labeled by existential restrictions (∃R.A-edges) or by ε (ε-edges), functions
core, knw, poss : V → 2L label contexts with sets of literals, function ≺ assigns to each context v ∈ V a literal ordering ≺v,
and function ϑ : Q→ V maps queries to contexts. For each vertex v ∈ V , let uknw(v) ··= poss(v) \ knw(v). The length of D is
ln(D) ··= |V |, and the width of D is wd(D) ··= maxv∈V |uknw(v)|. Decomposition D is ε-free if it contains no ε-edges.

Definition 19. A decomposition D = 〈V , E , core, knw, poss,≺, ϑ〉 of O and Q is sound if it satisfies all of the following conditions.

(N1) O |= core(v) u ∃R.A v ∃R.[core(u) u A] for each ∃R.A-edge 〈v, u,∃R.A〉 ∈ E .

(N2) core(v) = core(u) for each ε-edge 〈v, u, ε〉 ∈ E .

(N3) O |= core(v) v L for each context v ∈ V and each L ∈ knw(v).

Condition (N1) of Definition 19 is the same as in Definition 8; condition (N2) is relevant only for decompositions that are
not ε-free and will be explained in Section 5; and condition (N3) says that known literals should hold in all domain elements
represented by a specific context. Please note that condition (N3) imposes only an upper bound on the known literals; thus,
knw(v) can be obtained using a sound, but incomplete technique such as the one we present in Section 4.4.

Next, we extend the notion of context structure admissibility to decompositions. The ordering condition is the same as in
context structures. Furthermore, to encapsulate all relevant parameters for the consequence-based algorithm, a decomposition
contains a covering mapping, and the covering condition restates Definition 10. The ontology condition says that, if O contains
a clause K v M and all of the literals in K are possible at context v, then the Hyper rule can derive M and so all literals in M
should be possible at v too. Finally, the structural condition (S1) captures the intuitive relationship between the core, known, and
possible literals; condition (S2) ensures that a decomposition correctly estimates all consequences of the Pred rule; and condition
(S3) ensures that a decomposition contains sufficiently many contexts so that the Succ rule is never applicable.

Definition 20. Let D = 〈V , E , core, knw, poss,≺, ϑ〉 be an ε-free decomposition of O and Q. Let v ∈ V be an arbitrary context of
D, and let K v M be an arbitrary query; then, v is sound for K v M if core(v) ⊆ K; v is complete for K v M if K ⊆ poss(v) and
M is ≺v-minimal; and v covers K v M if v is both sound and complete for K v M. Finally, D is admissible if all of the following
conditions are satisfied.

• Structural conditions:

(S1) For each context v ∈ V , we have core(v) ⊆ knw(v) ⊆ poss(v).

(S2) For each edge 〈v, u,∃R.A〉 ∈ E and each literal ∀inv(R).C ∈ poss(u), we have C ∈ poss(v).

(S3) For each literal ∃R.A ∈ poss(v), an edge 〈v, u,∃R.A〉 ∈ E exists such that poss(u) ⊇ {A} ∪ {B | ∀R.B ∈ poss(v)}.

• Ordering condition: For each edge 〈v, u,∃R.A〉 ∈ E , the literal ordering ≺u is R-admissible.

19

• Ontology condition: For each context v ∈ V and each clause K v M ∈ O with K ⊆ poss(v), we have M ⊆ poss(v).
• Covering condition: Each query q ∈ Q is covered in the context ϑ(q).

We can apply the consequence-based algorithm to a sound, admissible, and ε-free decomposition D as specified in Al-
gorithm 21. Step 1 initializes each S(v) with a clause > v L for each known literal L ∈ knw(v). This allows us to prove in
Lemma 22 that the algorithm derives only clauses of the form K v M with K ∪ M ⊆ uknw(v), which is central to our complexity
argument in Proposition 24. Please note that, if step 1 were to consider only the literals in core(v), our algorithm would eventually
derive a clause > v L for each known literal L ∈ knw(v), but this might involve clauses containing combinations of literals in
knw(v); thus, step 1 introduces derivation “shortcuts” for the known literals, which can improve the algorithm’s performance in
practice. Step 2 is analogous to the way the Succ rule initializes contexts, and it ensures that each atomic concept B that can be
propagated to a context u through existential or universal quantification is relevant for u. Step 3 ensures that each query q ∈ Q
is covered in context ϑ(q). Finally, step 4 applies exhaustively the consequence-based inference rules, but without the Succ rule.
The latter is possible because D is admissible and thus contains all relevant contexts, which allows us to prove in Lemma 23 that
the Succ rule is never applicable during the algorithm’s execution. By combining this observation with the fact that D is sound,
in Proposition 24 we show that our algorithm is sound and complete.

Algorithm 21. The ε-free decomposition-based reasoning algorithm for ALCI takes a sound, admissible, and ε-free decompo-
sition D = 〈V , E , core, knw, poss,≺, ϑ〉 of O and Q. The algorithm (nondeterministically) computes a clause system S for D as
follows.

1. Set S(v) ··= {> v L | L ∈ knw(v)} for each context v ∈ V .

2. For each edge 〈v, u,∃R.A〉 ∈ E and each concept B ∈ uknw(u) such that B = A or ∀R.B ∈ poss(v), add B v B to S(u).

3. For each query K v M ∈ Q, let v ··= ϑ(K v M); then, for each literal L ∈ K \ knw(u), add L v L to S(v).

4. Exhaustively apply rules Hyper, Pred, and Elim from Table 3.

Lemma 22. Let S be an arbitrary clause system encountered during step 4 of Algorithm 21, and let v ∈ V be an arbitrary context
in D. Then, each clause in S(v) is of the form > v L with L ∈ knw(v), or K v M with K ∪ M ⊆ uknw(v).

Proof. Let S be a clause system at the beginning of step 4, and let v ∈ V be an arbitrary context. By Definition 20, if context v
covers some query K v M, then K ⊆ poss(v) holds; thus, each clause added to S(v) in steps 1–3 is clearly of the required form.
We next show that this property is preserved in step 4.

Assume that the Hyper rule is applicable to some clause
�n

i=1 Ai v M ∈ O. By the induction assumption, each premise
from S(v) is of the form Ki v Mi t Ai with Ki ∪ Mi ⊆ uknw(v) and Ai ∈ poss(v). Thus, un

i=1Ai ⊆ poss(v), so M ⊆ poss(v) by the
ontology condition of Definition 20. The Hyper rule produces the clause

�n
i=1 Ki v M t

⊔n
i=1 Mi. Now assume that there exists a

literal L ∈ M ∩ knw(v); then, > v L ∈̂ S(v) due to step 1 of Algorithm 21 and Lemma 12, which contradicts the assumption that
the Hyper rule is applicable. Hence, M ⊆ uknw(v), and the produced clause is of the required form.

Assume that the Pred rule is applicable to an edge 〈v, u,∃R.A〉, ∈ E . By the induction assumption, the premises of the rule
are of the form K0 v M0 t ∃R.A and Ki v Mi t ∀R.Bi, where Ki ∪ Mi ⊆ uknw(v) for each 0 ≤ i ≤ n. The Pred rule produces
the clause

�n
i=0 Ki v

⊔n
i=0 Mi t

⊔m
j=1 C j. Now for each 1 ≤ j ≤ m, by the induction assumption we have ∀inv(R).C j ∈ poss(u),

so C j ∈ poss(v) by condition (S2) of Definition 20. Furthermore, if C j ∈ knw(v), then we have > v C j ∈̂ S(v) due to step 1
of Algorithm 21 and Lemma 12, which contradicts the assumption that the Pred rule is applicable; consequently, we have
C j ∈ uknw(v). Hence, the clause produced by the rule is of the required form.

Lemma 23. The Succ rule is never applicable during step 4 of Algorithm 21.

Proof. Let S be a clause system encountered in step 4 of Algorithm 21; let v ∈ V be a context; let K v M t ∃R.A ∈ S(v)
be a clause; and let Bp be as specified in Table 3. By Lemma 22, we have {B | ∀R.B ∈ poss(v)} ⊇ Bp and ∃R.A ∈ poss(v).
Thus, by condition (S3) of Definition 20, an edge 〈v, u,∃R.A〉 ∈ E exists with poss(u) ⊇ {A} ∪ {B | ∀R.B ∈ poss(v)} ⊇ {A} ∪ Bp;
furthermore, due to steps 1 and 2 of Algorithm 21 and Lemma 12, we have that L v L ∈̂ S(u) holds for each L ∈ {A} ∪ Bp. Thus,
the Succ rule is not applicable to context v and clause K v M t ∃R.A in S(v).

Proposition 24. Let S be a clause system obtained by applying Algorithm 21 to O, Q, and D. Then, for each query q ∈ Q, we
have O |= q if and only if q ∈̂ S(ϑ(q)).

Proof. Consider an arbitrary query q = K v M ∈̂ Q and let v = ϑ(q); context v covers q by the covering condition of Defini-
tion 20, Decomposition D is sound, so, by condition (N3) of Definition 19, we have O |= core(u) v L for each clause > v L
added to some S(u) in step 1 of Algorithm 21; furthermore, clauses added in step 2 and 3 are tautologies; consequently, S is
sound for O. But then, since context v is sound for q, we have that K v M ∈̂ S(v) implies O |= K v M in the same way as in the

20

proof of Proposition 13. Furthermore, for an arbitrary literal L ∈ K, either > v L is added to S(v) in step 1, or L v L is added to
S(v) in step 3; either way, we have K v L ∈̂ S(v), and this property is preserved during the algorithm’s execution by Lemma 12.
Finally, Lemma 23 ensures that S is closed under the Hyper, Pred, and Succ rules; but then, since context v is complete for q, we
have that O |= K v M implies K v M ∈̂ S(v) by Theorem 6.

Proposition 25 provides us with our ultimate goal in this section: it shows that decomposition width and length provide us
with a more accurate estimate of the complexity of subsumption reasoning.

Proposition 25 (Termination). When applied to some O, Q, and a sound, admissible, and ε-free decomposition D of O and Q,
Algorithm 21 terminates in time polynomial in 4wd(D)2

, ln(D), and ‖O‖ + ‖Q‖.

Proof. Let d = wd(D) and m = ln(D), and recall that |L| ≤ ‖O‖ + ‖Q‖. We next show that the number of inferences is polynomial
in 4d2

, m, and ‖O‖+ ‖Q‖; this observation implies the claim of this proposition in the same way as in the proof of Proposition 14.
By Lemma 22, for each context v, each clause in S(v) is of the form

• > v L with L ∈ knw(v), and set S(v) can contain at most |L| such clauses, or
• K v M with K ∪ M ⊆ uknw(v), and set S(v) can contain at most c = 4d such clauses.

For the Hyper rule, a context v ∈ V can be selected in at most m ways, and a clause
�

i Ai v M ∈ O can be selected in at
most |O| ways. For each Ai ∈ uknw(v) there are at most c ways of choosing a matching clause Ki v Mi t Ai ∈ S(v), and for each
Ai ∈ knw(v) there is exactly one way of choosing a matching clause > v Ai ∈ S(v). Consequently, there are at most cd ways of
choosing the premises Ki v Mi t Ai ∈ S(v).

For the Pred rule, there are at most m2 · |L| ways of choosing the edge 〈v, u,∃R.A〉 ∈ E , at most |L| + 4d ways of choosing
the clause A u

�
i Bi v

⊔
j ∀inv(R).C j ∈ S(u) or

�
i Bi v

⊔
j ∀inv(R).C j ∈ S(u), and, analogously to the Hyper rule, cd ways of

choosing the premises K0 v M0 t ∃R.A ∈ S(v) and Ki v Mi t ∀R.A ∈ S(v).

We would like to point out that the factor 4wd(D)2
in Proposition 25 is due to the fact that the Hyper and the Pred rules are

based on hyperresolution: they fix one of the 4wd(D) clauses, and then try to find matches for each of the wd(D) literals in the
antecedent, which gives rise to 4wd(D)2

combinations. It is, however, possible to develop a binary version of these inference rules,
in which case the algorithm’s complexity would be polynomial in 4wd(D). In our experience, hyperresolution tends to be more
effective than binary resolution in practice, which is why we opted for this style of presentation.

4.3. ε-Free Decompositions and the Hypertableau Algorithm
In this section we show that ε-free decompositions explain to an extent the performance of the hypertableau algorithm and

are thus not specific to consequence-based algorithms. Since the hypertableau algorithm cannot answer several queries at once,
we consider only the case when set Q contains a single query of the form A v ⊥ for A an atomic concept—that is, when our goal
is to determine the satisfiability of an atomic concept. The following theorem provides us with a key insight.

Theorem 26. Let O be a normalized ALCI ontology, let q = A v ⊥, let D be a derivation of the hypertableau algorithm for O
and the ABox {A(a)}, and let D = 〈V , E , core, knw, poss,≺, ϑ〉 be an admissible and ε-free decomposition of O and {q}. Then, for
each ABox A0 labeling a vertex of D, there exists a mapping µ : ind(A0)→ V such that

(a) if L(s) ∈ A0, then L ∈ poss(µ(s)), and

(b) if R(s, t) ∈ A0, then an atomic concept A exists such that 〈µ(s), µ(t),∃R.A〉 ∈ E .

Proof. We prove the claim by induction of the depth of D, but we strengthen property (b) to the following property (b′):

(b′) if R(s, t) ∈ A0, then some A exists such that 〈µ(s), µ(t),∃R.A〉 ∈ E and poss(µ(t)) ⊇ {A} ∪ {B | ∀R.B ∈ poss(µ(s))}.

For the induction base, let A0 = {A(a)} be the ABox labeling the root of D, and let µ(a) = ϑ(q). Then LA0 (a) = {A} ⊆ poss(µ(a))
holds by the covering condition from Definition 20, as required for property (a); moreover, property (b′) holds vacuously. For
the inductive step, let A0 be an ABox satisfying the property for some µ, and consider an ABox obtained from A0 as follows.

Assume that the Hyp-rule derives L j(s) ∈ A j from {A1(s), . . . , Am(s)} ⊆ A0 and A1 u . . . u Am v L1 t . . . t Ln ∈ O. By the
induction assumption, we have {A1, . . . , Am} ⊆ LA0 (s) ⊆ poss(µ(s)); but then, since D satisfies the ontology condition from Def-
inition 20, we have L j ∈ poss(µ(s)), as required for property (a).

Assume that the ∃-rule derives {R(s, t), A(t)} ⊆ A1 from ∃R.A(s) ∈ A0. Then ∃R.A ∈ poss(µ(s)) holds by the induction as-
sumption, so a context u ∈ V exists that satisfies condition (S3) from Definition 20. We extend µ by defining µ(t) ··= u. ABox A1
and the extended mapping µ then clearly satisfy properties (a) and (b′).

Assume that the ∀+-rule derives B(t) ∈ A1 from {∀R.B(s), R(s, t)} ⊆ A0. By the induction assumption, property (a) then
implies ∀R.B ∈ poss(µ(s)), and property (b′) is satisfied for some atomic concept A, which immediately implies B ∈ poss(µ(t)),
as required for property (a).

21

Assume that the ∀−-rule derives B(s) ∈ A1 from {[∀inv(R).B](t), R(s, t)} ⊆ A0. By the induction assumption, property (a)
then implies ∀inv(R).B ∈ poss(µ(t)), and property (b′) is satisfied for some atomic concept A. But then, condition (S2) from
Definition 20 implies B ∈ poss(µ(s)), as required for property (a).

Intuitively, Theorem 26 says that each ABox A0 labeling a derivation vertex can be “embedded” via some mapping µ into
each admissible and ε-free decomposition D of O and Q. Thus, for each individual s ∈ ind(A0), set poss(µ(s)) provides us with
an upper bound on LA0 (s)—a set used in the definition of blocking. Now let ` = maxv∈V |poss(v)|; then, for each context in D
we can have at most 2` different labels, so the total number of different labels is bounded by ℘ = ln(D) · 2`; in other words, ℘
provides us with an upper bound on the number of nonblocked individuals in A0, which is analogous to Proposition 25. As
we explained in Section 2.2, however, the number of indirectly blocked individuals can be exponentially larger due to dynamic
blocking, but our decompositions do not analyze the computations caused by this effect.

Furthermore, assume that we modify the algorithm in two ways: (i) we explicitly maintain the mapping µ from Theorem 26,
and (ii) whenever the ∃-rule introduces a new individual t, we immediately derive L(t) for each literal L ∈ knw(µ(t)). Provided that
D is sound, these changes do not affect the soundness of the algorithm, but they ensure that also L(s) ∈ A0 holds in Theorem 26
for each individual s ∈ ind(A0) and each literal L ∈ knw(µ(s)). Then, the number of different labels for each context is bounded
by 2wd(D), so the total number of labels and the number of nonblocked individuals is bounded by ln(D) · 2wd(D). Please note that
the standard hypertableau algorithm would eventually derive all literals introduced in (ii), but since the order in which derivation
rules are applied is don’t-care nondeterministic, this may occur only after a substantial amount of work. In contrast, modification
(ii) eagerly introduces all known facts, which, through “earlier” blocking, can improve the algorithm’s performance.

One can analogously use decompositions to obtain an automata-based algorithm running in time polynomial in ln(D) and
2wd(D), but we do not discuss the technical details any further for the sake of brevity.

4.4. Constructing ε-Free Decompositions

We now present our algorithm for computing ε-free decompositions that we outlined in Section 4.1. We first formalize the
notion of a control, which encapsulates the parameters that guide our algorithm in the construction process. Please recall that X
is the countably infinite set of all contexts that was fixed in Section 3.

Definition 27. A control is a tuple C = 〈mln, initialization, strategy, precedence〉 with the following components.

• mln is a positive integer.
• initialization is a polynomial-time computable function that takes a normalized ALCI ontology O, a finite set of queries
Q, and a positive integer mln. The result of initialization(O,Q,mln) is a pair 〈D, ϑ〉 where

– D is a context structure over the literals occurring in O ∪Q such that D contains no edges, ln(D) ≤ mln, and D
contains a trivial context, and

– ϑ is a covering mapping from Q to D.

• strategy is a polynomial-time computable function that takes an existential restriction ∃R.A, a set of atomic concepts Bk,
a decomposition D = 〈V , E , core, knw, poss,≺, ϑ〉 that contains a trivial context, and a positive integer mln. The result of
strategy(∃R.A,Bk,D,mln) is a triple 〈u, core′,≺′〉 where

– core′ is a subset of {A} ∪ Bk,
– ≺′ is an R-admissible literal ordering, and
– either u ∈ X \ V is a fresh context, or u ∈ V is a context in D such that core(u) = core′.

If |V | ≥ mln, then strategy must return a context u ∈ V from D; since D contains a trivial context, a context satisfying the
required conditions is guaranteed to exist.

• precedence is a strict total order on the set of all pairs of the form 〈∃R.A, v〉 with ∃R.A ∈ Σ∃L and v ∈ X.

Intuitively, a control C specifies which contexts to introduce for a given ontology and a set of queries. In particular, function
initialization specifies how to assign the queries to contexts; the function returns a context structure and a covering mapping that
our algorithm will use as a starting point for the construction of an ε-free decomposition: the algorithm will immediately extend
the given context structure into an ε-free decomposition by setting poss(v) ··= knw(v) ··= core(v) for each context v. Furthermore,
function strategy is analogous to an expansion strategy and it specifies which contexts to introduce in order to satisfy existential
and universal restrictions. Moreover, as we discussed in Section 4.1, the width and the length of a decomposition are not
independent, and an exponential length may be needed to minimize the width. To overcome this problem, mln imposes an upper
bound on decomposition length, and initialization and strategy are both required to honor this restriction. In particular, strategy is
required to reuse a context whenever this bound has been exceeded; the decomposition being constructed will always contain the
trivial context, so context reuse will always be possible. Finally, precedence determines a unique order in which fresh contexts
are introduced, so that the resulting ε-free decomposition is uniquely determined by C, the ontology, and the set of queries.

22

Table 4: ε-free decomposition construction rules

Hk
If K ⊆ knw(v), K v L ∈ O, and L < knw(v),
then add L to knw(v).

Hp
If K ⊆ poss(v), K v M ∈ O, and M * poss(v),
then add each literal in M to poss(v).

Pk
If 〈v, u,∃R.A〉 ∈ E , ∃R.A ∈ knw(v), ∀inv(R).C ∈ knw(u), and C < knw(v),
then add C to knw(v).

Pp
If 〈v, u,∃R.A〉 ∈ E , ∀inv(R).C ∈ poss(u), and C < poss(v),
then add C to poss(v).

S

If ∃R.A ∈ poss(v), and
for Bp = {B | ∀R.B ∈ poss(v)},
no edge 〈v, u,∃R.A〉 ∈ E exists such that poss(u) ⊇ {A} ∪ Bp,

then let 〈u, core′,≺′〉 ··= strategy(∃R.A,Bk,D,mln) where Bk = {B | ∀R.B ∈ knw(v)};
if u ∈ V , then let ≺u ··= ≺u ∩ ≺

′, and
otherwise let V ··= V ∪ {u}, core(u) ··= knw(u) ··= poss(u) ··= core′, and ≺u ··= ≺

′;
add 〈v, u,∃R.A〉 to E ; and
add each literal in {A} ∪ Bp to poss(u).

Throughout the rest of section we fix a normalized ALCI ontology O, a finite set of queries Q, and a control C; furthermore,
we let L be the set of literals that occur in O ∪Q. We are now ready to present our decomposition construction algorithm.

Algorithm 28. The ε-free decomposition construction algorithm takes a control C = 〈mln, initialization, strategy, precedence〉, O,
and Q, and it constructs an ε-free decomposition D = 〈V , E , core, knw, poss,≺, ϑ〉 of O and Q as follows.

1. Let 〈D, ϑ〉 ··= initialization(O,Q,mln) and then extend D to the decomposition D = 〈V , E , core, knw, poss,≺, ϑ〉 by setting
poss(v) ··= knw(v) ··= core(v) for each context v ∈ V .

2. For each query K v M ∈ Q, let v ··= ϑ(K v M); then, set poss(v) ··= poss(v) ∪ K.

3. Exhaustively apply all rules from Table 4 apart from rule S.

4. Stop and return D if rule S is not applicable.

5. Let 〈∃R.A, v〉 be the minimal pair w.r.t. precedence such that rule S is applicable to ∃R.A and v; then, apply rule S to ∃R.A
and v, and proceed to step 3.

A decomposition produced by this algorithm is called a C-decomposition of O and Q.

Algorithm 28 can be intuitively understood as follows. Step 1 uses function initialization to introduce the contexts needed to
cover the queries in Q, and then it initializes the sets of known and possible literals for each context to be equal to the context’s
core. Next, for each query q = K v M ∈ Q and each literal L ∈ K, step 2 of Algorithm 28 adds L to poss(ϑ(q)) in order to reflect
the fact that step 3 of Algorithm 21 introduces a clause of the form L v L for each such L. Finally, in steps 3–5, the algorithm
applies the rules shown in Table 4. Rules Hk and Hp correspond to the Hyper rule; rules Pk and Pp correspond to the Pred
rule; and rule S corresponds to the Succ rule. Rules Hk and Pk, however, are applied to the sets of known literals, and so they
determine a lower bound on the known consequences of rules Hyper and Pred, respectively. In contrast, rules Hp and Pp are
applied to the sets of possible literals, and so they determine an upper bound on the possible consequences of rules Hyper and
Pred, respectively. Finally, rule S introduces all possible contexts that may be introduced by the Succ rule; the rule is applied
with the lowest priority and in accordance with the precedence precedence from C in order to make the algorithm deterministic.
In the rest of this section we prove the following theorem, which summarizes the formal properties of Algorithm 28.

Theorem 29. When applied to O, Q, and C, Algorithm 28 terminates in time polynomial in mln and ‖O‖ + ‖Q‖. The result is a
unique, sound, admissible, and ε-free decomposition D of O and Q satisfying ln(D) ≤ mln.

Let D = 〈V , E , core, knw, poss,≺, ϑ〉 be a decomposition obtained by the decomposition construction algorithm. Clearly, D
refers only to the literals occurring in O ∪Q, and it does not contain ε-edges; hence, D is an ε-free decomposition of O and Q.
We next prove the remaining claims of Theorem 29.

23

Claim 30. The decomposition construction algorithm terminates in time polynomial in mln and ‖O‖ + ‖Q‖, and the resulting
decomposition D satisfies ln(D) ≤ mln.

Proof. Since initialization is computable in polynomial time, steps 1 and 2 can be performed in time polynomial in mln and
‖O‖ + ‖Q‖. By Definition 27, step 1 introduces at most mln contexts due to the requirement on initialization, and rule S can
introduce a new context in the call to strategy only if the total number of contexts is smaller than mln; thus, |V | ≤ mln clearly
holds. Since D refers only to literals from L, we have |E | ≤ mln2 · |L| and, for each context v ∈ V , we have

|core(v)| ≤ |L|, |knw(v)| ≤ |L|, and |poss(v)| ≤ |L|.

The decomposition construction algorithm is monotonic—that is, it never removes elements from the decomposition be-
ing constructed. Also, the precondition of each rule contains a negation of the rule’s postcondition; thus, whenever a rule is
applicable, its application actually modifies the decomposition.

Now let mD = mln2 · |L| + mln · 3 · |L|. The decomposition construction algorithm can modify the decomposition at most
mD times: it can add each of the mln2 · |L| possible edges, and it can add |L| concepts to core(v), knw(v), and poss(v) for each
context v ∈ V . Thus, after at most mD modifications, no rule can further modify the decomposition. Therefore, since each rule
application modifies the decomposition, the decomposition construction algorithm terminates after at most mD rule applications.
Furthermore, due to the fact that each rule precondition refers to a bounded number of vertices, the preconditions of each rule
instance can be checked in polynomial time. Since strategy is computable in polynomial time, each rule can be applied in
polynomial time as well.

Thus, the algorithm requires a polynomial number of modifications of the decomposition, each of which requires polynomial
time. Since |L| < ‖O‖ + ‖Q‖, the algorithm can be implemented so that it runs in time polynomial in mln and ‖O‖ + ‖Q‖.

Claim 31. Decomposition D is unique.

Proof. In all rules apart from S, the negative precondition merely checks whether the rule’s postcondition is satisfied. Therefore,
the rules are monotonic and they have a unique least fixpoint—that is, the order of rule applications is irrelevant. Furthermore,
rule S is applied only if no other rule is applicable, and precedence ensures that the rule is applied in a deterministic way. Thus,
the result of the decomposition construction algorithm is uniquely determined by O, Q, and C.

Claim 32. Decomposition D is sound.

Proof. The proof is by induction on rule application. After the initial step 1, we have E = ∅ and core(v) = knw(v) for each context
v, so D is sound. We next consider all rules from Table 4.

(Hk) If K ⊆ knw(v) and K v L ∈ O, then, by the induction hypothesis, we have O |= core(v) v K; but then, we clearly have
O |= core(v) v L, so adding L to knw(v) preserves soundness.

(Pk) If 〈v, u,∃R.A〉 ∈ E , ∃R.A ∈ knw(v), and ∀inv(R).C ∈ knw(u), then, by the induction hypothesis, all of the following
entailments hold:

O |= core(v) u ∃R.A v ∃R.[core(u) u A] O |= core(v) v ∃R.A O |= core(u) v ∀inv(R).C

These entailments imply O |= core(v) v ∃R.∀inv(R).C, which then implies O |= core(v) v C. Consequently, adding C to knw(v)
preserves soundness.

(S) By the induction hypothesis, we have O |= core(v) v ∀R.B for each B ∈ Bk, so O |= core(v) u ∃R.A v ∃R.[A u Bk] holds;
but then, O |= core(v) u ∃R.A v ∃R.[core(u) u A] holds since we have core(u) = core′ ⊆ {A} ∪ Bk by the requirement on strategy
in Definition 27. Consequently, adding the edge 〈v, u,∃R.A〉 to E preserves soundness.

Since no other rule affects E or knw, this concludes the proof of this claim.

Claim 33. Decomposition D is admissible.

Proof. We check that D satisfies all conditions of Definition 20. The ontology condition and the structural conditions (S2) and
(S3) hold trivially since the construction is closed under rules Hp, Pp, and S, respectively.

For condition (S1), we show that core(v) ⊆ knw(v) and knw(v) ⊆ poss(v) hold for each context v ∈ V . The first inclusion holds
because each set knw(v) is initialized in step 1 and in rule S with knw(v) ··= core(v), and core(v) remains constant during the con-
struction while knw(v) only increases. The second inclusion holds because each set poss(v) is initialized with poss(v) ··= knw(v),
and the rules Hp and Pp extending poss(v) are applicable whenever the rules Hk and Pk extending knw(v) are applicable.

The initial context structure produced by initialization contains no edges, and whenever an edge 〈v, u,∃R.A〉 is added to E in
rule S, strategy ensures that ≺u is R-admissible. Thus, the ordering condition holds throughout the construction.

Finally, for the covering condition, consider an arbitrary query K v M ∈ Q. After step 1, context v = ϑ(K v M) covers
K v M in the sense of Definition 7—that is, core(v) ⊆ K and M is ≺v-minimal. Then, step 2 ensures also that K ⊆ poss(v); thus,
v covers K v M, as required by Definition 20.

24

v1

A
∃R.B1, ∀R.B2

E

v2

B1, B2

C0, . . . , Cn,

D0, . . . , Dn,

∀R−.E

∃R.B

(a) Decomposition D1

v1

A

Initialization: > v A (94)
H[87+94]: > v ∃R.B1 (97)
H[88+94]: > v ∀R.B2 (98)
P[101]: > v E (102)

v2

B1, B2

Initialization: > v B1 (95)
Initialization: > v B2 (96)
H[89+95+96]: > v C0 t D0 (99)

. . .
H: > v M (100)

. . .
H: > v ∀R−.E (101)

∃R.B

(b) Inferences

Figure 6: An ε-Free Decomposition of O and q and the Related Inferences

We are now ready to combine all of the results presented thus far and formulate what we believe to be the first result on
fixed-parameter tractability of subsumption reasoning in description logics.

Theorem 34. For each control C, the following problem is fixed-parameter tractable:

• Inputs: a normalized ALCI ontology O and a set of queries Q
• Parameter: an integer mwd
• Problem: return “yes” if the C-decomposition of O and Q has width at most mwd, and if also O |= K v M holds for each

query K v M ∈ Q

Proof. Immediate by Theorem 29, and Propositions 24 and 25.

Please note that Theorem 34 requires the input ontology to be normalized. As we mentioned in Section 2.1, many different
normalizing transformations have been proposed in the literature, and they can produce syntactically very different ontologies.
Thus, for an ontology that is not normalized, the width, the length, and our fixed-parameter tractability results implicitly de-
pend on the normalization transformation. Investigating how normalization affects width and length, as well as what kind of
transformation can minimize these two parameters is interesting, but we leave it for our future work.

5. Analyzing Or-Branching Using General Decompositions

We now generalize our framework to also allow for a quantitative analysis of or-branching. We first discuss the intuitions
behind our ideas, and then we proceed with a formal presentation of our results.

5.1. Intuitions
Example 35. Let O be the ontology consisting of axioms (87)–(93), and let q = A v E. One can readily check that O |= q holds.

A v ∃R.B1 (87)
A v ∀R.B2 (88)

B1 u B2 v C0 t D0 (89)
Ci−1 v Ci t Di for 1 ≤ i ≤ n (90)
Di−1 v Ci t Di for 1 ≤ i ≤ n (91)

Cn v ∀R−.E (92)
Dn v ∀R−.E (93)

The C-decomposition D1 of O and q obtained using the eager strategy is shown in Figure 6a, and the inferences of Algorithm
21 on D1 are shown in Figure 6b. Clause (100) stands for clauses with M ⊆ {C0, . . . ,Cn,D0, . . . ,Dn,∀R−.E}; exactly which
clauses of this form are derived depends on the literal ordering≺v2 . For example, with ∀R−.E ≺v2 Cn ≺v2 Dn ≺v2 . . . ≺v2 C0 ≺v2 D0
we derive a linear number of clauses, and with ∀R−.E ≺v2 C0 ≺v2 D0 ≺v2 . . . ≺v2 Cn ≺v2 Dn we derive an exponential number of
clauses. In practice, it is difficult to identify a literal ordering that minimizes the number of derived clauses, so the only guarantee
on the algorithm’s performance is exponential in n; this is in agreement with the fact that wd(D1) = 2n + 3.

Clauses in S(v2) essentially solve a propositional problem consisting of clauses (89)–(93) and clause α = B1 u B2 v ∀R−.E:
the antecedent of α captures the information that can be propagated from v1 to v2, and the consequent of α captures the information
that can be propagated from v2 to v1. As we explained in Section 2.4, the treewidth of propositional problems serves as a
measure of the difficulty of such problems, and the bottom-up algorithm provides an FPT decision procedure for propositional
satisfiability. Thus, to explain the difficulty of or-branching in description logics, we next incorporate tree decompositions into
our framework. To this end, we replace context v2 with a tree decomposition of the mentioned propositional problem, where we
label the newly introduced edges by a special symbol ε; similarly to edges in a tree decomposition, our ε-edges will always be

25

symmetric. Decomposition D2 obtained in this way is shown in Figure 7a. The set of contexts {v0
2, . . . , v

n
2} obtained by replacing

v2 is called an ε-component of D2. Intuitively, each ε-component W of D2 corresponds to one or more domain elements in a
model of O, and each context v ∈W provides a partial interpretation for the literals in poss(v). Condition (N2) of Definition 19
requires all contexts in an ε-component W of a sound decomposition to have the same core; thus, all partial descriptions of
the elements represented by W must coincide on the “assumed” literals. However, the contexts in W can differ on known and
possible literals, which will allow us to reduce decomposition width.

We will extend the notion of decomposition admissibility so that it guarantees completeness of a modified consequence-based
algorithm shown in Table 5 on page 28. The Hyper and Pred rules are as in Table 3, but modified so that a clause is added to some
S(v) only if all of its literals are possible at context v. In addition, we introduce a new Epsilon rule, which essentially performs
hyperresolution across ε-edges: given an edge 〈v, u, ε〉, a clause in

�n
i=1 Li v M ∈ S(u) is chosen such that all literals in M are

possible at context v, each literal Li is resolved away using a clause in S(v), and the result is added to S(v). The Epsilon rule can
be seen as a practical variant of the bottom-up algorithm for propositional satisfiability described in Section 2.4.

The inferences of our new algorithm on O, q, and D2 are shown in Figure 7b. As before, we first initialize each S(v) with
> v L for each literal L known at context v, thus obtaining clauses (103)–(113). Moreover, for each edge 〈v, u, ε〉 and each literal
L that is possible at both u and v, we initialize S(u) and S(v) with L v L, thus obtaining clauses (114)–(125). Finally, using rules
from Table 5 on page 28, we derive clauses (126)–(138). At each context vi

2 with 0 ≤ i < n, inferences follow the same pattern:
using clauses (90) and (91) from O, we derive a clause of the form > v Ci+1 t Di+1, which the Epsilon rule then “transfers”
over an ε-edge into context vi+1

2 . Finally, in context vn
2 we derive clause (137), and then by the Pred rule we derive the goal

clause (138). In order to ensure that the Epsilon rule derives all relevant consequences, our notion of decomposition admissibility
imposes an additional restriction on the literal orderings of contexts. For example, clause (128) is relevant for the Epsilon rule
and is derived using the Hyper rule from clause (127); however, to facilitate the latter derivation, concepts D1 and C1 must not be
larger in ≺v0

2
than concept D0. Thus, the new restriction on literal orderings is analogous to R-admissibility for ∃R.A-edges, but

adapted to ε-edges. To estimate the complexity of our algorithm, we note that wd(D2) = 4; hence, the number of clauses derived
at each context is bounded by 4wd(D2) = 44, and this bound does not depend on the literal ordering or the number n. In this way,
wd(D2) provides us with a better estimate of the or-branching involved in deciding O |= q.

As in Section 4, the definitions of soundness and admissibility for general decompositions do not directly provide us with
an algorithm for computing decompositions. As a possible remedy, in Section 5.3 we introduce the notion of an ε-refinement,
which is obtained from an ε-free decomposition by replacing each context v with a tree decomposition of the propositional
problem associated with v. In our example, D2 is an ε-refinement of D1. We will show that computing an ε-refinement involves
determining a linear number of tree decompositions and is thus fixed-parameter tractable w.r.t. decomposition width.

It is again instructive to consider then case when O and Q contain only propositional clauses. Then, for each admissible
decomposition D of O and Q, the ∃R.A-edges are not needed and can be removed, but D can contain several ε-components, each
of which corresponds to a tree decomposition of a subset of O but with the known literals removed. Since the known literals are
removed, the width of such D can be lower than the treewidth of O, and so our decompositions generalize tree decompositions
of propositional problems. Furthermore, only the Hyper and Epsilon are used when our consequence-based calculus is applied to
such D, and the calculus can be seen as a practical variant of the algorithm for propositional logic presented in Section 2.4.

5.2. Formalization
Decompositions and decomposition soundness (with or without ε-edges) were already introduced in Section 4.2, so we next

focus on admissibility of decompositions with ε-edges. In the rest of this section we fix a normalized ALCI ontology O and a
finite set of queries Q; furthermore, we let L be the set of literals that occur in O ∪Q.

Definition 36. Let D = 〈V , E , core, knw, poss,≺, ϑ〉 be a decomposition of O and Q, and let W be an arbitrary set such that
W ⊆ V . Then, let poss(W) ··=

⋃
w∈W poss(w), and let knw(W) and core(W) be defined analogously. The ε-projection of D w.r.t.

W , written DW , is the graph whose set of vertices is W and that contains the undirected edge {u, v} for each 〈u, v, ε〉 ∈ E with
u, v ∈W . Set W is ε-connected if DW is connected; furthermore, W is an ε-component of D if W is ε-connected, and no
ε-connected set of vertices W ′ exists such that W (W ′ ⊆ V .

Let v ∈ V be an arbitrary context of D, let W be the ε-component of D such that v ∈W , and let K v M be an arbitrary
query; then, v is sound for K v M if core(v) ⊆ K; v is complete for K v M if K ⊆ poss(v), M ∩ poss(W) ⊆ poss(v), and M is
≺v-minimal; and v covers K v M if v is both sound and complete for K v M. Finally, D is admissible if all of the following
conditions are satisfied.

• Epsilon conditions:

(E1) For each 〈w, u, ε〉 ∈ E , we have 〈u,w, ε〉 ∈ E .

(E2) For each ε-component W of D, graph DW is an undirected tree.

(E3) For each ε-component W of D and each literal L ∈ poss(W), set {w ∈W | L ∈ poss(w)} is ε-connected.

• Structural conditions:

26

v 1 A
∃

R
.B

1,
∀

R
.B

2

E

vn 2

B
1,

B
2

C
n,

D
n,

∀
R
−
.E

vn−
1

2

B
1,

B
2

C
n,

D
n,

C
n−

1,
D

n−
1

..
.

v1 2

B
1,

B
2

C
2,

D
2,

C
1,

D
1

v0 2

B
1,

B
2

C
1,

D
1,

C
0,

D
0

∃
R
.B

ε
ε

ε
ε

(a
)D

ec
om

po
si

tio
n
D

2

v 1A

I:
>
v

A
(1

11
)

I:
>
v
∃

R
.B

1
(1

12
)

I:
>
v
∀

R
.B

2
(1

13
)

P[
13

7]
:
>
v

E
(1

38
)

vn 2

B
1,

B
2

I:
>
v

B
1

(1
09

)
I:

>
v

B
2

(1
10

)
I:

C
n
v

C
n

(1
24

)
I:

D
n
v

D
n

(1
25

)
E[

13
4]

:
>
v

C
n
t

D
n

(1
35

)
H

[9
2+

13
5]

:
>
v
∀

R
−
.E
t

D
n

(1
36

)
H

[9
3+

13
6]

:
>
v
∀

R
−
.E

(1
37

)

vn−
1

2

B
1,

B
2

I:
>
v

B
1

(1
07

)
I:

>
v

B
2

(1
08

)
I:

C
n−

1
v

C
n−

1
(1

20
)

I:
D

n−
1
v

D
n−

1
(1

21
)

I:
C

n
v

C
n

(1
22

)
I:

D
n
v

D
n

(1
23

)
E[
..
.]:

>
v

C
n−

1
t

D
n−

1
(1

32
)

H
[9

0+
13

2]
:

>
v

C
n
t

D
n
t

D
n−

1
(1

33
)

H
[9

1+
13

3]
:

>
v

C
n
t

D
n

(1
34

)

..
.

..
.

v1 2

B
1,

B
2

I:
>
v

B
1

(1
05

)
I:

>
v

B
2

(1
06

)
I:

C
1
v

C
1

(1
16

)
I:

D
1
v

D
1

(1
17

)
I:

C
2
v

C
2

(1
18

)
I:

D
2
v

D
2

(1
19

)
E[

12
8]

:
>
v

C
1
t

D
1

(1
29

)
H

[9
0+

12
9]

:
>
v

C
2
t

D
2
t

D
1

(1
30

)
H

[9
1+

13
0]

:
>
v

C
2
t

D
2

(1
31

)

v0 2

B
1,

B
2

I:
>
v

B
1

(1
03

)
I:

>
v

B
2

(1
04

)
I:

C
1
v

C
1

(1
14

)
I:

D
1
v

D
1

(1
15

)
H

[8
9+

10
3+

10
4]

:
>
v

C
0
t

D
0

(1
26

)
H

[9
0+

12
6]

:
>
v

C
1
t

D
1
t

D
0

(1
27

)
H

[9
1+

12
7]

:
>
v

C
1
t

D
1

(1
28

)

∃
R
.B

ε
ε

ε
ε

(b
)I

nf
er

en
ce

s

Fi
gu

re
7:

A
D

ec
om

po
si

tio
n

of
O

an
d

q
w

ith
ε-

E
dg

es
an

d
th

e
R

el
at

ed
In

fe
re

nc
es

27

Table 5: Consequence-based rules for decompositions with ε-edges

H
yp

er
If

�n
i=1 Ai v M ∈ O with M ⊆ poss(v),

Ki v Mi t Ai ∈ S(v) with Ai ⊀v Mi for 1 ≤ i ≤ n,
and
�n

i=1 Ki v M t
⊔n

i=1 Mi 6∈̂ S(v),
then add

�n
i=1 Ki v M t

⊔n
i=1 Mi to S(v).

Pr
ed

If 〈v, u,∃R.A〉 ∈ E ,
A u
�n

i=1 Bi v
⊔m

j=1 ∀inv(R).C j ∈ S(u) or
�n

i=1 Bi v
⊔m

j=1 ∀inv(R).C j ∈ S(u)
with C j ∈ poss(v) for each 1 ≤ j ≤ m,

K0 v M0 t ∃R.A ∈ S(v) with ∃R.A ⊀v M0,
Ki v Mi t ∀R.Bi ∈ S(v) with ∀R.Bi ⊀v Mi for 1 ≤ i ≤ n,
and
�n

i=0 Ki v
⊔n

i=0 Mi t
⊔m

j=1 C j 6∈̂ S(v),
then add

�n
i=0 Ki v

⊔n
i=0 Mi t

⊔m
j=1 C j to S(v).

Ep
sil

on

If 〈v, u, ε〉 ∈ E ,�n
i=1 Li v M ∈ S(u) with M ⊆ poss(v),

Ki v Mi t Li ∈ S(v) with Li ⊀v Mi for 1 ≤ i ≤ n,
and
�n

i=1 Ki v M t
⊔n

i=1 Mi 6∈̂ S(v),
then add

�n
i=1 Ki v M t

⊔n
i=1 Mi to S(v).

(S1) For each context v ∈ V , we have core(v) ⊆ knw(v) ⊆ poss(v).

(S2) For each ε-component U of D, each edge 〈w, u,∃R.A〉 ∈ E with u ∈ U , and each concept ∀inv(R).C ∈ poss(U), we
have C ∈ poss(w) and ∀inv(R).C ∈ poss(u).

(S3) For each ε-component W of D and each ∃R.A ∈ poss(W), some edge 〈w, u,∃R.A〉 ∈ E with w ∈W exists such that

– poss(w) ⊇ {∃R.A} ∪ {∀R.B | ∀R.B ∈ poss(W)}, and
– poss(u) ⊇ {A} ∪ {B | ∀R.B ∈ poss(W)}.

• Ordering conditions:

(P1) For each ∃R.A-edge 〈w, u,∃R.A〉 ∈ E , literal ordering ≺u is R-admissible.

(P2) For each ε-edge 〈w, u, ε〉 ∈ E , set poss(w) ∩ poss(u) is ≺u-minimal.

• Ontology condition: For each ε-component W of D and each clause K v M ∈ O with K ⊆ poss(W), a context w ∈W
exists such that K ∪ M ⊆ poss(w).

• Covering condition: Each query q ∈ Q is covered in the context ϑ(q).

Definition 36 can be intuitively understood as follows. The set of contexts in D can be partitioned into ε-components—
maximal sets of contexts connected by ε-edges. Each ε-component can be understood as a tree decomposition of a propositional
problem, so conditions (E1)–(E3) require the contexts in the ε-component to form an undirected tree satisfying the connectedness
condition (T2) of tree decompositions. Structural conditions (S1)–(S3) extend the respective conditions from Definition 20. To
understand condition (S2), let 〈w, u,∃R.A〉 be an arbitrary edge of D, let U be the ε-component of D that u belongs to, and
assume that ∀inv(R).C is possible at some context u′ ∈ U different from u. Since u′ and u describe the same elements in a model
of O, the elements represented by context v might need to satisfy C, which is taken care of by the Pred rule. To ensure that the
rule can be applied to edge 〈w, u,∃R.A〉, condition (S2) requires ∀inv(R).C to be possible at u, and C to be possible at v (just like
in Definition 20). To understand condition (S3), let W be an arbitrary ε-component of D, assume that ∃R.A is possible at some
context w′ ∈W , and assume that D contains an edge 〈w, u,∃R.A〉 with w different from w′. Contexts w and w′ jointly describe
elements of a model of O, so the existential restriction ∃R.A also “applies” to w and the mentioned edge as well; thus, all literals
∀R.B possible at W must be possible at w, and all corresponding concepts B must be possible at u in order to satisfy the semantics
of ∃R.A-edges. The ontology condition is modified in similar vein; in particular, assume that D contains an ε-component W such
that each antecedent literal of a clause K v M ∈ O is possible at some context in W; then, the domain elements represented by W
may satisfy K; but then, we must find a context w ∈W in which we can apply the Hyper rule to K v M. The notion of covering
is extended analogously. Finally, the ordering condition restricts the literal ordering as we discussed in Section 5.1. Please note
that the notions of admissibility introduced in Definitions 20 and 36 coincide on ε-free decompositions.

28

To generalize our consequence-based algorithm as described in Section 5.1, we modify the Hyper and the Pred rules as shown
in Table 5 (the modifications are underlined), and we add a new Epsilon rule. Theorem 37 provides us with the completeness
claim for the new algorithm; the proof is technically involved, so we defer it to Appendix B. In addition, Proposition 38 provides
us with a matching soundness claim.

Theorem 37 (Completeness). Let D = 〈V , E , core, knw, poss,≺, ϑ〉 be an admissible decomposition of O and Q, and let S be a
clause system for D such that

(I1) no inference rule in Table 5 is applicable to S,

(I2) > v L ∈̂ S(v) for each context v ∈ V and each literal L ∈ knw(v),

(I3) B v B ∈̂ S(u) for each edge 〈v, u,∃R.A〉 ∈ E and each concept B ∈ poss(u) such that either B = A or ∀R.B ∈ poss(v), and

(I4) L v L ∈̂ S(u) for each edge 〈v, u, ε〉 ∈ E and each literal L ∈ poss(v) ∩ poss(u).

Then, K v M ∈̂ S(v) holds for each query K v M and each context v ∈ V that satisfy all of the following three conditions:

• O |= K v M,
• context v is complete for query K v M, and
• K v L ∈̂ S(v) for each literal L ∈ K.

Proposition 38 (Soundness). Let D = 〈V , E , core,≺〉 be a sound decomposition of O and Q, and let S1 be a clause system for D
sound for O. Then, each clause system S2 obtained by applying an inference rule from Table 5 to D and S1 is sound for O.

Proof. Rules Hyper and Pred in Table 5 are more restrictive than the corresponding rules in Table 3, so the proof of Proposition 9
applies. Assume that the Epsilon rule is applied as shown in Table 5, so we show that O |= core(v) u

�n
i=1 Ki v M t

⊔n
i=1 Mi. To

this end, let I = 〈∆I , ·I〉 be an arbitrary model of O and consider an arbitrary element δ ∈ ∆I such that δ ∈ [core(v) u
�n

i=1 Ki]I .
Now S1 is sound for O, so, for each 1 ≤ i ≤ n, we have I |= core(v) u Ki v Mi t Li, which together with our assumption implies
δ ∈ (Mi t Li)I . If δ ∈ MI

i for some 1 ≤ i ≤ n, then δ ∈ (
⊔n

i=1 Mi)I . Otherwise, we have δ ∈ LI
i for each 1 ≤ i ≤ n; but then,

I |= core(u) u
�n

i=1 Li v M holds by the induction assumption and the fact that S1 is sound for O, and core(v) = core(u) holds by
the soundness condition (N2); together, these observations imply δ ∈ MI . Either way, δ ∈ (M t

⊔n
i=1 Mi)I holds. Since δ was

chosen arbitrarily, we have I |= core(v) u
�n

i=1 Ki v M t
⊔n

i=1 Mi, as required.

We next extend the consequence-based algorithm for ε-free decompositions (i.e., Algorithm 21) so that it can be applied to
decompositions with ε-edges. Apart from applying the modified rules from Table 5, the only other difference is in step 3, which
is needed for the Epsilon rule. The Elim rule and redundancy elimination are the same as in Section 3.3.

Algorithm 39. The decomposition-based reasoning algorithm for ALCI takes O, Q, and a sound and admissible decomposition
D of O and Q. The algorithm (nondeterministically) computes a clause system S for D as follows.

1. Set S(v) ··= {> v L | L ∈ knw(v)} for each context v ∈ V .

2. For each edge 〈v, u,∃R.A〉 ∈ E and each concept B ∈ uknw(u) such that B = A or ∀R.B ∈ poss(v), add B v B to S(u).

3. For each ε-edge 〈v, u, ε〉 ∈ E and each literal L ∈ poss(v) ∩ uknw(u), add L v L to S(u).

4. For each query K v M ∈ Q, let v ··= ϑ(K v M); then, for each literal L ∈ K \ knw(v), add L v L to S(v).

5. Exhaustively apply rules Hyper, Pred, and Epsilon from Table 5 and rule Elim from Table 3.

Lemma 12 (showing that if K v M ∈̂ S(v) holds at some point during algorithm’s execution, then this also holds at all future
points) clearly applies to Algorithm 39 as well: the Epsilon rule only adds clauses, and the Elim rule is the same as in Section 3.2.
Furthermore, the proof of Lemma 22 (showing that each clause in S(v) is of the form > v L with L ∈ knw(v) or of the form
K v M with K ∪ M ⊆ uknw(v)) can be straightforwardly extended to Algorithm 39. This allows us to establish in Proposition 40
the soundness and completeness of our algorithm, and then determine in Proposition 41 the algorithm’s complexity.

Proposition 40. Let S be a clause system obtained by applying Algorithm 39 to O, Q, and D. Then, for each query q ∈ Q, we
have O |= q if and only if q ∈̂ S(ϑ(q)).

Proof. By Lemma 12, steps 2–4 ensure conditions (I2)–(I4) and step 5 ensures the required condition on the queries in Theo-
rem 37; then, the claim of this proposition follows from Theorem 37 and Proposition 38 as in the proof of Proposition 24.

Proposition 41 (Termination). Algorithm 39 terminates in time polynomial in 4wd(D)2
, ln(D), and ‖O‖ + ‖Q‖.

Proof. Analogous to the proof of Proposition 25.

29

5.3. Constructing Decompositions via ε-Refinement
We next formalize the notion of ε-refinement of an ε-free decomposition D that we described in Section 5.1.

Definition 42. Let D = 〈V , E , core, knw, poss,≺, ϑ〉 be an ε-free decomposition of O and Q. For each edge 〈v, u,∃R.A〉 ∈ E , sets
δ∃R.A

v,u and %∃R.A
v,u are defined as follows:

δ∃R.A
v,u ··= {∃R.A} ∪ {∀R.B | ∀R.B ∈ poss(v)} ∪ {C | ∀inv(R).C ∈ poss(u)}

%∃R.A
v,u ··= {A} ∪ {B | ∀R.B ∈ poss(v)} ∪ {∀inv(R).C | ∀inv(R).C ∈ poss(u)}

Function H for D maps each context v ∈ V to an L-hypergraph Hv such that each Hv is the smallest set satisfying all of the
following conditions:

(R1) (K ∪ M) ∩ uknw(v) ∈ Hv for each context v ∈ V and each clause K v M ∈ O such that K ∪ M ⊆ poss(v),

(R2) δ∃R.A
v,u ∩ uknw(v) ∈ Hv and %∃R.A

v,u ∩ uknw(u) ∈ Hu for each edge 〈v, u,∃R.A〉 ∈ E , and

(R3) (K ∪ M) ∩ uknw(v) ∈ Hv for each query q = K v M ∈ Q and context v = ϑ(q).

A decomposition D′ = 〈V ′, E ′, core′, knw′, poss′,≺′, ϑ′〉 of O and Q is an ε-refinement of D if there exists a function T
mapping each context v ∈ V to a tree decomposition Tv = 〈Vv, Ev,Lv〉 of Hv such that Vv ∩ Vw = ∅ and Vv ⊆ X for all v,w ∈ V
with v , w, and all of the following conditions are satisfied.

(R4) V ′ =
⋃

v∈V Vv.

(R5) For each context v ∈ V and each vertex w ∈ Vv, we have

core′(w) = core(v), knw′(w) = knw(v), and poss′(w) = knw(v) ∪ Lv(w).

(R6) For all v, u ∈ V , each w ∈ Vv, and each z ∈ Vu, we have 〈w, z, ε〉 ∈ E ′ if and only if v = u and {w, z} ∈ Ev.

(R7) For all v, u ∈ V , each w ∈ Vv, each z ∈ Vu, and each literal ∃R.A ∈ L, we have 〈w, z,∃R.A〉 ∈ E ′ if and only if

〈v, u,∃R.A〉 ∈ E , δ∃R.A
v,u ∩ uknw(v) ⊆ Lv(w), and %∃R.A

v,u ∩ uknw(u) ⊆ Lu(z).

(R8) For each context v ∈ V , each vertex w ∈ Vv, and all literals L1, L2 ∈ L, we have L1 ≺
′
w L2 if and only if L1 ≺v L2 and no

ε-edge 〈u,w, ε〉 ∈ E ′ exists such that L2 ∈ poss′(u) ∩ poss′(w).

(R9) For each query q = K v M ∈ Q, context v = ϑ(q), and context w = ϑ′(q), we have w ∈ Vv and (K ∪ M) ∩ uknw(v) ⊆ Lv(w).

Definition 42 can be intuitively understood as follows. Each hypergraph Hv captures the structure of a propositional problem
that must be solved at context v: condition (R1) ensures that, for each context v of D, hypergraph Hv contains the “unknown
part” of each clause K v M ∈ O for which all literals are possible at v; furthermore, condition (R2) ensures that, for each edge
〈v, u,∃R.A〉 of D, hypergraphs Hv and Hu contain all unknown literals that might be needed to apply the Pred rule; and finally,
condition (R3) ensures that, for each query q ∈ Q and v = ϑ(q), hypergraph Hv contains the “unknown part” of q. Conditions
(R4)–(R9) then essentially capture the intuition that each context v of D is replaced by a tree decomposition Tv of Hv. Please
note that, for each edge 〈v, u,∃R.A〉 of D, by condition (R2) and property (T1) of tree decompositions, there exists at least one
pair of w and z satisfying condition (R7). Furthermore, for each query q ∈ Q and v = ϑ(q), context ϑ′(q) can be an arbitrary
vertex w ∈ Vv satisfying (K ∪ M) ∩ uknw(v) ⊆ Lv(w); due to condition (R3) and property (T1) of tree decompositions, such w is
guaranteed to exist. Finally, please note that decomposition D can admit many ε-refinements; however, by the following theorem,
if D is sound and admissible, then each ε-refinement of D is sound and admissible too.

Theorem 43. For each sound, admissible, and ε-free decomposition D of O and Q, each ε-refinement D′ of D is also a sound
and admissible decomposition of O and Q.

Proof. We first show that D′ is sound. Consider arbitrary contexts w, z ∈ V , and let v, u ∈ V be such that w ∈ Vv and z ∈ Vu. By
condition (R5), we have core′(w) = core(v), knw′(w) = knw(v), core′(z) = core(u), and knw′(z) = knw(u).

Consider an arbitrary ∃R.A-edge 〈w, z,∃R.A〉 ∈ E ′. By condition (R7), then D contains the edge 〈v, u,∃R.A〉 ∈ E . Since D is
sound, O |= core(v) u ∃R.A v ∃R.[core(u) u A] holds; but then, O |= core′(w) u ∃R.A v ∃R.[core′(z) u A] holds as well.

Consider an arbitrary ε-edge 〈w, z, ε〉 ∈ E ′. By condition (R6), we have v = u, which clearly implies core′(w) = core′(z), as
required.

Finally, since D is sound, we have O |= core(v) v A for each A ∈ knw(v); but then, O |= core′(w) v A for each A ∈ knw′(w)
clearly holds as well.

30

We next show that D′ is admissible. Clearly, D′ refers only to the literals occurring in O ∪Q, so D′ is a decomposition of O
and Q. Furthermore, for each context v ∈ V the following conditions are satisfied.

knw′(Vv) =
⋃

w∈Vv

knw′(w) = knw(v) (139)

poss′(Vv) =
⋃

w∈Vv

poss′(w) ⊆ poss(v) (140)

Finally, for each ε-component W of D′, a context v ∈ V exists such that W = Vv; conversely, for each context v ∈ V , set Vv is an
ε-component of D. We next check that D′ satisfies all the admissibility conditions listed in Definition 36.

Epsilon conditions:
(Condition E1) This property follows immediately from (R6) and the fact that the edges in Ev are undirected.
(Condition E2) By (R6), for each ε-component Vv of D′, we have that D′Vv

is equal to the graph 〈Vv, Ev〉, and the latter, being
a tree decomposition, is an undirected tree.

(Condition E3) Consider an arbitrary ε-component Vv of D′ and literal L ∈ poss′(Vv), and let Γ ··= {w ∈ Vv | L ∈ poss′(w)}.
We have L ∈ poss(v) due to (140), so either L ∈ knw(v) or L ∈ uknw(v). In the former case, we have L ∈ poss′(w) for each w ∈ Vv,
so Γ = Vv and Γ is clearly ε-connected. In the latter case, we have Γ = {w ∈ Vv | L ∈ Lv(w)}, so Γ is ε-connected by property (T2)
of tree decompositions.

Structural conditions:
(Condition S1) By (R5), for each v ∈ V and each w ∈ Vv, we have core′(w) = core(v) and knw′(w) = knw(v) ⊆ poss′(w).

Furthermore, core(v) ⊆ knw(v) holds since D satisfies (S1), so we have core′(w) ⊆ knw′(w) ⊆ poss′(w).
(Condition S2) Consider an arbitrary ε-component Vu of D′, an arbitrary edge 〈w, z,∃R.A〉 ∈ E ′ such that z ∈ Vu, and an

arbitrary literal ∀inv(R).C ∈ poss′(Vu); furthermore, let v ∈ V be the context of D such that w ∈ Vv. By condition (R7) and
〈w, z,∃R.A〉 ∈ E ′, we have

〈v, u,∃R.A〉 ∈ E , δ∃R.A
v,u ∩ uknw(v) ⊆ Lv(w), and %∃R.A

v,u ∩ uknw(v) ⊆ Lu(z). (141)

Now, by property (140) and ∀inv(R).C ∈ poss′(Vu), we have ∀inv(R).C ∈ poss(u); hence, by admissibility condition (S2) for D,
we have C ∈ poss(v). But then, we have C ∈ δ∃R.A

v,u and ∀inv(R).C ∈ %∃R.A
v,u ; together with (141), these conditions imply (142), so

D′ clearly satisfies admissibility condition (S2).

C ∈ Lv(w) ∪ knw(v) = poss′(w) ∀inv(R).C ∈ Lu(z) ∪ knw(u) = poss′(z) (142)

(Condition S3) Consider an arbitrary ε-component Vv of D′ and an arbitrary literal ∃R.A ∈ poss′(Vv). By property (140), we
have ∃R.A ∈ poss(v), so, by admissibility condition (S3) for D, an ∃R.A-edge 〈v, u,∃R.A〉 ∈ E exists satisfying (143).

poss(u) ⊇ {A} ∪ {B | ∀R.B ∈ poss(v)} (143)

Since Tv and Tu are tree decompositions of Hv and Hu, respectively, by property (R2) of Definition 42 and property (T1) of tree
decompositions, contexts w ∈ Vv and z ∈ Vu exist such that the following two properties hold.

δ∃R.A
v,u ∩ uknw(v) ⊆ Lv(w) (144)

δ∃R.A
v,u ∩ uknw(u) ⊆ Lu(z) (145)

But then, by condition (R7), we have 〈w, z,∃R.A〉 ∈ E ′. We next show that this edge satisfies condition (S3)—that is, that

(i) poss′(z) ⊇ {A} ∪ {B | ∀R.B ∈ poss′(Vv)}, and

(ii) poss′(w) ⊇ {∃R.A} ∪ {∀R.B | ∀R.B ∈ poss′(Vv)}.

By Definition 42 we have ∃R.A ∈ δ∃R.A
v,u and A ∈ %∃R.A

v,u ; furthermore, for each ∀R.B ∈ poss′(Vv), we have ∀R.B ∈ poss(v) by (140),
and B ∈ poss(u) by (143), which imply ∀R.B ∈ δ∃R.A

v,u and B ∈ %∃R.A
v,u . But then, by (144) and (145), we have

{A} ∪ {B | ∀R.B ∈ poss′(Vv)} ⊆ Lu(z) ∪ knw(u) = poss′(z) which proves (i), and
{∃R.A} ∪ {∀R.B | ∀R.B ∈ poss′(Vv)} ⊆ Lv(w) ∪ knw(w) = poss′(w) which proves (ii).

Ontology condition:
Consider an arbitrary ε-component Vv of D′ and an arbitrary clause K v M ∈ O with K ⊆ poss′(Vv). By (140), K ⊆ poss′(Vv)

implies K ⊆ poss(v), so by the ontology condition for D we have M ⊆ poss(v). By condition (R1) and property (T1) of tree

31

decompositions, a context w ∈ Vv exists such that (K ∪ M) ∩ uknw(v) ⊆ Lv(w). But then, K ∪ M ⊆ Lv(w) ∪ knw(v) = poss′(w)
holds, so D′ satisfies the ontology condition.

Ordering conditions:
(Condition P1) Consider an arbitrary ∃R.A-edge 〈w, z,∃R.A〉 ∈ E ′. By condition (R7), then v, u ∈ V exist such that w ∈ Vv,

z ∈ Vu, and 〈v, u,∃R.A〉 ∈ E . Since D satisfies admissibility condition (P1), each literal ∀inv(R).C ∈ L is ≺u-minimal. But then,
by condition (R8), each such ∀inv(R).C is also ≺′z-minimal; hence, ≺′z is R-admissible.

(Condition P2) By condition (R8), for each ε-edge 〈u,w, ε〉 ∈ E ′, all literals in poss′(u) ∩ poss′(w) are ≺′w-minimal.

Covering condition:
Consider an arbitrary query q = K v M ∈ Q, and let v = ϑ(q) and w = ϑ′(q). By the covering condition for D, context v cov-

ers K v M, so core(v) ⊆ K ⊆ poss(v) and M is ≺v-minimal. By condition (R9), we have w ∈ Vv and (K ∪ M) ∩ uknw(v) ⊆ Lv(w).
This and condition (R5) imply that

core′(w) = core(v) ⊆ K ⊆ knw(v) ∪ Lv(w) = poss′(w).

Furthermore, by (140) and condition (R5), we have

M ∩ poss′(Vv) ⊆ M ∩ poss(v) = M ∩ [knw(v) ∪ uknw(v)] ⊆ knw(v) ∪ [M ∩ uknw(v)] ⊆ knw(v) ∪ Lv(w) = poss′(w).

Finally, by condition (R8), disjunction M is ≺′w-minimal because M is ≺v-minimal. Thus, context w covers K v M in D′.

Definition 42 can be straightforwardly turned into an algorithm for computing an ε-refinement D′ of D: first, we compute
all hypergraphs satisfying conditions (R1)–(R3); second, we compute a tree decomposition Tv for each hypergraph Hv; third, we
construct decomposition D′ so that conditions (R4)–(R9) are satisfied; and fourth, for each context v of D and each w ∈ Vv, we
define ≺′w by modifying ≺v to ensure condition (R8). As explained earlier, in condition (R9) we can don’t-care nondeterminis-
tically choose ϑ(q), and at least one suitable context is guaranteed to exist. Such an algorithm is fixed-parameter tractable, as
shown by the following theorem.

Theorem 44. For each integer mwd, one can compute an ε-refinement D′ of D with wd(D′) ≤ mwd, or determine that such D′
does not exist, in time polynomial in f (mwd), ln(D), and ‖O‖ + ‖Q‖, for f a computable function.

Proof. The L-hypergraphs Hv corresponding to conditions (R1)–(R3) of Definition (42) can clearly be constructed in time
polynomial in ln(D) and ‖O‖ + ‖Q‖.

An ε-refinement D′ with wd(D′) ≤ mwd exists if and only if, for each v ∈ V , hypertraph Hv admits a tree decomposition Tv

with wd(Tv) ≤ mwd. For each v ∈ V , all literals occurring in Nv are contained in O ∪Q, so by Lemma 1, computing one Tv with
wd(Tv) ≤ mwd, or determining that one does not exist can be done in time O(f (mwd) · (‖O‖ + ‖Q‖)).

Decomposition D′ can be obtained from D by simply following conditions (R4)–(R8). Furthermore, for each query q ∈ Q,
one can define ϑ′(q) as an arbitrary element of Vϑ(q) satisfying condition (R9); due to condition (R3) and property (T1) of tree
decomposition, such an element is guaranteed to exist. This construction is polynomial in ln(D′) and ‖O‖ + ‖Q‖. Since the length
of each Dv is bounded by the time it takes to compute it, the length of D′ is bounded by O(ln(D) · f (mwd) · (‖O‖ + ‖Q‖)), so the
entire construction runs in time polynomial in f (mwd), ln(D), and ‖O‖ + ‖Q‖.

This allows us to generalize our result on fixed-parameter tractability of subsumption reasoning from Section 4.

Theorem 45. For each control C, the following problem is fixed-parameter tractable:

• Inputs: a normalized ALCI ontology O and a set of queries Q
• Parameter: an integer mwd
• Problem: return “yes” if an ε-refinement D of the C-decomposition of O and Q exists with wd(D) ≤ mwd, and if also
O |= K v M holds for each query K v M ∈ Q

Proof. Immediate by Theorems 29, 43, and 44, and Propositions 40 and 41.

6. Soundness- and Admissibility-Preserving Decomposition Transformations

In this section we present several soundness- and admissibility-preserving decomposition transformations that, under certain
conditions, can delete edges and/or contexts from decompositions. These transformations can be useful in practice as they can
reduce the number of inferences of the consequence-based algorithm; moreover, we use these transformations in Section 7 to
establish an exponential upper bound on the decomposition size. Throughout this section, we fix a normalized ALCI ontology
O, a finite set of queries Q, and a sound and admissible decomposition D = 〈V , E , core, knw, poss,≺, ϑ〉 of O and Q.

32

Definition 46 introduces a notion of redundancy for ε-edges, as well as a notion of ε-edge contraction that extends edge
contraction from graph theory: given an edge 〈v1, v2, ε〉 in D, we merge contexts v1 and v2 into a new context v, eliminate the
self-loop from v to v in order to preserve the tree shape of the enclosing ε-component, and define the core, known, and possible
literals and the literal ordering of v to reflect both v1 and v2. Lemma 47 captures the properties of ε-edge contraction.

Definition 46. An ε-edge 〈v1, v2, ε〉 ∈ E is redundant in D if uknw(v1) ⊆ poss(v2). The result of contracting a (not necessarily
redundant) ε-edge 〈v1, v2, ε〉 ∈ E is obtained as follows.

(1) Remove v1 and v2 from V , and add a fresh context v to V .

(2) Replace each occurrence of v1 and v2 in ϑ and in E by v, and then remove the edge 〈v, v, ε〉 from E .

(3) Set core(v) ··= core(v1), knw(v) ··= knw(v1) ∪ knw(v2), poss(v) ··= poss(v1) ∪ poss(v2), and ≺v ··= ≺v1 ∩ ≺v2 .

Lemma 47. Contracting an ε-edge preserves soundness and admissibility of a decomposition. Contracting a redundant ε-edge
does not increase the width of a decomposition.

Proof. It is straightforward to check that contracting an ε-edge preserves all conditions of Definitions 19 and 36. Assume now
that a redundant ε-edge 〈v1, v2, ε〉 ∈ E is contracted. Then, uknw(v1) ⊆ poss(v2) implies

uknw(v) = poss(v) \ knw(v) = [poss(v1) ∪ poss(v2)] \ [knw(v1) ∪ knw(v2)]
⊆ [[poss(v1) \ knw(v1)] ∪ poss(v2)] \ knw(v2) = [uknw(v1) ∪ poss(v2)] \ knw(v2) = poss(v2) \ knw(v2) = uknw(v2).

Consequently, the width of a decomposition can only decrease as a result of contraction.

Definition 48 specifies when a context w is broader than a context u in D; roughly speaking, w is then “less specific” regarding
core literals, but allows “more” possible literals. Given such w and u, we can then redirect each ∃R.A-edge ending at u so that the
edge ends at w. That this operation preserves decomposition soundness and admissibility follows immediately from Lemma 49;
moreover, this transformation manipulates only edges, so it clearly preserves decomposition width and length.

Definition 48. A context w ∈ V of D is broader than a context u ∈ V of D if core(w) ⊆ core(u), poss(w) ⊇ poss(u), ≺w ⊆ ≺u, and
poss(W) ⊆ poss(U), where W and U are the ε-components of D such that w ∈W and u ∈ U . For such w and u, the result of
redirecting u to w in D is obtained by replacing each edge 〈v, u,∃R.A〉 in E with 〈v,w,∃R.A〉, and by replacing u with w in ϑ.

Lemma 49. Let w, u ∈ V be contexts of D such that w is broader than u. Then,

1. replacing an arbitrary ∃R.A-edge 〈v, u,∃R.A〉 in E with 〈v,w,∃R.A〉 preserves soundness and admissibility, and

2. each query q that is covered in u is also covered in w.

Proof. (Claim 1) Assume that some 〈v, u,∃R.A〉 in E is replaced with 〈v,w,∃R.A〉. Only conditions (S2), (S3), and (P1) of
Definition 36 concern ∃R.A-edges. To show that the “new” edge satisfies (S2), consider an arbitrary literal ∀inv(R).C ∈ poss(W);
then poss(W) ⊆ poss(U) implies ∀inv(R).C ∈ poss(U); hence, by applying condition (S2) to the “old” edge 〈v, u,∃R.A〉, we
have C ∈ poss(v) and ∀inv(R).C ∈ poss(u) ⊆ poss(w), as required. Condition (S3) is clearly preserved due to poss(u) ⊆ poss(w).
Condition (P1) is preserved since ≺w ⊆ ≺u and a subset of an R-admissible literal ordering is R-admissible.

(Claim 2) Consider an arbitrary query K v M that is covered in u; hence, core(u) ⊆ K ⊆ poss(u), M ∩ poss(U) ⊆ poss(u), and
M is ≺u-minimal. Since context w is broader than context u, we have core(w) ⊆ K ⊆ poss(w), M ∩ poss(W) ⊆ poss(w), and M is
≺w-minimal; but then, K v M is also covered in w.

Definition 50 introduces a notion of redundancy for ∃R.A-edges. Intuitively, an ∃R.A-edge 〈v, u,∃R.A〉 is redundant in D if
either ∃R.A is not possible in the ε-component of v so condition (S3) of Definition 36 is satisfied vacuously, or D contains another
∃R.A-edge that satisfies condition (S3) for ∃R.A. It is obvious that deleting a redundant ∃R.A-edge in D preserves soundness
and admissibility; moreover, doing so can be particularly useful if D is an ε-refinement of an ε-free decomposition. In particular,
for each v, u ∈ V in condition (R7) of Definition 42, decomposition D then contains an ∃R.A-edge from each w ∈ Vv to each
z ∈ Vu that satisfy δ∃R.A

v,u ∩ uknw(v) ⊆ Lv(w) and %∃R.A
v,u ∩ uknw(u) ⊆ Lu(z); however, only one such edge may be needed to satisfy

admissibility condition (S3), so deleting the redundant ∃R.A-edges might be beneficial in practice.

Definition 50. An ∃R.A-edge 〈v, u,∃R.A〉 ∈ E is redundant in D if either ∃R.A < poss(W), or another ∃R.A-edge 〈w, z,∃R.A〉 ∈ E
with w ∈W exists that satisfies condition (S3) of Definition 36 for ∃R.A ∈ poss(W), where W is the ε-component containing v.

Definition 51 says that an entire ε-component U of D may be redundant if, for each context u ∈ U , either (i) there is no
∃R.A-edge from another ε-component to u, and u is not used to cover a query in Q, or (ii) u can be redirected to a context in
another ε-component. In such a case, we can redirect appropriately all contexts satisfying condition (ii) to obtain a decomposition
in which no context in U has an incoming ∃R.A-edge from another ε-component; but then, we can clearly delete all contexts in
U and all the related edges without affecting decomposition admissibility.

33

Definition 51. An ε-component U of D is redundant in D if at least one of the following holds for each context u ∈ U:

• v ∈ U for each ∃R.A-edge 〈v, u,∃R.A〉 ∈ E , and ϑ(q) , u for each query q ∈ Q; or
• a context w ∈ V \ U exists that is broader than u.

A result of eliminating such U from D is obtained from D as follows.

1. For each context u ∈ U such that either there exists an edge ∃R.A-edge 〈v, u,∃R.A〉 ∈ E with v < U , or there exists a query
q ∈ Q with ϑ(q) = u, redirect u to some context w ∈ V \ U that is broader than u.

2. Remove from the result of the previous step all contexts in U and all edges that are incident to a context in U .

Lemma 52. Eliminating a redundant ε-component preserves soundness and admissibility, and it does not increase the width.

Proof. By Lemma 49, step 1 preserves soundness and admissibility. Furthermore, by the definition of when U is redundant
in D, after step 1 each context u ∈ U neither occurs in an ∃R.A-edge 〈v, u,∃R.A〉 with v < U , nor is it used to cover a query
from Q; hence, step 2 preserves decomposition admissibility. Furthermore, removal of edges and contexts clearly preserves
decomposition soundness. Finally, steps 1 and 2 clearly do not increase the width of a decomposition.

Please note that context redirection, elimination of ∃R.A-edges, and elimination of redundant ε-components also apply to
context structures (with obvious modifications), and they can be applied during execution of Algorithm 11. In this way, we
obtain “structural” redundancy elimination rules that can further improve the performance of the consequence-based algorithm.

7. Bounds on Decomposition Length

In this section we discuss the bounds on the length of decompositions of minimum width. In particular, in Section 7.1 we
consider the lower bound, and in Section 7.2 we turn our attention to the upper bound.

7.1. Lower Bound

We now exhibit a family of ontologies {On} and a fixed set of queries Q such that each sound and admissible decomposition of
On and Q of minimum width necessarily has exponential length. Intuitively, this is because each ontology On has a “canonical”
model I containing exponentially many domain elements, each of which satisfies a distinct combination of atomic concepts.
Therefore, to obtain a decomposition of On and Q of minimal width, we must introduce a context for each domain element of
I, and thus such a decomposition will actually reflect the structure of I. This is interesting because it shows that, in general,
one cannot minimize decomposition width and still expect to obtain a practically useful decomposition (i.e., a decomposition
of polynomial size). We use this observation as a justification for our practical approach to decomposition construction that we
presented in Sections 4.4 and 5.3.

Theorem 53. Let Q = {C0 v ⊥}. A family of ALCI ontologies {On} exists such that, for each On,

1. a sound, admissible, and ε-free decomposition of On and Q of width 0 exists, and

2. each sound and admissible decomposition of On and Q of width 0 has length at least exponential in ‖On‖.

For readability, we split the proof of Theorem 53 into several claims. Let Q = {C0 v ⊥}, let n be a positive integer, and let
On be the ontology (of size linear in n) containing the following axioms for each 1 ≤ i ≤ n.

Ci−1 v ∃R.Ci (146)
Ci−1 v ∀R.Ai (147)

Ai v ∀R.Ai (148)
Bi v ∀R.Bi (149)

Ci−1 v ∃S .Ci (150)
Ci−1 v ∀S .Bi (151)

Ai v ∀S .Ai (152)
Bi v ∀S .Bi (153)

Let L = {C0} ∪ {Ci, Ai, Bi,∃R.Ci,∃S .Ci,∀R.Ai,∀S .Ai,∀R.Bi,∀S .Bi | 1 ≤ i ≤ n} be the set of literals that occur in On and Q.
An ABC-number is a set of atomic concepts of the form X = {X1, . . . , Xk,Ck}, where 0 ≤ k ≤ n and each Xi is either Ai or Bi. By
a slight abuse of notation, we often treat X as the conjunction of the atomic concepts contained in X; furthermore, the rank of X
is k; finally, XR and XS are ABC-numbers of rank k + 1 defined as

XR ··= {X1, . . . , Xk, Ak+1,Ck+1} and XS ··= {X1, . . . , Xk, Bk+1,Ck+1}.

34

Note that On |= X v ∃R.XR and On |= X v ∃S .XS . Finally, for each ABC-number X, we define the set Γ(X) of told subsumees of
X w.r.t. On as follows:

Γ(X) ··= X ∪ {L ∈ L | an atomic concept D ∈ X exists such that D v L ∈ On}

One can readily check that On entails only told subsumptions—that is, for each ABC-number X and each L ∈ L, we have

On |= X v L if and only if L ∈ Γ(X); (154)

On |= X v ∃R.L if and only if L ∈ Γ(XR); (155)

On |= X v ∃S .L if and only if L ∈ Γ(XS). (156)

The following claim proves the first item of Theorem 53.

Claim 54. There exists a sound, admissible, and ε-free decomposition D of On and Q such that wd(D) = 0.

Proof. Let D = 〈V , E , core, knw, poss,≺, ϑ〉 be defined as follows:

V ··= {vX | X is an ABC-number}
core(vX) ··= X

knw(vX) ··= poss(vX) ··= Γ(X)
≺vX
··= ∅

ϑ(C0 v ⊥) ··= v{C0}

E ··= {〈vX , vXR ,∃R.Ck+1〉, 〈vX , vXS ,∃S .Ck+1〉 | for each ABC-number X of rank k with 0 ≤ k < n}

Clearly, D is an ε-free decomposition of On and Q. Furthermore, it is straightforward to check that D is sound. Finally, D
satisfies all the admissibility conditions of Definition 20: conditions (S1) and (S2) hold trivially, the definition of E ensures that
condition (S3) is satisfied, the definition of poss ensures that the ontology condition is satisfied, the trivial literal ordering ≺vX

always satisfies the ordering condition, and the query C0 v ⊥ is covered in context v{C0}. Finally, since knw(vX) = poss(vX) for
each context vX ∈ V , we have wd(D) = 0, as required.

To prove the second item of Theorem 53, let D = 〈V , E , core, knw, poss,≺, ϑ〉 be an arbitrary sound and admissible decompo-
sition of On and Q such that wd(D) = 0. Every ε-edge in a decomposition of width 0 is redundant in the sense of Definition 46,
so we can assume without loss of generality that D is ε-free. We prove in Claim 56 that, for each ABC-number X, there exists
a context vX ∈ V such that poss(vX) = Γ(X). Now Γ(X) is distinct for each ABC-number X, so V clearly contains at least 2n

contexts, which concludes the proof of Theorem 53. Towards proving Claim 56, we first prove the following auxiliary claim.

Claim 55. Let v ∈ V be a context and let X be an ABC-number. If core(v) ⊆ Γ(X) and poss(v) ⊇ X, then poss(v) = Γ(X).

Proof. Let v ∈ V be a context, and let X be an ABC-number such that core(v) ⊆ Γ(X) and poss(v) ⊇ X hold. By the ontology
condition of Definition 20, set poss(v) is closed under Γ; thus, poss(v) ⊇ X implies poss(v) ⊇ Γ(X). To show that poss(v) ⊆ Γ(X)
holds as well, consider an arbitrary literal L ∈ poss(v). Since wd(D) = 0, we have L ∈ knw(v). But then, by soundness condition
(N3) of Definition 19, we have On |= core(v) v L. Furthermore, we have On |= X v Γ(X) by property (154), and core(v) ⊆ Γ(X)
clearly implies On |= Γ(X) v core(v). Together, all these observations imply that On |= X v L holds, which, by property (154),
implies L ∈ Γ(X). Consequently, we have poss(v) = Γ(X), as required.

Claim 56. For each ABC-number X, a context vX ∈ V exists such that poss(vX) = Γ(X).

Proof. The proof is by induction on the rank of X. For the base case, we have X = {C0}. Since X v ⊥ ∈ Q, query X v ⊥ is
covered in the context vX = ϑ(X v ⊥), and so we have core(vX) ⊆ X ⊆ poss(vX) by the definition of covering. But then, Claim 55
implies that poss(vX) = Γ(X) holds, as required.

For the induction step, assume that the claim holds for each ABC-number of rank k − 1, and consider an arbitrary ABC-
number of the form Y = {X1, . . . , Xk−1, Xk,Ck}; furthermore, let X = {X1, . . . , Xk−1,Ck−1}. By the induction hypothesis, a context
vX ∈ V exists such that poss(vX) = Γ(X). We now consider the two possible forms of Xk.

Assume that Xk = Ak, which implies Y = XR. By applying admissibility condition (S3) of Definition 20 to an existential
restriction ∃R.Ck ∈ Γ(X) = poss(vX), an edge 〈vX , vY ,∃R.Ck〉 ∈ E exists such that

poss(vY) ⊇ {Ck} ∪ {D | ∀R.D ∈ poss(vX)} = XR.

Soundness condition (N1) of Definition 19 implies that On |= core(vX) u ∃R.Ck v ∃R.[core(vY) uCk]. Now On |= X v Γ(X) holds
by property (154); furthermore, [core(vX) u ∃R.Ck] ⊆ poss(vX) = Γ(X) holds by the definition of poss, which clearly implies
On |= Γ(X) v [core(vX) u ∃R.Ck]; thus, we have On |= X v ∃R.[core(vY) uCk]; but then, core(vY) ⊆ Γ(XR) holds by (155). Thus,
for Y = XR, we have core(vY) ⊆ Γ(XR) and poss(vY) ⊇ XR, so Claim 55 implies poss(vY) = Γ(XR) = Γ(Y), as required.

The analysis for the case Xk = Bk is analogous to the one above, with the difference that role S is used instead of role R.

35

7.2. Upper Bound
We now show that, for each ontology O and each set of queries Q, a sound and admissible decomposition of O and Q

exists that has minimum width and at most exponential length. Intuitively, this is because, given an arbitrary decomposition
of minimal width, we can obtain the required decomposition as follows. First, we repeatedly eliminate redundant ε-edges; this
ensures that each ε-component contains at most a polynomial number of contexts (cf. Lemma 57), so the number of distinct
ε-components is exponential. Second, we eliminate “duplicates” by repeatedly eliminating redundant ε-components. We thus
obtain a decomposition of O and Q of at most exponential length; since none of these transformations increases decomposition
width, the resulting decomposition is of minimal width as well (cf. Theorem 58).

Lemma 57. Let O be a normalized ALCI ontology, let Q be a finite set of queries, and let D = 〈V , E , core, knw, poss,≺, ϑ〉
be an admissible decomposition of O and Q that has no redundant ε-edges. Then, for each ε-component W of D, we have
|W | ≤ max(|U |, 1) for U =

⋃
w∈W uknw(w).

Proof. Let W be an arbitrary ε-component of D and let n = |W |. If there exists a context v ∈W with uknw(v) = ∅, since D has
no redundant ε-edges, then v is the only context in W , so |W | = 1 and the lemma holds. Thus, in the rest of the proof, we assume
that uknw(v) , ∅ for each context v ∈W .

Let v1, . . . , vn be an arbitrary ordering of W obtained by an arbitrary depth-first traversal of the tree DW . We define a
function λ : U → {1, . . . , n} by setting λ(L) ··= min{i | L ∈ uknw(vi)}. We claim that λ is surjective—that is, for each 1 ≤ i ≤ n,
a literal L exists such that λ(L) = i. For i = 1, since uknw(v1) , ∅, a literal L ∈ uknw(v1) exists such that λ(L) = 1. Consider
now an arbitrary i with 1 < i ≤ n, and let v j be the parent of vi in the depth-first traversal. Since D has no redundant ε-edges,
we have uknw(vi) * poss(v j), so a literal L exists such that L ∈ uknw(vi) \ poss(v j). Now if λ(L) < i, then vλ(L) is visited in the
depth-first traversal before vi; thus, the unique path between vλ(L) and vi goes through v j, so, by the connectedness condition (E3)
of admissibility, we have L ∈ poss(v j); however, this contradicts our choice of L. Consequently, we have λ(L) = i, and so λ is
surjective from U onto {1, . . . , n}. But then, |W | = n ≤ |U |.

Theorem 58. Let O be a normalized ALCI ontology, let Q be a finite set of queries, and let L be the set of literals occurring in
O ∪Q. For each sound and admissible decomposition D′ of O and Q, there exists a sound and admissible decomposition D of
O and Q such that wd(D) ≤ wd(D′) and ln(D) ≤ 2O(|L|2).

Proof. Let D′ be an arbitrary sound and admissible decomposition of O and Q, and let D = 〈V , E , core, knw, poss,≺, ϑ〉 be an
arbitrary decomposition obtained from D′ by applying the following (nondeterministic) transformations.

1. Set ≺v ··= ∅ for each context v ∈ V .

2. While there are redundant ε-edges, pick one such ε-edge and contract it.

3. While there are redundant ε-components, pick one such ε-component and eliminate it.

By Lemmas 47 and 52, steps 2 and 3 preserve soundness and admissibility, and they do not increase the width; furthermore,
step 1 trivially satisfies the two properties as well. To conclude our proof, we next show that ln(D) ≤ 2O(|L|2).

Due to step 2, decomposition D contains no redundant ε-edges; hence, by Lemma 57, the cardinality of each ε-component of
D is bounded by |L|. We define the type of an ε-component W of D to be the pair 〈core(W), {poss(v) | v ∈W}〉. Now assume that
U and W are two different ε-components of D with the same type; then, for each context u ∈ U , we can find a context w ∈W
with poss(u) = poss(w); such w is broader than u because

• ≺w = ∅ = ≺u by step 1,
• core(w) = core(W) = core(U) = core(u) by soundness condition (N2), and
• poss(W) =

⋃
v∈W poss(v) =

⋃
v∈U poss(v) = poss(U).

Consequently, such U is redundant in D; however, due to step 3, decomposition D contains no redundant ε-components, so we
obtain a contradiction. Therefore, all distinct ε-components of D are of a different type.

Thus, we can bound the number of ε-components of D by computing the number of possible types. For each ε-component
W of D, set core(W) is a subset of L, so there are at most 2|L| such subsets; furthermore, set {poss(v) | v ∈ W} is a subset of 2L

of cardinality at most |L|, so the number of such subsets is bounded by

|L|∑
k=0

(
2|L|

k

)
≤

|L|∑
k=0

(2|L|)k ≤ (2|L|)(|L|+1).

Consequently, the number of ε-components in D is bounded by 2|L| · (2|L|)(|L|+1). Since each ε-component contains at most |L|
contexts, we have ln(D) ≤ |L| · 2|L|(|L|+2), as required.

36

8. Decomposition Width and Length in Practice

In this section we discuss the results of our experiments, whose goal was to measure decomposition width and length of
realistic ontologies using several different expansion strategies.

Our experiments are based on our ontology repository that contains a diverse set of ontologies, including standard benchmarks
and numerous ontologies from the life sciences domain. Each ontology in the repository can be accessed using a unique five-
digit identifier.4 To obtain our test corpus, we focused mostly on those ontologies in the repository that contain more than 1000
axioms and are not expressed in EL or DL-Litehorn: ontologies expressed in one of these two languages have a decomposition
of polynomial length and zero width, so we did not consider such ontologies interesting. However, we also included several
smaller “toy” ontologies, such as Pizza and Wine, which were developed to demonstrate various ontology modeling constructs.
In this way we obtained a corpus of 44 ontologies shown in Table 6. Since our framework is applicable only to normalized
ALCI ontologies, we further transformed each ontology as follows. First, we eliminated from the ontology all axioms that are
not supported in SHI. Second, we transformed the result into a normalized SHI ontology using a normalization procedure
similar to the one presented by Motik et al. [14]. Third, we eliminated role inclusion and transitivity axioms as described in
Section 2 to obtain a normalized ALCI ontology. For each test ontology, Table 6 shows (i) the number of terminological axioms
in the original ontology, (ii) the number of atomic concepts, atomic roles, and axioms in the SHI ontology after elimination of
unsupported axioms, and (iii) the number of literals, roles, and clauses in the final ALCI ontology after normalization; ontologies
are grouped to match Table 7, and the rationale behind the grouping will be explained shortly. For each normalized ontology O,
we defined the set QO to contain a query A v B for all pairs of atomic concepts A and B in O that were not introduced during
normalization; thus, QO contains all queries relevant for ontology classification.

We developed three controls, C1, C2, and C3, that use the cautious, refined cautious, and eager expansion strategies, respec-
tively, described in Section 3.4.2. Each control Ci used mln = ∞—that is, we did not restrict the number of contexts introduced by
the strategies. Although this is not formally allowed in our presentation of the algorithm, it allowed us to see how the strategies
perform when run freely, without being forced to reuse contexts. The maximum number of contexts that could be introduced by
C1 and C2 was thus polynomial, but for C3 it was exponential in the ontology size. Finally, each Ci used an initialization function
that, for each atomic concept A occurring, introduces a single context vA with core(vA) = {A} to cover all queries of the form
A v B. Please note that the expansion strategies of C1 and C3 can reuse these “initial” contexts, but the refined cautious expansion
strategy of C2 cannot since a context of the form vA is distinct from a context of the form vR

A for some role R.
For each normalized ontology O, we conducted the following experiments. First, for each 1 ≤ i ≤ 3, we computed the Ci-

decomposition Di of O and QO using the decomposition construction algorithm from Section 4.4. Second, for each 1 ≤ i ≤ 3,
we computed the width of an ε-refinement D′i of Di using the approach from Section 5.3. We computed tree decompositions of
the relevant hypergraphs using the TreeD library;5 however, since our hypergraphs were large, we used a heuristic mode in which
the library returns only an approximation of the treewidth, without the actual tree decomposition. Thus, we were able to establish
only an upper bound on the width, but not the length of D′i ; however, by Lemma 57, we know that the size of each ε-component
of D′i is at most wd(Di), so an upper bound on ln(D′i) is given by ln(Di) · wd(Di).

Table 7 summarizes the results of our experiments. For readability, the ontologies were grouped into three subtables: Table 7a
contains those ontologies for which all three strategies produce decompositions of different widths; Table 7b contains those
ontologies for which the cautious and the refined cautious strategies produce decompositions of equal widths; and Table 7c
contains those ontologies for which the choice of a strategy does not affect decomposition width. Moreover, each subtable is
split into two parts, where the bottom part contains ontologies for which wd(D3) = 0: these are all Horn ontologies on which the
decomposition construction algorithm with the eager strategy fully solves the reasoning problem. On the “go-anatomy-importer”
ontology, the cautious and the refined cautious strategies produce decompositions of very large width, which the TreeD library
was unable to process. On the “nif-gross” ontology, the eager strategy seems to produce a decomposition of very large length,
and our decomposition construction algorithm ran out of memory after introducing about five million contexts.

Our experiments show that decomposition length, even with the eager strategy, is in most cases commensurate with the num-
ber of atomic concepts. This is the main reason why consequence-based algorithms perform well in practice: our test ontologies
do not seem to incur a substantial amount of and-branching; moreover, unlike the hypertableau algorithms, consequence-based
algorithms do not suffer from unnecessary and-branching. The only outlier is the “nif-gross” ontology, on which the eager strat-
egy produces very large decompositions; the cautious strategy, however, produces a decomposition of reasonably small width.
This suggests that the hybrid strategy from Section 3.4.2 might actually be very useful in practice.

The refined cautious strategy does not seem to provide much practical benefit over the cautious strategy: there are only
ten ontologies (all shown in Table 7a) on which wd(D1) > wd(D2) holds, and in all cases the difference between wd(D1) and
wd(D2) is negligible. Furthermore, only four decompositions satisfy wd(D′1) > wd(D′2)—that is, in all other cases, computing an

4An ontology with ID XXXXX can be readily downloaded from http://www.cs.ox.ac.uk/isg/ontologies/UID/XXXXX.owl, and a general descrip-
tion of our repository is available at http://www.cs.ox.ac.uk/isg/ontologies/.

5http://www.itu.dk/people/sathi/treed/

37

Table 6: Statistics for test ontologies

Original Reduced to SHI Normalized
Ontology ID logic TBox A T axioms L R clauses
acgt 00001 SROIQ(D) 5,457 1,750 247 4,981 3,851 417 9,039
fma-cons 00285 ALCOIF(D) 123,090 41,646 139 116,270 85,576 243 121,833
go-anatomy-importer 00040 SRIQ 130,480 58,193 209 130,411 177,934 356 279,928
nif-gross 00354 SROIF(D) 6,630 4,042 62 6,580 6,126 79 9,493
uberon 00658 SRIQ 23,644 7,838 82 23,575 42,960 118 77,373
envo-xp 00448 SRIF 74,103 35,702 95 74,065 50,836 51 75,154
galen7 00792 ALERIF(D) 45,260 28,447 964 44,531 341,544 1,610 370,519
go-xp-all 00483 SRI 115,252 89,926 191 115,214 238,923 319 295,029
pato 00762 SHIF 7,616 2,307 24 2,820 1,737 34 2,641
plant-trait-xp 00573 SRIF 127,603 60,968 96 127,559 85,831 46 130,235
cdao 00410 SROIQ(D) 3,175 890 106 3,056 2,934 192 6,152
dolce-all 00024 SHOIN (D) 1,544 204 313 1,502 10,679 626 16,442
ero 00450 SHOIF(D) 3,277 2,397 103 3,146 3,965 189 5,075
gardiner-wafa 00055 SHIN 246 152 20 242 277 27 317
influenza-ontology 00507 SROIN (D) 1,552 745 66 1,504 3,739 116 5,963
lipid 00512 ALCHIN 2,375 710 46 2,192 3,055 92 6,470
obi 00350 SHOIN (D) 9,926 2,634 69 9,866 6,009 125 19,626
pizza 00793 SHOIN 701 97 7 686 391 14 1,355
propreo 00772 SHIN 565 474 30 548 994 48 1,086
sweet-space 00788 SHOIN (D) 2,430 1,514 123 2,132 2,774 210 3,658
sweet-numerics 00789 SHOIN (D) 2,499 1,499 137 2,185 2,768 239 3,599
sweet-phenomena 00790 SHOIN (D) 2,658 1,721 112 2,367 2,871 191 3,734
fly-anatomy 00460 SRI 19,477 7,798 21 19,466 10,391 27 19,534
galen-doctored 00029 ALEHIF+ 4,762 2,748 413 4,586 11,447 534 13,769
galen-undoctored 00032 ALEHIF+ 5,005 2,748 413 4,828 11,767 535 14,158
go 00764 SRIF 76,286 36,495 13 76,279 82,191 22 123,506
worm-phenotype-xp 00675 SHIF 90,522 51,413 113 90,497 74,594 95 100,966
aeo 00002 SHIF(D) 20,317 759 47 3,372 1,487 92 5,598
mammalian-phenotype-xp 00518 SR 6,684 9,809 24 6,680 32,111 48 38,994
nci-thesaurus 00554 SH(D) 127,739 91,226 123 127,729 157,186 244 226,658
nif-cell 00352 SROIF(D) 3,482 2,770 61 3,431 3,212 62 4,366
pharmacogenomics 00566 SHOIN (D) 52,813 45,000 201 52,616 48,056 279 53,797
protein 00791 S 37,266 35,196 7 37,266 46,240 10 61,424
sao 00624 SHIN (D) 2,802 764 36 2,608 1,231 58 4,595
sct-sep 00778 SH 54,978 54,974 9 54,977 333,067 13 503,379
software 00636 SHOIQ(D) 2,661 903 27 2,501 1,721 31 3,064
vaccine 00668 SRIQ 12,516 5,410 137 12,470 12,412 201 20,730
wine 00783 SHOIN (D) 395 98 17 159 302 30 388
bams-simplified 00004 SHIF 18,822 1,110 12 18,818 4,413 14 19,575
iedm 00293 ALUN (D) 4,310 395 888 1,877 4,821 1,771 4,532
molecular-function-xp 00533 SRIF 84,408 42,165 82 84,368 73,981 20 106,124
neuron-ontology 00006 ALEHI+ 1,260 1,119 25 1,245 1,419 1 1,208
sequence 00627 SHI 2,812 2,136 24 3,029 3,179 26 4,074
world-fact-book 00104 ALCHOI(D) 1,158 1,080 4 1,122 1,090 1 1,120

38

Table 7: Decomposition width and length for test ontologies

cautious cautiousR eager
Ontology ln(D1) wd(D1) wd(D′1) ln(D2) wd(D2) wd(D′2) ln(D3) wd(D3) wd(D′3)

(a) wd(D1), wd(D2), and wd(D3) are all different:

acgt 1,754 235 11 1,883 151 9 1,851 162 9
fma-cons 41,646 418 22 80,606 389 22 84,647 387 22
go-anatomy-importer 58,192 12,909 ? 79,533 12,582 ? 94,915 491 28
nif-gross 4,069 686 178 4,653 589 152 > 5 · 106 ? ?
uberon 7,383 4,931 369 10,966 4,600 115 10,241 199 18
envo-xp 35,702 2 1 50,247 1 1 35,704 0 0
galen7 30,472 3,850 47 43,521 3,833 47 49,344 0 0
go-xp-all 89,926 1,456 76 107,797 1,404 49 92,801 0 0
pato 2,306 2 1 2,331 1 1 2,308 0 0
plant-trait-xp 60,968 2 1 84,271 1 1 60,973 0 0

(b) wd(D1) = wd(D2) > wd(D3) and wd(D′1) = wd(D′2) ≥ wd(D′3):

cdao 890 369 90 1,203 369 90 1,449 82 25
dolce-all 236 2,180 72 336 2,180 72 453 1,819 62
influenza-ontology 842 554 32 1,032 554 32 1,060 237 12
lipid 860 1,010 186 983 1,010 186 3,561 1,008 186
obi 2,826 293 39 3,249 293 39 3,287 233 17
pizza 101 101 34 147 101 34 392 41 10
propreo 478 147 22 483 147 22 561 75 13
sweet-space 1,517 60 6 1,522 60 6 1,540 38 5
ero 2,399 100 11 2,479 100 11 2,456 99 11
gardiner-wafa 158 34 6 169 34 6 1167 33 6
sweet-numerics 1,503 44 5 1,508 44 5 1,518 34 5
sweet-phenomena 1,723 44 5 1,728 44 5 1,739 43 5
fly-anatomy 7,798 5 2 10,356 5 2 7,873 0 0
galen-doctored 3,020 139 14 3,824 139 14 3,364 0 0
galen-undoctored 3,042 139 14 4,091 139 14 3,460 0 0
go 36,494 140 16 46,813 140 16 36,859 0 0
worm-phenotype-xp 51,413 6 2 66,320 6 2 51,421 0 0

(c) wd(D1) = wd(D2) = wd(D3) and wd(D′1) = wd(D′2) = wd(D′3):

aeo 851 32 6 1,124 32 6 963 32 6
mammalian-phenotype-xp 9,809 16 5 13,668 16 5 9,809 16 5
nci-thesaurus 91,226 48 11 107,788 48 11 103,977 48 11
nif-cell 2,769 48 7 2,796 48 7 2,771 48 7
pharmacogenomics 45,015 321 26 46,844 321 26 45,348 321 26
protein 35,196 22 5 36,636 22 5 35,196 22 5
sao 769 108 9 843 108 9 856 108 9
sct-sep 54,973 2,602 278 76,545 2,602 278 54,973 2,602 278
software 1,120 9 5 1,422 9 5 1,234 9 5
vaccine 5,691 1,137 246 7,087 1,137 246 6,584 1,137 246
wine 121 122 27 122 122 27 698 122 27
bams-simplified 1,187 0 0 3,424 0 0 3,154 0 0
iedm 395 0 0 395 0 0 395 0 0
molecular-function-xp 42,165 0 0 60,140 0 0 42,165 0 0
neuron-ontology 1,119 0 0 1,419 0 0 1,119 0 0
sequence 2,136 0 0 2,446 0 0 2,136 0 0
world-fact-book 1,080 0 0 1,080 0 0 1,080 0 0

39

ε-refinement of D1 and D2 produces decompositions of equal width. The refined cautious strategy, however, can still be useful
in practice: as we discussed in more detail in Section 3.4.2, contexts introduced by this strategy can have more refined literal
orderings, but our framework cannot estimate the effects of a literal ordering on the performance of reasoning.

Particularly interesting are the results shown in the bottom part of Table 7c: all ontologies shown there contain universal
restrictions and/or inverse roles, but they “behave” like EL ontologies in that there is no interaction between existential and
universal restrictions and/or inverse roles; this is reflected by the fact that the cautious and the eager strategy introduce in most
cases the same numbers of contexts. The only exception is the “bams-simplified” ontology, on which there is some interaction
between existential and universal restrictions; however, even in this case, the cautious strategy can produce a decomposition of
zero width. To understand how this can happen, consider the ontology {A v ∃R.B, A v ∀R.C, B v C}: with the cautious
strategy we get a context vB with core(vB) = {B}, whereas with the eager strategy we get a context v{B,C} with core(v{B,C}) = {B,C};
however, in the former case C is a known consequence of B, so introducing a context with a “suboptimal” core does not increase
decomposition width.

Finally, our experiments show that computing an ε-refinement can substantially reduce decomposition width: wd(D′i) is
substantially lower than wd(Di) in all cases except when wd(Di) is already very small. Moreover, the eager strategy seems to
produce decompositions of least width: with the exception of four ontologies (“dolce-all”, “lipid”, “sct-sep”, and “vaccine”),
decomposition D′3 has width below 30, and often much less than 30. This suggests that our approach to reducing or-branching
from Section 5 could improve the performance of consequence-based reasoners in practice.

We finish this section with the observation that, in all cases, decomposition width is substantially smaller than the number of
literals in the ontology, so our results provide a tighter estimate of the algorithm’s complexity than that obtained from the usual
complexity arguments. This is particularly true for Horn ontologies: decomposition length on such ontologies is manageable and
decomposition width is zero, which explains why such ontologies are generally easier to reason with. On non-Horn ontologies,
however, the upper complexity bound obtained using our results may still be very large; for example, for a decomposition of
width 30, the number of clauses derived in each context is bounded by 430 ≈ 1.15 · 1018—clearly, no algorithm deriving that
many clauses can be deemed practical. This bound, however, only analyzes what could happen in the worst case and, similarly
to propositional resolution, such worst cases are unlikely to occur in practice. We observed that decomposition widths of our test
ontologies are mainly determined by universal restrictions involving inverse roles: in order to guarantee that all clauses needed
to apply the Pred rule are derived, sets %∃R.A

v,u are needed in condition (R7) of Definition 42, and these sets can be large. In our
experience, however, clauses with many literals of the form ∀inv(R).C are rarely derived during reasoning, which is why most
ontologies can still be handled in practice. Therefore, a small decomposition width provides an indication, but not a definite
guarantee, that reasoning with a particular ontology is easy. In contrast, decomposition length measures directly the number of
contexts constructed in the consequence-based algorithm, so length is generally a good measure of ontology hardness.

9. Conclusion

In this paper we presented a very general framework for consequence-based reasoning in description logics. Then, we
introduced a notion of decomposition that allows us to quantify the effects of and- and or-branching during reasoning. Finally,
we presented what we believe to be the first result on fixed-parameter tractability of description logic reasoning. We see several
theoretical and practical challenges for our future work.

On the theoretical side, we will try to extend our results to logics with number restrictions and nominals and thus obtain a
consequence-based algorithm that can handle all of OWL 2 DL. Number restrictions have already been successfully integrated
into resolution-based procedures so, while not trivial, incorporating them into consequence-based algorithms should be possible.
We se two main challenges towards that goal. First, we believe that the notion of a context core will have to include two sets
of literals (representing the types of an individual and its predecessor in a model) and a set of roles (describing the connections
between the two individuals); the reason for this is analogous to why the hypertableau algorithm must use pairwise instead of
single blocking [14] when an ontology contains both number restrictions and inverse roles. Second, we believe that our clauses
will have to represent disjunctive properties of an individual’s successors, which one can likely achieve using a skolemized
clausal form as in first-order theorem proving [31]. In contrast, the combination of nominals, number restrictions, and inverse
roles is a significant source of complexity, and it is currently unclear whether and how this combination of constructs can be
handled in a consequence-based framework.

On the practical side, our results suggest several significant improvements to existing consequence-based reasoners. First,
context reuse may allow reasoners to handle ontologies on which the eager strategy introduces a large number of contexts.
Second, redundancy elimination techniques may turn out to further reduce the search space. Third, although computing tree
decompositions in advance may incur significant overhead, we believe that computing ε-refinements “on demand” for contexts
with large widths has the potential to further reduce the number of clauses derived. We will incorporate these ideas into a
consequence-based reasoner and try to determine the extent to which they optimize the performance of reasoning in practice.

40

Appendix A. Proof of Theorem 6

Throughout Appendix A, we fix a normalized ALCI ontology O, an admissible context structure D = 〈V , E , core,≺〉, and a
clause system S for D such that no inference rule from Table 3 is applicable to S; furthermore, we fix L to be the set of all literals
that occur in O, D, or S. We prove Theorem 6 by showing the following contrapositive claim: O 6|= K v M holds for each query
K v M for which a context v ∈ V exists such that

• v is complete for K v M,
• K v L ∈̂ S(v) for each L ∈ K, and
• K v M 6∈̂ S(v).

To this end, we construct a model I of O that refutes each query satisfying the above conditions. The construction is organized
as follows. Instead of directly constructing a model, for simplicity we construct a pre-model—a graph-like structure with nodes
labeled by sets of literals. We introduce this notion in Appendix A.1, and we explain how to convert a pre-model into a model. In
Appendix A.2 we show how to construct a propositional interpretation satisfying a set of clauses closed under hyperresolution.
In Appendix A.3 we prove certain properties of our inference rules that will allow us to use the construction from Appendix
A.2. Finally, in Appendix A.4 we use these propositional interpretations to construct the desired pre-model of O.

Appendix A.1. Pre-Interpretations and Pre-Models
In this section we introduce the notions of a pre-interpretation and a pre-model of an ontology, which we use to simplify the

presentation of the subsequent proofs.

Definition 59. A set of literals J satisfies a clause K v M, written J |= K v M, if K ⊆ J implies M ∩ J , ∅; otherwise, J refutes
K v M, written J 6|= K v M.

A pre-interpretation is a labeled graph I = 〈∆, E, J〉 where ∆ is a nonempty set of nodes, E ⊆ ∆ × ∆ × ΣR is a set of role-
labeled edges, and J : ∆→ 2ΣL is a labeling of nodes by sets of literals satisfying the following two conditions.

(I∃) For each node x ∈ ∆ and each literal ∃R.A ∈ J(x), an edge 〈x, y,R〉 ∈ E exists such that A ∈ J(y).
(I∀) For each edge 〈x, y,R〉 ∈ E and all literals ∀R.B and ∀inv(R).C, we have that

– ∀R.B ∈ J(x) implies B ∈ J(y), and
– ∀inv(R).C ∈ J(y) implies C ∈ J(x).

Pre-interpretation I = 〈∆, E, J〉 satisfies a clause K v M, written I |= K v M, if J(x) |= K v M for each node x ∈ ∆; otherwise,
I refutes K v M, written I 6|= K v M. Finally, I is a pre-model of O if I satisfies each (normal) clause in O.

Given a pre-interpretation I = 〈∆, E, J〉, we can construct an interpretation I for all atomic concepts A ∈ ΣA and all atomic
roles T ∈ ΣT as follows.

∆I ··= ∆ (A.1)

AI ··= {x | A ∈ J(x)} (A.2)

TI ··= {〈x, y〉 | 〈x, y,T 〉 ∈ E} ∪ {〈y, x〉 | 〈x, y,T−〉 ∈ E} (A.3)

Interpretation I satisfies the following property for each literal L ∈ ΣL and each node x ∈ ∆:

L ∈ J(x) implies x ∈ LI . (A.4)

For atomic concepts, property (A.4) holds by the definition of AI ; furthermore, for literals of the form ∃R.A and ∀R.A, property
(A.4) holds due to conditions (I∃) and (I∀), respectively. The converse of property (A.4), however, holds only for atomic concepts,
which is why all clauses in O must have only atomic concepts in their antecedents, and all queries must have only atomic concepts
in their consequents. We next show that the interpretation I obtained as specified above is indeed a model of O.

Lemma 60. Let I = 〈∆, E, J〉 be a pre-interpretation, and let I be the interpretation obtained from I as specified in (A.1)–(A.3).
If I satisfies a normal clause α, then I |= α. Furthermore, if I refutes a query q, then I 6|= q.

Proof. Let
�m

i=1 Ai v
⊔n

j=1 L j be an arbitrary normal clause that is satisfied in I, and consider an arbitrary node x ∈ ∆ such that
x ∈ AI

i for each 1 ≤ i ≤ m. By (A.2), we have Ai ∈ J(x) for each 1 ≤ i ≤ m; but then, since I satisfies the clause by the assumption,
we have L j ∈ J(x) for some 1 ≤ j ≤ n; hence, we have x ∈ LI

j for some 1 ≤ j ≤ n by (A.4). Since this holds for arbitrary x ∈ ∆,
we have I |=

�m
i=1 Ai v

⊔n
j=1 L j.

Let
�m

i=1 Li v
⊔n

j=1 A j be an arbitrary query that is refuted in I. Thus, a node x ∈ ∆ exists such that Li ∈ J(x) for each
1 ≤ i ≤ m, and A j < J(x) for each 1 ≤ j ≤ n. But then, x ∈ LI

i for each 1 ≤ i ≤ m by (A.4), and x < AI
j for each 1 ≤ j ≤ n by

(A.2); consequently, we have I 6|=
�m

i=1 Li v
⊔n

j=1 A j.

Corollary 61. If a pre-model I of O exists that refutes a query K v M, then O 6|= K v M.

41

Appendix A.2. Constructing Literal Interpretations
In this section, we show how the sets of clauses S(v) and the corresponding literal orderings ≺v can be used to construct

the sets J(x) of a pre-model I = 〈∆, E, J〉 that satisfies O but refutes a query K v M. Our construction is independent from the
selected context v; therefore, in the first part of this section we consider just a single set of clauses N .

Throughout Appendix A.2 we fix a literal ordering ≺, a set of clauses N over L, and a clause K v M over L satisfying the
following conditions:

M is ≺-minimal, (A.5)
K v L ∈̂ N for each literal L ∈ K, and (A.6)
K v M 6∈̂ N . (A.7)

Next, in Definition 62 we introduce a notion that determines when set N contains “sufficiently many” hyperresolution con-
sequences w.r.t. literal ordering ≺.

Definition 62. Set N is closed under ≺-hyperresolution with a clause
�n

i=1 Li v M′ (not necessarily contained in N) if, for each
choice of n clauses Ki v Mi t Li ∈ N , 1 ≤ i ≤ n, each satisfying Li ⊀ Mi, we have

�n
i=1 Ki v M′ t

⊔n
i=1 Mi ∈̂ N .

The following lemma follows trivially from Definition 62 and the notion of clause strengthening.

Lemma 63. Let α1 and α2 be arbitrary clauses such that α1 is a strengthening of α2. If N is closed under ≺-hyperresolution
with α1, then N is also closed under ≺-hyperresolution with α2.

For ≺, N , and K v M fixed as specified above, we next construct a set of literals J that refutes K v M, but that satisfies
each clause

�n
i=1 Li v M′ for which N is closed under ≺-hyperresolution. We achieve this by essentially adapting the standard

techniques from resolution theorem proving [31] to our setting. Towards this goal, we proceed as follows: we first present the
construction of J; in Lemma 64 we prove certain properties of the productive clauses in N ; in Lemma 65 we show that J satisfies
each clause K′ v M′ for which a strengthening is contained in N and that satisfies K′ ⊆ K; in Lemma 66 we show that J refutes
K v M; and finally in Lemma 67 we prove the desired result.

Let L1, L2, . . . , L` be an arbitrary total ordering of L that extends ≺ such that the elements of M precede all the remaining
literals from L—that is, for all i and j, we have that

Li ≺ L j implies i < j, and (A.8)
i < j and L j ∈ M imply Li ∈ M. (A.9)

Since M is ≺-minimal by (A.5) and set L is finite, at least one such total ordering exists. For each 0 ≤ k ≤ `, let Lk ··= {L1, . . . , Lk},
and let Jk be an inductively defined set of literals such that J0 ··= ∅ and, for each 0 < k ≤ `, we have

Jk ··=

Jk−1 ∪ {Lk} if a clause K′ v M′ t Lk ∈ N exists such that K′ ⊆ K, M′ ∩ Jk−1 = ∅, and M′ ⊆ Lk−1

Jk−1 otherwise.
(A.10)

Let J ··= J`. Each set J that can be obtained by such a construction (which is nondeterministic due to the choice of the total
ordering) is called a literal interpretation of L w.r.t. N and ≺ refuting K v M. Each clause K′ v M′ t Lk ∈ N that satisfies the
first condition in (A.10) for some k is said to be a productive clause, and the clause is said to produce the literal Lk in J. Clearly,
each literal in J is produced by at least one productive clause in N .

Lemma 64. Each productive clause K′ v M′ t Lk ∈ N satisfies K′ ⊆ K, M′ ∩ J = ∅, and Lk ⊀ M′.

Proof. Let K′ v M′ t Lk ∈ N be an arbitrary clause producing literal Lk in J for some integer k. By (A.10), we have K′ ⊆ K,
M′ ∩ Jk−1 = ∅, and M′ ⊆ Lk−1. Clearly Jk−1 = J ∩ Lk−1, so we have M′ ∩ J = ∅. Finally, by (A.8), we have Lk ⊀ L for each
L ∈ Lk−1; hence, due to M′ ⊆ Lk−1, we have Lk ⊀ M′.

Lemma 65. For each clause K′ v M′ such that K′ v M′ ∈̂ N and K′ ⊆ K, we have M′ ∩ J , ∅.

Proof. Let K′ v M′ be an arbitrary clause satisfying K′ v M′ ∈̂ N and K′ ⊆ K. Then, a clause K1 v M1 ∈ N exists such that
K1 ⊆ K′ ⊆ K and M1 ⊆ M′ hold. Clause K1 v ⊥ is thus a strengthening of K v M, but K v M 6∈̂ N by assumption (A.7);
thus, M1 , ∅. Let k be the largest integer for which Lk ∈ M′ holds; hence, clause K1 v M1 is of the form K1 v M2 t Lk

where M2 ⊆ Lk−1. The claim of this lemma holds trivially if M2 ∩ J , ∅. Furthermore, if M2 ∩ J = ∅, then by (A.10) clause
K1 v M2 t Lk produces Lk ∈ J, so we again have M′ ∩ J , ∅, as required.

Lemma 66. We have J 6|= K v M—that is, K ⊆ J and M ∩ J = ∅.

42

Proof. (K ⊆ J) Consider an arbitrary literal L ∈ K. Then K v L ∈̂ N by assumption (A.6), so a conjunction K′ ⊆ K exists such
that K′ v ⊥ ∈ N or K′ v L ∈ N . The former contradicts K v M 6∈̂ N , which is assumption (A.7); hence, we have K′ v L ∈ N ,
so by (A.10) this clause produces L ∈ J.

(M ∩ J = ∅) Assume that a literal Lk ∈ M ∩ J exists, and let K′ v M′ t Lk ∈ N be a clause that produces Lk ∈ J. By (A.10),
we have M′ ⊆ Lk−1 and K′ ⊆ K; furthermore, by (A.9) and Lk ∈ M, we have M′ ∪ {Lk} ⊆ M. But then, K′ v M′ t Lk ∈ N
contradicts K v M 6∈̂ N , which is assumption (A.7).

Lemma 67. For each clause α such that N is closed under ≺-hyperresolution with α, we have J |= α.

Proof. Assume that α =
�n

i=1 Li v M′ and that Li ∈ J for each 1 ≤ i ≤ n. For each 1 ≤ i ≤ n, let Ki v Mi t Li be some clause
that produces Li ∈ J; then Ki ⊆ K, Mi ∩ J = ∅, and Li ⊀ Mi by Lemma 64. Since N is closed under ≺-hyperresolution with
α, we have

�n
i=1 Ki v M′ t

⊔n
i=1 Mi ∈̂ N . By (

�n
i=1 Ki) ⊆ K and Lemma 65, we have (M′ t

⊔n
i=1 Mi) ∩ J , ∅. Finally, since

Mi ∩ J = ∅ holds for each 1 ≤ i ≤ n, we have M′ ∩ J , ∅. Consequently, we have J |= α, as required.

Appendix A.3. Properties of the Consequence-Based Inference Rules
To apply the construction from Appendix A.2 to our clause system S and the context structure D = 〈V , E , core,≺〉 (which

were fixed at the beginning of Appendix A), we next prove the following two auxiliary lemmas about the consequence-based
inference rules. Lemma 68 allows us to show that, for each context v ∈ V , the set of literals obtained by applying the above
construction to S(v) satisfies each clause in O; the lemma follows trivially from Definition 62 and the fact that the Hyper rule is
not applicable to S. Furthermore, Lemma 69 shows a similar property for the clauses that participate in the Pred rule.

Lemma 68. For each context v ∈ V and each clause α ∈ O, set S(v) is closed under ≺v-hyperresolution with α.

Lemma 69. For each edge 〈v, u,∃R.A〉 ∈ E and each clause α = A u
�n

i=1 Bi v
⊔m

j=1 ∀inv(R).C j such that α ∈̂ S(u), set S(v) is
closed under ≺v-hyperresolution with ∃R.A u

�n
i=1 ∀R.Bi v

⊔m
j=1 C j.

Proof. Consider an arbitrary edge 〈v, u,∃R.A〉 ∈ E and an arbitrary clause α = A u
�n

i=1 Bi v
⊔m

j=1 ∀inv(R).C j such that α ∈̂ S(u).
By the definition of ∈̂, a subset {B′i}

n′
i=1 of {Bi}

n
i=1 and a subset {C′j}

m′
j=1 of {C j}

m
j=1 exist such that

A u
n′�

i=1

B′i v
m′⊔
j=1

∀inv(R).C′j ∈ S(u) or
n′�

i=1

B′i v
m′⊔
j=1

∀inv(R).C′j ∈ S(u).

The Pred rule is not applicable to clause system S; thus, for each clause K0 v M0 t ∃R.A ∈ S(v) satisfying ∃R.A ⊀v M0, and for
each choice of n′ clauses Ki v Mi t ∀R.B′i , 1 ≤ i ≤ n′, satisfying ∀R.B′i ⊀v Mi, we have

K0 u

n′�
i=1

Ki v M0 t

n′⊔
i=1

Mi t

m′⊔
j=1

C′j ∈̂ S(v).

Thus, S(v) is closed under ≺v-hyperresolution with clause ∃R.A u
�n′

i=1 ∀R.B′i v
⊔m′

j=1 C′j. By Lemma 63, then S(v) is also closed
under ≺v-hyperresolution with clause ∃R.A u

�n
i=1 ∀R.Bi v

⊔m
j=1 C j since the former is a strengthening of the latter clause.

Appendix A.4. The Completeness Claim
We now complete the proof of Theorem 6 by constructing a pre-interpretation that satisfies O but refutes the relevant queries.

To simplify the presentation, given a context v ∈ V and a clause K v M, we write v 0 K v M if and only if

• M is ≺v-minimal (i.e., v is complete for K v M),
• K v L ∈̂ S(v) for each literal L ∈ K, and
• K v M 6∈̂ S(v).

Claim 70. For each context v ∈ V and each clause K v M, if K v L ∈̂ S(v) for each L ∈ K and K v M 6∈̂ S(v), then K ⊆ L.

Proof. Assume that there exists a literal L ∈ K \ L; then, L does not occur in S(v), so K v L ∈̂ S(v) implies K v ⊥ ∈̂ S(v), which
contradicts the assumption that K v M 6∈̂ S(v). Thus, K ⊆ L holds.

Theorem 6 holds vacuously if no context v ∈ V and no query K v M exist such that v 0 K v M. Thus, we assume that
v 0 K v M holds for at least one context v ∈ V and at least one query K v M; by the definition of clause strengthening, we then
also have v 0 K v M′ for M′ = M ∩ L; the latter clause is over L by Claim 70. Let I = 〈∆, E, J〉 be defined as follows.

• Set ∆ is the smallest set that contains a distinguished element δv
KvM for each context v ∈ V and each clause K v M over L

such that v 0 K v M. Set ∆ is not empty due to the above assumption.

43

• For each δv
KvM ∈ ∆, let J(δv

KvM) be an arbitrary literal interpretation of L w.r.t. S(v) and ≺v refuting K v M.
• Set E is the smallest set containing 〈δv

K1vM1
, δu

AuK2vM2
,R〉 for each element δv

K1vM1
∈ ∆, each literal ∃R.A ∈ J(δv

K1vM1
), and

each edge 〈v, u,∃R.A〉 ∈ E such that u 0 A u K2 v M2, where K2 and M2 are as specified below.

K2 =
�
{B | ∀R.B ∈ J(δv

K1vM1
)} (A.11)

M2 =
⊔
{∀inv(R).C ∈ L | C < J(δv

K1vM1
)} (A.12)

In the last item, we have K2 ∪ M2 ⊆ L and A ∈ L; thus, u 0 A u K2 v M2 ensures δu
AuK2vM2

∈ ∆, and so E is correctly defined.
Next, in Claim 71 we show that I is a pre-interpretation, in Claim 72 we show that I is a pre-model of O, and in Claim 73 we
show that I refutes the relevant queries. The claim of Theorem 6 then follows from Claims 72 and 73, and Corollary 61.

Claim 71. Structure I satisfies conditions (I∃) and (I∀) of pre-interpretations from Definition 59.

Proof. (Property I∃) Consider an arbitrary element δv
K1vM1

∈ ∆ and an arbitrary literal ∃R.A ∈ J(δv
K1vM1

); we next show that an
edge 〈δv

K1vM1
, γ,R〉 ∈ E exists such that A ∈ J(γ). The Succ rule is not applicable to S, so an edge 〈v, u,∃R.A〉 ∈ E exists satisfying

L v L ∈̂ S(u) for each L ∈ {A} ∪ Bp, where Bp = {B | K′ v M′ t ∀R.B ∈ S (v) and ∀R.B ⊀v M′}. (A.13)

Let K2 and M2 be as specified in (A.11) and (A.12). The following observations prove that u 0 A u K2 v M2.

• Admissibility of D and 〈v, u,∃R.A〉 ∈ E imply, by Definition 4, that ≺u is R-admissible, so M2 is ≺u-minimal.
• Consider an arbitrary literal L ∈ A u K2; we show that A u K2 v L ∈̂ S(u). Assume that L ∈ K2, so L is an atomic concept

L = B. Then, by (A.11), we have ∀R.B ∈ J(δv
K1vM1

); thus, there exists at least one clause K′ v M′ t ∀R.B ∈ S (v) with
∀R.B ⊀v M′ that produces ∀R.B in J(δv

K1vM1
); hence B ∈ Bp. But then L v L ∈̂ S(u) holds by (A.13), which is stronger

than the required A u K2 v L ∈̂ S(u). The case when L = A follows directly from (A.13).
• Assume for contradiction that A u K2 v M2 ∈̂ S(u). By Lemma 69, set S(v) is closed under ≺v-hyperresolution with clause

∃R.A u
�
{∀R.B | ∀R.B ∈ J(δv

K1vM1
)} v

⊔
{C | ∀inv(R).C ∈ L and C < J(δv

K1vM1
)}.

Recall that ∃R.A ∈ J(δv
K1vM1

), so the above clause is clearly refuted in J(δv
K1vM1

). However, by Lemma 67, the clause is
satisfied in J(δv

K1vM1
), which is a contradiction. Consequently, we have A u K2 v M2 6∈̂ S(u), as required.

Thus, we have u 0 A u K2 v M2, which implies 〈δv
K1vM1

, δu
AuK2vM2

,R〉 ∈ E by the definition of E. Finally, A ∈ J(δu
AuK2vM2

) holds
by Lemma 66. All of these observations prove that I satisfies property (I∃) of Definition 59.

(Property I∀) Consider an arbitrary edge 〈δv
K1vM1

, δu
AuK2vM2

,R〉 ∈ E as in the definition of E, as well as arbitrary literals ∀R.B
and ∀inv(R).C.

• Assume that ∀R.B ∈ J(δv
K1vM1

). Then B ∈ K2 holds by (A.11); but then, Lemma 66 implies J(δu
AuK2vM2

) 6|= A u K2 v M2.
Consequently, we have B ∈ J(δu

AuK2vM2
), as required.

• Assume that ∀inv(R).C ∈ J(δu
AuK2vM2

). Then ∀inv(R).C ∈ L holds since J(δu
AuK2vM2

) is a literal interpretation of L. Now, if
C < J(δv

K1vM1
), then ∀inv(R).C ∈ M2 by (A.12), so ∀inv(R).C < J(δu

AuK2vM2
) by Lemma 66, which contradicts our assump-

tion. Consequently, we have C ∈ J(δv
K1vM1

), as required.

Claim 72. Pre-interpretation I is a pre-model of O.

Proof. Consider an arbitrary element δv
KvM ∈ ∆ and an arbitrary normal clause α ∈ O. By Lemma 68, set S(v) is closed under

≺v-hyperresolution with α, so J(δv
KvM) |= α by Lemma 67. This holds for arbitrary δv

KvM ∈ ∆, so we have I |= α. Finally, the
latter holds for arbitrary α ∈ O, so I is a pre-model of O.

Claim 73. Pre-interpretation I refutes each query K v M for which there exists a context v ∈ V such that v is complete for
K v M, K v L ∈̂ S(v) for each L ∈ K, and K v M 6∈̂ S(v).

Proof. Let K v M be an arbitrary query satisfying the preconditions of the claim, and let M′ = M ∩ L. Then v 0 K v M′ holds
as well, and this clause is over L by Claim 70. But then, J(δv

KvM′) 6|= K v M′ by Lemma 66. Finally, each literal from M \ M′ is
not from L and so it cannot occur in J(δv

KvM′); thus, J(δv
KvM′) 6|= K v M holds as well, so I refutes K v M, as required.

44

Appendix B. Proof of Theorem 37

We proceed similarly as in the proof of Theorem 6 in Appendix A. In the rest of Appendix B, we fix a normalized ALCI
ontology O, an admissible decomposition D = 〈V , E , core, knw, poss,≺, ϑ〉 of O and an arbitrary finite set of queries, and a clause
system S for D satisfying the preconditions of Theorem 37; furthermore, we fix L to be the set of all literals that occur in O, D,
or S. We prove Theorem 37 by constructing a pre-interpretation that satisfies O but refutes the relevant queries. To simplify the
presentation, given an ε-component W of D, a context v ∈W , and a clause K v M, we write v 0 K v M if and only if

• K ⊆ poss(v), M ∩ poss(W) ⊆ poss(v), and M is ≺v-minimal (i.e., v is complete for K v M),
• K v L ∈̂ S(v) for each literal L ∈ K, and
• K v M 6∈̂ S(v).

Theorem 37 holds vacuously if no context v ∈ V and no query K v M exist such that v 0 K v M. Thus, we assume that
v 0 K v M holds for at least one context v ∈ V and query K v M; by the definition of clause strengthening, we then also have
v 0 K v M′ for M′ = M ∩ L; the latter clause is over L by Claim 70. Let I = 〈∆, E, J〉 be defined as follows.

• Set ∆ is the smallest set that contains a distinguished element δv
KvM for each context v ∈ V and each clause K v M over L

such that v 0 K v M. Set ∆ is not empty due to the above assumption.
• The value of function J is defined on each element δv

KvM ∈ ∆ as follows. Let W be the ε-component of D that contains v,
and let w0,w1, . . . ,wn be an ordering of the elements of W obtained by an arbitrary depth-first traversal of DW starting from
w0 = v. Conjunctions K0,K1, . . . ,Kn, disjunctions M0,M1, . . . ,Mn, and literal interpretations J0, J1, . . . , Jn are defined
inductively as follows.

– Case i = 0. Let K0 ··= K, let M0 ··= M, and let J0 be an arbitrary literal interpretation of L w.r.t. S(w0) and ≺w0

refuting K0 v M0.
– Case i > 0. Let w j be the parent of wi in the depth-first traversal of DW ; since w j is considered before wi in the

depth-first traversal, K j, M j, and J j have been defined. Let Ki and Mi be as follows:

Ki ··=
�
{C ∈ poss(w j) ∩ poss(wi) | C ∈ J j} (B.1)

Mi ··=
⊔
{C ∈ poss(w j) ∩ poss(wi) | C < J j} (B.2)

Furthermore, let Ji be an arbitrary literal interpretation of L w.r.t. S(wi) and ≺wi refuting Ki v Mi.

Based on these definitions for J0, J1, . . . , Jn, the value of function J on element δv
KvM is defined by

J(δv
KvM) ··= poss(W) ∩

 n⋃
i=0

Ji

 . (B.3)

• Set E is the smallest set containing 〈δv
K1vM1

, δu
AuK2vM2

,R〉 for all ε-components W and U of D, each element δv
K1vM1

∈ ∆

with v ∈W , each literal ∃R.A ∈ J(δv
K1vM1

), and each edge 〈v, u,∃R.A〉 ∈ E with u ∈ U such that u 0 A u K2 v M2, where
K2 and M2 are as specified below.

K2 =
�
{B | ∀R.B ∈ J(δv

K1vM1
)} (B.4)

M2 =
⊔
{∀inv(R).C ∈ poss(U) | C < J(δv

K1vM1
)} (B.5)

In the last item, we have K2 ∪ M2 ⊆ L and A ∈ L; thus, u 0 A u K2 v M2 ensures δu
AuK2vM2

∈ ∆, and so E is correctly defined.
In contrast, the definition of J(δv

KvM) relies on the existence of literal interpretations that refute certain clauses, and it is not
obvious that these literal interpretations exist; hence, the following lemma proves that this is the case.

Claim 74. The value of J(δv
KvM) is correctly defined for each element δv

KvM ∈ ∆.

Proof. Consider an arbitrary element δv
KvM , and let W , w0,w1, . . . ,wn, K0,K1, . . . ,Kn, M0,M1, . . . ,Mn, and J0, J1, . . . , Jn be

as specified above. We next inductively prove that wi 0 Ki v Mi for each 0 ≤ i ≤ n; this is sufficient to guarantee existence of
the corresponding literal interpretation Ji. For i = 0, we have w0 0 K0 v M0 immediately from the facts that K0 = K, M0 = M,
and δv

KvM ∈ ∆. Consider now an arbitrary integer i > 0, and let w j be the parent of wi in the depth-first traversal of DW . Since
the ε-edges of D are symmetric by admissibility condition (E1), the presence of the undirected edge {w j,wi} in DW implies that
〈w j,wi, ε〉 ∈ E . Now wi 0 Ki v Mi follows from the following observations.

• Condition Ki ⊆ poss(wi) holds trivially by the definition of Ki.

45

• Condition Mi ∩ poss(W) ⊆ poss(wi) holds trivially since Mi ⊆ poss(wi) by the definition of Mi.
• Disjunction Mi is ≺wi -minimal by admissibility condition (P2) since 〈w j,wi, ε〉 ∈ E and Mi ⊆ poss(w j) ∩ poss(wi).
• Consider an arbitrary literal L ∈ Ki; we show Ki v L ∈̂ S(wi). By the definition of Ki, we have L ∈ poss(w j) ∩ poss(wi);

hence, 〈w j,wi, ε〉 ∈ E implies L v L ∈̂ S(wi) by condition (I4) of Theorem 37, which is stronger than Ki v L ∈̂ S(wi).
• Assume for contradiction that Ki v Mi ∈̂ S(wi). Since 〈w j,wi, ε〉 ∈ E and S is closed under the Epsilon rule, S(w j) is closed

under ≺w j -hyperresolution with some strengthening of Ki v Mi. By Lemmas 63 and 67, we then have J j |= Ki v Mi;
however, by the definition Ki and Mi we clearly have J j 6|= Ki v Mi. Thus, Ki v Mi 6∈̂ S(wi) holds, as required.

Next, we prove several important properties of J.

Claim 75. Let δv
KvM ∈ ∆ be an arbitrary element, and let W be the ε-component of D such that v ∈W . Then,

1. knw(W) ⊆ J(δv
KvM) ⊆ poss(W),

2. J(δv
KvM) 6|= K v M, and

3. J(δv
KvM) |= K′ v M′ for each clause K′ v M′ for which a context w ∈W exists such that K′ ∪ M′ ⊆ poss(w) and S(w) is

closed under ≺w-hyperresolution with K′ v M′.

Proof. Consider an arbitrary element δv
KvM ∈ ∆; clearly, we have v 0 K v M. Furthermore, let W be the ε-component of D such

that v ∈W , and let w0,w1, . . . ,wn, K0,K1, . . . ,Kn, M0,M1, . . . ,Mn, and J0, J1, . . . , Jn be as specified in the definition of the
pre-interpretation I. Before proceeding, we first prove the following auxiliary property (∗).

For all integers 0 ≤ i, j ≤ n and each literal L ∈ poss(wi) ∩ poss(w j), we have L ∈ Ji if and only if L ∈ J j.

Since DW is a tree by admissibility condition (E2), the shortest path between wi and w j is unique; we now prove (∗) by induction
on the length of this path. Towards this goal, consider an arbitrary literal L ∈ poss(wi) ∩ poss(w j); we have the following cases.

• If i = j, then Ji = J j, so clearly L ∈ Ji if and only if L ∈ J j.
• Assume that w j is the parent of wi in the traversal of DW . Then Ki ∪ Mi = poss(wi) ∩ poss(w j) by the definition of Ki

and Mi, which implies L ∈ Ki ∪ Mi. Furthermore, by Lemma 66 we have Ji 6|= Ki v Mi. But then, if L ∈ Ki, then by the
definition of Ki we have L ∈ J j, and Ji 6|= Ki v Mi implies L ∈ Ji. Analogously, if L ∈ Mi, then by the definition of Mi we
have L < J j, and Ji 6|= Ki v Mi implies L < Ji.

• The case when wi is the parent of w j is symmetric to the previous one.
• The remaining possibility is that the length of the shortest path between wi and w j is greater than one, so let wk be an

arbitrary vertex on this path different from wi and w j. By admissibility condition (E3), we have L ∈ poss(wk). Furthermore,
the paths between wi and wk, and between wk and w j are both shorter than the path between wi and w j, so property (∗)
holds for i and k, and for k and j. But then, property (∗) clearly holds for i and j as well.

Property (∗) clearly implies that, for each integer 0 ≤ i ≤ n and each literal L ∈ poss(wi), we have L ∈ J(δv
KvM) if and only if

L ∈ Ji; we call this property (†). We are now ready to prove Properties 1–3 of this claim.

(Property 1) The definition of J(δv
KvM) in (B.3) clearly implies J(δv

KvM) ⊆ poss(W). In order to prove knw(W) ⊆ J(δv
KvM),

consider an arbitrary literal L ∈ knw(W); clearly, a context wi ∈W exists such that L ∈ knw(wi). By condition (I2) of Theorem 37,
we have > v L ∈̂ S(wi); hence L ∈ Ji by Lemma 65. Consequently, L ∈ J(δv

KvM) holds by property (†), as required.

(Property 2) By Lemma 66, K0 = K, and M0 = M, we have J0 6|= K v M—that is, K ⊆ J0 and M ∩ J0 = ∅. Now v 0 K v M
implies K ⊆ poss(v) and M ∩ poss(W) ⊆ poss(v), so property (†) implies K ⊆ J(δv

KvM) and [M ∩ poss(W)] ∩ J(δv
KvM) = ∅. Fur-

thermore, since poss(W) ∩ J(δv
KvM) = J(δv

KvM), we have M ∩ J(δv
KvM) = ∅; thus, J(δv

KvM) 6|= K v M holds, as required.

(Property 3) Let K′ v M′ be a clause and let wi ∈W be a context such that K′ ∪ M′ ⊆ poss(wi) and set S(wi) is closed under
≺wi -hyperresolution with K′ v M′. By Lemma 67, we have Ji |= K′ v M′. But then, since K′ ∪ M′ ⊆ poss(wi), property (†)
implies J(δv

KvM) |= K′ v M′, as required.

To complete the proof of Theorem 37, the following claims show that structure I is a pre-interpretation, and that it satisfies
O but refutes the relevant queries.

Claim 76. Structure I satisfies conditions (I∃) and (I∀) of pre-interpretations from Definition 59.

46

Proof. (Condition I∃) Consider an arbitrary element δv
K1vM1

∈ ∆ and an arbitrary literal ∃R.A ∈ J(δv
K1vM1

); we show that an edge
〈δv

K1vM1
, γ,R〉 ∈ E exists such that A ∈ J(γ). Let W be the ε-component of D such that v ∈W . By admissibility condition (S3),

an edge 〈w, u,∃R.A〉 ∈ E exists such that w ∈W and conditions (B.6) and (B.7) are both satisfied.

poss(u) ⊇ {A} ∪ {B | ∀R.B ∈ poss(W)} (B.6)
poss(w) ⊇ {∃R.A} ∪ {∀R.B | ∀R.B ∈ poss(W)} (B.7)

Let U be the ε-component of D such that u ∈ U , and let K2 and M2 be as specified in (B.4) and (B.5), respectively. The following
observations prove that u 0 A u K2 v M2 holds.

• Condition A u K2 ⊆ poss(u) follows from (B.4), Property 1 of Claim 75, and (B.6).
• Admissibility condition (S2) implies M2 ∩ poss(U) ⊆ poss(u).
• Disjunction M2 is ≺u-minimal since, by admissibility condition (P1), 〈w, u,∃R.A〉 ∈ E implies that ≺u is R-admissible.
• Consider an arbitrary literal L ∈ A u K2; we show that A u K2 v L ∈̂ S(u). Assume that L ∈ K2, so L is an atomic concept

L = B. Then, we have ∀R.B ∈ J(δv
K1vM1

) ⊆ poss(W) by (B.4) and Property 1 of Claim 75. Thus, we have B ∈ poss(u) and
∀R.B ∈ poss(w) by (B.6) and (B.7), and then B v B ∈̂ S(u) by condition (I3) of Theorem 37, which is stronger than the
required A u K2 v B ∈̂ S(u). The proof for the case L = A is analogous.

• Assume for contradiction that A u K2 v M2 ∈̂ S(u). By admissibility condition (S2), we have C ∈ poss(w) for each
∀inv(R).C ∈ M2. Thus, since the Pred rule from Table 5 is not applicable to S(v), the Pred from Table 3 is not appli-
cable to S(v) either. Hence, by Lemma 69, set S(w) is closed under ≺w-hyperresolution with the clause

∃R.A u
�
{∀R.B | ∀R.B ∈ J(δv

K1vM1
)} v

⊔
{C | ∀inv(R).C ∈ poss(U) and C < J(δv

K1vM1
)}.

Recall that ∃R.A ∈ J(δv
K1vM1

), so the above clause is clearly refuted in J(δv
K1vM1

). However, all literals on the left-hand side
of this clause are contained in poss(w) by (B.7), and each concept C on its right-hand side is contained in poss(w); but then,
Property 3 of Claim 75 implies that this clause is satisfied in J(δv

K1vM1
), which is a contradiction. Consequently, we have

A u K2 v M2 6∈̂ S(u), as required.

Thus, we have u 0 A u K2 v M2, which implies 〈δv
K1vM1

, δu
AuK2vM2

,R〉 ∈ E by the definition of E. Finally, A ∈ J(δu
AuK2vM2

) holds
by Property 2 of Claim 75. This concludes the proof of condition (I∃).

(Condition I∀). Consider an arbitrary edge 〈δv
K1vM1

, δu
AuK2vM2

,R〉 ∈ E and arbitrary literals ∀R.B and ∀inv(R).C, and let U be
the ε-component of D such that u ∈ U .

• Assume that ∀R.B ∈ J(δv
K1vM1

). Then B ∈ K2 by (B.4); hence Property 2 of Claim 75 implies J(δu
AuK2vM2

) 6|= A u K2 v M2;
therefore B ∈ J(δu

AuK2vM2
), as required.

• Assume that ∀inv(R).C ∈ J(δu
AuK2vM2

). Then ∀inv(R).C ∈ poss(U) by Property 1 of Claim 75. Now, if C < J(δv
K1vM1

), then
(B.5) implies ∀inv(R).C ∈ M2, so ∀inv(R).C < J(δu

AuK2vM2
) follows from Property 2 of Claim 75, which contradicts the

assumption. Thus, we have C ∈ J(δv
K1vM1

), as required.

Claim 77. Pre-interpretation I is a pre-model of O.

Proof. Consider an arbitrary element δv
KvM ∈ ∆ and an arbitrary normal clause K′ v M′ ∈ O; we show that J(δv

KvM) satisfies
K′ v M′. This is obvious if K′ * J(δv

KvM), so assume that K′ ⊆ J(δv
KvM). Let W be the ε-component of D such that v ∈W . Then,

Property 1 of Claim 75 implies K′ ⊆ poss(W). Furthermore, by the ontology condition of Definition 36, a context w ∈W exists
such that K′ ∪ M′ ⊆ poss(w). Since S is closed under the Hyper rule from Table 5, set S(w) is closed under ≺w-hyperresolution
with K′ v M′. But then, Property 3 of Claim 75 implies J(δv

KvM) |= K′ v M′, as required.

Claim 78. Pre-interpretation I refutes each query K v M for which there exists a context v ∈ V such that v is complete for
K v M, K v L ∈̂ S(v) for each L ∈ K, and K v M 6∈̂ S(v).

Proof. Let K v M be an arbitrary query satisfying the preconditions of the claim, and let M′ = M ∩ L. Then v 0 K v M′ holds
as well, and this clause is over L by Claim 70. But then, J(δv

KvM′) 6|= K v M′ by Property 2 of Claim 75. Finally, each literal from
M \ M′ is not from L so it cannot occur in J(δv

KvM′); thus, J(δv
KvM′) 6|= K v M holds as well, so I refutes K v M, as required.

References

[1] A. Sidhu, T. Dillon, E. Chang, B. S. Sidhu, Protein Ontology Development using OWL, in: Proc. of the OWL: Experiences and Directions Workshop
(OWLED 2005), volume 188 of CEUR WS Proceedings, Galway, Ireland.

47

[2] C. Golbreich, S. Zhang, O. Bodenreider, The Foundational Model of Anatomy in OWL: Experience and Perspectives, Journal of Web Semantics 4 (2006)
181–195.

[3] J. Goodwin, Experiences of using OWL at the Ordnance Survey, in: Proc. of the OWL: Experiences and Directions Workshop (OWLED 2005), volume
188 of CEUR WS Proceedings, Galway, Ireland.

[4] S. Derriere, A. Richard, A. Preite-Martinez, An Ontology of Astronomical Object Types for the Virtual Observatory, in: Proc. of the 26th meeting of the
IAU: Virtual Observatory in Action: New Science, New Technology, and Next Generation Facilities, Prague, Czech Republic, pp. 17–18.

[5] D. Soergel, B. Lauser, A. Liang, F. Fisseha, J. Keizer, S. Katz, Reengineering Thesauri for New Applications: The AGROVOC Example, Journal of Digital
Information 4 (2004).

[6] L. Lacy, G. Aviles, K. Fraser, W. Gerber, A. Mulvehill, R. Gaskill, Experiences Using OWL in Military Applications, in: Proc. of the OWL: Experiences
and Directions Workshop (OWLED 2005), volume 188 of CEUR WS Proceedings, Galway, Ireland.

[7] P. F. Patel-Schneider, P. Hayes, I. Horrocks, OWL Web Ontology Language: Semantics and Abstract Syntax, W3C Recommendation,
http://www.w3.org/TR/owl-semantics/, 2004.

[8] B. Motik, P. F. Patel-Schneider, B. Parsia, OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax, W3C Recommendation,
http://www.w3.org/TR/owl2-syntax/, 2009.

[9] B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, U. Sattler, OWL 2: The next step for OWL, Journal of Web Semantics: Science,
Services and Agents on the World Wide Web 6 (2008) 309–322.

[10] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementation and Applica-
tions, Cambridge University Press, 2nd edition, 2007.

[11] H. Andréka, J. van Benthem, I. Németi, Modal Languages and Bounded Fragments of Predicate Logic, Journal of Philosophical Logic 27 (1998) 217–274.
[12] B. Parsia, E. Sirin, Pellet: An OWL-DL Reasoner, Poster at the 3rd Int. Semantic Web Conference (ISWC 2004), 2004.
[13] D. Tsarkov, I. Horrocks, FaCT++ Description Logic Reasoner: System Description, in: Proc. of the 3rd Int. Joint Conf. on Automated Reasoning (IJCAR

2006), volume 4130 of LNAI, Springer, Seattle, WA, USA, 2006, pp. 292–297.
[14] B. Motik, R. Shearer, I. Horrocks, Hypertableau Reasoning for Description Logics, Journal of Artificial Intelligence Research 36 (2009) 165–228.
[15] R. S. Gonçalves, B. Parsia, U. Sattler, Performance Heterogeneity and Approximate Reasoning in Description Logic Ontologies, in: P. Cudré-Mauroux,

J. Heflin, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Parreira, J. Hendler, G. Schreiber, A. Bernstein, E. Blomqvist (Eds.), Proc. of the 11th Int.
Semantic Web Conference (ISWC 2012), volume 7649 of LNCS, Springer, Boston, MA, USA, 2012, pp. 82–98.

[16] U. Hustadt, B. Motik, U. Sattler, Data Complexity of Reasoning in Very Expressive Description Logics, in: Proc. of the 19th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2005), Morgan Kaufmann Publishers, Edinburgh, UK, 2005, pp. 466–471.

[17] M. Krötzsch, S. Rudolph, P. Hitzler, Complexity Boundaries for Horn Description Logics, in: Proc. of the 22nd National Conference on Artificial
Intelligence (AAAI 2007), AAAI Press, Vancouver, BC, Canada, 2007, pp. 452–457.

[18] F. Baader, S. Brandt, C. Lutz, Pushing the EL Envelope, in: L. P. Kaelbling, A. Saffiotti (Eds.), Proc. of the 19th Int. Joint Conference on Artificial
Intelligence (IJCAI 2005), Morgan Kaufmann Publishers, Edinburgh, UK, 2005, pp. 364–369.

[19] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable Reasoning and Efficient Query Answering in Description Logics: The
DL-Lite Family, Journal of Automated Reasoning 9 (2007) 385–429.

[20] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite Family and Relations, Journal of Artificial Intelligence Research 36 (2009) 1–69.
[21] Y. Kazakov, Consequence-Driven Reasoning for Horn SHIQ Ontologies, in: C. Boutilier (Ed.), Proc. of the 21st Int. Joint Conf. on Artificial Intelligence

(IJCAI 2009), Pasadena, CA, USA, pp. 2040–2045.
[22] F. Simančı́k, Y. Kazakov, I. Horrocks, Consequence-Based Reasoning beyond Horn Ontologies, in: T. Walsh (Ed.), Proc. of the 22nd Int. Joint Conf. on

Artificial Intelligence (IJCAI 2011), Barcelona, Spain, pp. 1093–1098.
[23] Y. Kazakov, M. Krötzsch, F. Simančı́k, Concurrent Classification of EL Ontologies, in: L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal,

N. F. Noy, E. Blomqvist (Eds.), Proc. of the 10th Int. Semantic Web Conference (ISWC 2011), volume 7031 of LNCS, Springer, Boston, MA, USA, 2011,
pp. 305–320.

[24] R. G. Downey, M. R. Fellows, Parameterized Complexity, Springer, 1999.
[25] N. Robertson, P. Seymour, Graph minors. III. Planar tree-width, Journal of Combinatorial Theory, Series B 36 (1984) 49–64.
[26] S. Szeider, On Fixed-Parameter Tractable Parameterizations of SAT, in: E. Giunchiglia, A. Tacchella (Eds.), Proc. of the 6th Int. Conf. on Theory and

Applications of Satisfiability Testing (SAT 2003), volume 2919 of LNCS, Springer, Santa Margherita Ligure, Italy, 2003, pp. 188–202.
[27] C. Lutz, F. Wolter, Non-Uniform Data Complexity of Query Answering in Description Logics, in: G. Brewka, T. Eiter, S. A. McIlraith (Eds.), Proc. of the

13th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2012), AAAI Press, Rome, Italy, 2012, pp. 297–307.
[28] S. Demri, H. de Nivelle, Deciding Regular Grammar Logics with Converse Through First-Order Logic, Journal of Logic, Language and Information 14

(2005) 289–329.
[29] H. L. Bodlaender, A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth, SIAM Journal on Computing 25 (1996) 1305–1317.
[30] C. G. Fermüller, A. Leitsch, U. Hustadt, T. Tammet, Resolution Decision Procedures, in: A. Robinson, A. Voronkov (Eds.), Handbook of Automated

Reasoning, volume II, Elsevier Science, 2001, pp. 1791–1849.
[31] L. Bachmair, H. Ganzinger, Resolution Theorem Proving, in: A. Robinson, A. Voronkov (Eds.), Handbook of Automated Reasoning, volume I, Elsevier

Science, 2001, pp. 19–99.
[32] B. Motik, U. Sattler, A Comparison of Reasoning Techniques for Querying Large Description Logic ABoxes, in: M. Hermann, A. Voronkov (Eds.),

Proc. of the 13th Int. Conf. on Logic for Programming Artificial Intelligence and Reasoning (LPAR 2006), volume 4246 of LNCS, Springer, Phnom Penh,
Cambodia, 2006, pp. 227–241.

[33] R. Goré, L. A. Nguyen, EXPTIME Tableaux with Global Caching for Description Logics with Transitive Roles, Inverse Roles and Role Hierarchies, in:
N. Olivetti (Ed.), Proc. of the 16th Int. Conf. on Automated Reasoning with Tableaux and Related Methods (TABLEAUX 2007), volume 4548 of LNCS,
Springer, Aix en Provence, France, 2007, pp. 133–148.

[34] R. Goré, L. A. Nguyen, ExpTime Tableaux for ALC Using Sound Global Caching, Journal of Automated Reasoning 50 (2013) 355–381.
[35] C. Weidenbach, Combining superposition, sorts and splitting, in: A. Robinson, A. Voronkov (Eds.), Handbook of Automated Reasoning, volume II,

Elsevier Science, 2001, pp. 1965–2013.
[36] S. Schulz, System Description: E 0.81, in: D. A. Basin, M. Rusinowitch (Eds.), Proc. of the 2nd Int. Conf. on Automated Reasoning (IJCAR 2004),

volume 3097 of LNCS, Springer, Cork, Ireland, 2004, pp. 223–228.
[37] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, A Novel Approach to Ontology Classification, Journal of Web Semantics: Science, Services and Agents on

the World Wide Web 14 (2012) 84–101.

48

